i

The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)
New Orleans, Louisiana, June 1998

Deducing Similarities in Java Sources from Bytecodes

Brenda S. Baker
Bell Laboratories, Lucent Technologies
Udi Manber
University of Arizona

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

Deducing Similarities in Java Sources from Bytecodes

Brenda S. Baker
Bell Laboratories
Lucent Technologies
700 Mountain Avenue
Murray Hill, NJ 07974
bsb@bell-labs.com, http://cm.bell-labs.com/ bsb/

Udi Manber
Department of Computer Science
University of Arizona
Tucson, AZ 85721

udi@cs.arizona.edu, http://glimpse.cs.arizona.edu/udi.html

Abstract

Several techniques for detecting similarities of Java
programs from bytecode files, without access to the
source, are introduced in this paper. These tech-
niques can be used to compare two files, to find
similarities among thousands of files, or to compare
one new file to an index of many old ones. Experi-
mental results indicate that these techniques can be
very effective. Even changes of 30% to the source
file will usually result in bytecode that can be as-
sociated with the original. Several applications are
discussed.

1 Introduction

Java bytecode, particularly in the form of applets,
is geared to become the common way to execute
programs through the web, and not only by tradi-
tional computers. Network computers, even appli-
ances, are expected to be controlled by Java byte-
code, which will arrive through the net transpar-
ently and for the most part, automatically. There
is obviously a great need to be able to control all
these programs. There will be problems of security,
management of updates, portability, handling pref-
erences, deletions, and so on.

This paper introduces several techniques to help one
aspect of these problems. We show that it is pos-

sible, given a large set of bytecode files, to iden-
tify most of those that originate from similar source
code. In addition, an index can be built from any
number of bytecode files, such that given a new
bytecode one can very quickly find all the old ones
that are similar to it. Our tools also can detail in
a convenient way just which sections of the files are
similar.

Our techniques make it possible to identify byte-
code files that came from the same source without
knowing the actual source even if significant parts
of the source files are different. The files do not even
have to be of similar sizes. For example, the orig-
inal source code files may be different versions of
the same program or different programs containing
similar sections.

Finding similarities from compiled code is much
more difficult than finding similarities in source code
or text, because a small change in the source code
can produce completely different binaries when they
are viewed just as sequences of bytes.

To accomplish these goals, we adapt three tools de-
signed to find similarity in source code and text to
work with bytecode files. Siff [24] ! is designed
to analyze large number of text files to find pairs
that contain a significant number of common blocks
(“fingerprints”), where a block corresponds to a
non-trivial segment of code, usually a few lines.

IThe original name was SIF, but at some unknown point
during the development an extra f was added to make it more
natural.

Dup [5], searches sets of source files to look for
sufficiently long sections that match except for sys-
tematic transformations of names, such as variable
names, and can deal efficiently with a few mil-
lion lines of source code. The UNIX utility diff
(described in [21]) uses dynamic programming to
identify line-by-line changes (insertions or deletions)
from one file to another, and is useful for detailed
comparison of two files and for automated distribu-
tion of patches.

None of the programs mentioned above was de-
signed to deal with binaries. The only work that
we know of that may have applied one of these to
binaries is .RTPatch [27], a tool for creating patches
(differences between files) for updating files. This
tool is claimed to work for arbitrary files, even bina-
ries; while no technical description is given of their
methods, it seems likely that it applies the diff al-
gorithm to arbitrary bytes rather than to hashes of
lines of text. We are not familiar with any work that
can find similarities in large number of binaries.

Our adaptations of siff and diff do not work directly
on bytecode files, or even on disassembled bytecode
files. Bytecode files contain many indices into ta-
bles, and values of most indices can be changed by a
slight (even one character) change to a Java source
file. Therefore, we encode disassembled bytecode
files in a “normal form” which takes into account po-
sitional values that are less affected by small changes
than absolute values of indices. This encoding,
based on a technique first used in dup, enables the
programs to find the hidden similarity in bytecode
files. Since this technique is already incorporated
into dup, dup can work on disassembled bytecode
files; however, additional simple preprocessing im-
proves its performance.

There are other tools for finding similarities in text
or source code, as well. However, tools based on
style metrics, such as [7, 19, 25], or data flow graphs
[17] would require decompilation of bytecode files
in order to be applied. Some other tools based on
fingerprints, such as [16, 20, 10], chunks of text [9,
30, 34], or visualization via a graphical user interface
[11] may be adaptable to byte code files using the
same techniques that we use for siff, dup, and diff.

To search for similar files in a large set of bytecode
files, we run siff on the encoded disassembled byte-
code files and dup on the preprocessed disassembled
bytecode files. We show that combining the output
from siff and dup is more effective than either indi-

vidually at finding similar files while keeping false
positives low. We then use dup and diff on the sim-
ilar pairs to examine the similarities in more detail.

Our programs are fast and can analyze thousands
of bytecode files in minutes. A new file can be com-
pared to an index of thousands of existing files in
a second or two. The number of false positives is
kept to a very small minimum. Our programs are
written in C and run under UNIX. Detailed experi-
mental results are given later in the paper.

We foresee several applications for our tool.

program management: When people have numerous
Java classes, and get many more on a regular basis,
there will be a great need to organize them, often
not according to the original “plan.” Being able
to tell which classes are similar can be very help-
ful. Sometimes a similarity will identify the source.
Knowing that a very similar class is already installed
on one’s disk may be helpful in deciding what to do
with the new class. It can also help with version
control, etc. In some cases, especially for programs
that perform mostly arithmetic operations, it may
be possible to identify programs that implement the
same algorithm, even when they are written by in-
dependent writers. For example, when we ran ex-
periments on thousands of arbitrary class files, we
discovered two MDJ5 programs with 78% similarity
in their bytecode files.

Plagiarism detection: Our approach will identify
stolen code if only minor changes are made to it
(including any amount of syntactic changes such as
changing variable names). However, the advance in
sophistication of obfuscators [13, 12], especially for
Java, would allow someone to hide any code segment
pretty well, and our methods (and very possibly any
other method) will not be able to identify it. One
may be able to identify that obfuscators were used,
on the other hand, which may be good enough (e.g.,
in a classroom).

Program reuse and reengineering: It will obviously
be useful to know which classes are similar when
trying to reuse them. Identifying versions is a good
example of that.

Uninstallers: If you finally obtain the exact code
you wanted, then you probably want to get rid of

other code that is very similar.

Security: Detecting that a class is similar to a known

bad class can be very helpful.

Compression: It may be possible to store only differ-
ences among classes that are very similar. But first
one must detect all such similarities. This could be
especially useful for low-storage devices.

Clustering: Small similarities are quite typical
among programs written by the same person. Our
tools cannot by themselves cluster everything, but
they can help a clustering program identify many
candidates.

Miscellaneous: There was recently discussion in the
press about Sun Microsystems allegedly using a
copy of a popular benchmark program directly in its
Java compiler. We believe that our program would
have discovered that easily and could be used to
continuously monitor for cases like that.

The rest of the paper is organized as follows. The
next section describes the three similarity tools that
we adapt to Java bytecode files. Section 3 describes
how we process Java class files to make them suit-
able for comparisons by dup, siff, and diff. In Sec-
tion 4 we present experimental results. These in-
clude experiments with siff alone, siff and dup to-
gether, and diff alone. Section 5 describes related
work. We end with conclusions and future research.

2 Tools for finding similarity

This section describes the three tools (diff, siff, and
dup) that we adapt to finding similarity in Java
bytecode files. All three were designed originally
for source or text files.

2.1 Siff

Siff[24] is a program to find similarities in text files.
It uses a special kind of random sampling, such that
if a sample taken from one file appears in another
it is guaranteed to be taken there too. A set of
such samples, which are called in siff approximate
fingerprints, provides a compact representation of
a file. With high probability, sets of fingerprints
of two similar files will have large intersection, and
the fingerprints of two non-similar files will have a
very small intersection. Siff works in two different

modes: all-against-all and one-against-all. The first
mode finds all groups of similar files in a large file
system and gives a rough indication of the similarity.
The running time is essentially linear in the total
size of all files, which makes siff scalable. (A sort,
which is not a linear-time routine, is required, but
it is performed only on fingerprints, and therefore
does not dominate the running time unless the total
size of all files is many GBytes.) The second mode
compares a given file to a preprocessed approzimate
indez of all other files, and determines very quickly
all files that are similar to the given file. In both
cases, similarity can be detected even if the similar
portions constitute as little as 25% of the size of the
smaller file (for smaller percentages, the probability
of false positives is non trivial, so although siff will
work, its output may be too large).

2.2 Dup

Dup [4, 5, 6] looks for similarity of source codes
based on finding sufficiently long sections of code
that almost match. Dup’s notion of almost-
matching is the parameterized match (p-match): two
sections of code are a p-match if they are the same
textually except possibly for a systematic change of
variable names; e.g. if all occurrences of “count”
and “fun” in one section are changed to “num” and
“foo”, respectively, in the other. For a threshold
length (in lines) specified by the user, dup reports all
longest p-matches over the threshold length within
a list of files or between two lists of files. It can
compute the percentage of duplication between two
files or the percentage of duplication for the cross-
product of two lists of files. It can also generate a
profile that shows the matches involving each line
in the input and a plot showing where matches oc-
cur. Dup has been found useful for identifying unde-
sirable duplication within a large software system,
looking for plagiarism between systems, and for an-
alyzing the divergence of two systems of common
origin.

Using dup, one may choose to base a notion of sim-
ilarity on the existence of matching sections over a
threshold length, on the percentage of common code
resulting from these matching sections, or on some
combination of the two.

The key idea that enables dup to identify p-matches
is to replace tokens such as identifiers by off-
sets to remove the identity of the identifier while

preserving the distinctness of different identifiers.
In particular, the first occurrence of an identi-
fier is replaced by a 0, and each later occurrence
of the same identifier is replaced by the number
of tokens since the previous one. For example,
u(x,y)=(x>y)?x:y; and v(w,z)=(w>z)7w:z; are
both encoded as 0(0,0)=(6>6)75:5; because u and
v occur in the same positions, as do the pair x
and w and the pair y and z; the numbers 6 and
5 represent the number of tokens (single symbols,
in this case) between successive occurrences of the
same identifier token. More generally, if max, argl,
and arg2 are tokens, the same encoding represents
max (argl,arg2)=(argl>arg2)7argl:arg?2;.

Dup computes longest p-matches via a data struc-
ture called a parameterized suffiz tree (p-suffiz tree).
The p-suffix tree is a compacted trie that represents
offset encodings of suffixes of the token string, but
only uses linear space because only the offset encod-
ing of the entire input is stored. At each access to
an offset, the previous context is used dynamically
to determine whether this is the first use of this
parameter within the suffix being processed. The
algorithms for building a p-suffix tree and searching
it for duplication are described in [5, 6].

2.3 Diff

Diff is the oldest tool for finding commonality be-
tween files. Given two text files, diff reports a min-
imal length edit script for the differences between
the two files, where edit operations include inser-
tions and deletions. Many algorithms for minimal
edit scripts have appeared in the literature. A popu-
lar version of diff today is the GNU implementation
based on an algorithm of Myers [26]. Because of the
quadratic worst-case running time, diff can be slow
for comparing large amounts of code with many dif-
ferences.

Graphical user interfaces such as gdiff (which runs
on SGI workstations under UNIX) make it conve-
nient to look at output from diff by aligning iden-
tical sections of two files, side by side. Variants of
gdiff exist for other platforms; a list is given in [15].

2.4 Combining the tools

The three tools use three very different notions of
similarity. In this paper, we show that a combina-

tion of the three is more powerful than any of them
individually.

For searching large numbers of files, siff and dup
can be used together either to broaden the notion
of similarity (by taking the union of pairs of files
found by siff and dup) or to make it more stringent
(by taking the intersection of the pairs reported as
similar by dup and siff).

Siff finds similarities that are not found by dup be-
cause occasional differences may disrupt the longer
matches looked for by dup; on the other hand, dup
finds some files that have long matches but aren’t
reported by siff because the overall percentage of
similarity in the files is too low. For example, if a
block of code is added to an otherwise unmodified
file, the percentage of similarity might fall below
the percentage of similarity selected for siff to re-
port, but dup would find that the rest of the file
was unchanged.

For more detailed analysis of files found to be sim-
ilar, dup, diff, and gdiff are useful. Dup provides
a list of matching sections of code, a profile show-
ing for each line what other lines match (based on
matches over threshold length), and scatter plots for
visualization. Diff and gdiff provide an alignment of
the two files that enable looking at the differences
line-by-line, and are especially effective when the
number of differences is very small.

3 Adapting the tools to Java byte-
code files

This section describes how we adapt dup, siff, and
diff to handle Java class files. A class file, usually
obtained by compiling a Java file, is a stream of
bytes representing a single class in a form suitable
for the Java Virtual Machine [22]. We use the terms
“class files” and “bytecode files” interchangeably.

3.1 Information in Java class files

The first items encoded in a class file are a magic
number that identifies the file as a class file, the mi-
nor version number, and the major version number.
A Java Virtual Machine of a particular major and
minor version number may run code of the same

major version number and the same or lower mi-
nor version number. The version handled currently
by our system is major version 45, minor version 3,
described in [22].

The remainder of a class file is mainly tables of
structures. Of these, the “constant pool” and the
method table are important to the design of our
tools.

The constant pool contains information about all
the constants used in the class, e.g. strings, integers,
fields, and classes. This table is very important as
many other parts of the class file (including code
for methods) contain indices into the constant pool.
For example, a reference to a different class includes
the index for the string that names that class.

For each method, the method table contains the
code and other information such as the number of
local variables, exception-handlers, the maximum
stack length, indices into the constant pool repre-
senting the method name and a string describing
the method type, and optional tables aimed at de-
buggers, such as line number relationships between
bytecode and source and information relating local
variable names to the code.

3.2 Disassembly of Java class files

The first step in processing a Java class file is to
disassemble it. Disassembling a class file requires
keeping track at each point of how far the parsing
has gotten in the conceptual hierarchy of tables and
structures, based on tables in the disassembler de-
rived from [22]. We wrote our own disassembler,
although others have been implemented previously;
a list appears in [32].

After disassembling the file, we extract the code of
each method for further analysis. The disassem-
bled code contains opcodes and arguments for a se-
quence of assembly-language-level instructions. Fig-
ure 1 shows an example of a section from the mid-
dle of a disassembled bytecode file, with comments
added to identify the numerical opcodes. Since op-
codes can have variable numbers of arguments, we
put one opcode or argument per line. A character
at the start of the line identifies the type of item on
the line. Opcodes, indices into the constant pool,
indices into the local variable table, signed integers,
unsigned integers, and jump offsets are identified by

(R AN e e

o', ‘c’, v, ‘i’, ‘u’, and j’, respectively. Jump offsets
are translated from numbers of bytes in the class file
to numbers of lines in the disassembled file.

0182 #invokevirtual
c106

0153 #ifeq

j+17

0025 #aload

v

0180 #getfield

c253

0025 #aload

vb

0182 #invokevirtual
c102

0025 #aload

v4

0180 #getfield

c253

0025 #aload

v

0182 #invokevirtual
c260

0025 #aload

vb

0180 #getfield

c253

Figure 1: Disassembled bytecode

Dup can be run on disassembled bytecode if it is pro-
vided with an appropriate lexical analyzer, though
performance is improved by undoing the jump off-
sets before running dup. (See the next section.)

Running siff or diff on the disassembled file without
further preprocessing does not produce useful infor-
mation. For example, changing a 4 to a 5 in two
places in a 182-line Java file resulted in over 1100
lines of diff output on the disassembled bytecode
file, and less than 1% similarity reported by siff.

The reason that siff and diff fail is that indices into
the constant table or local variable table may change
with slight changes to the Java file, due to additions,
deletions, or reorderings of the constant pool and/or
local variable table. Such indices typically occur fre-
quently in the code, as in the example of Figure 1.
When the files mentioned in the previous paragraph
are preprocessed as described shortly, diff reports
only changes in two lines (containing opcodes refer-
ring to a constant of 5 rather than 4) and siff finds
98% similarity.

3.3 Preprocessing for dup

With an appropriate lexical analyzer, dup can be
run on disassembled bytecode files. However, be-
fore running dup, it is preferable to undo the jump
offsets already present in the disassembled code by
changing jumps into a “goto label” form. Dup will
compute the offsets itself for the labels. The dy-
namic way in which dup calculates offsets relative
to suffixes means that when two otherwise identical
sections of code contain jumps to earlier points and
the jumps cross insertions or deletions, these jumps
will not cause mismatches, as would happen with a
precomputed fixed encoding. Thus, this preprocess-
ing enables dup to find longer p-matches.

Our lexical analyzer for the disassembled bytecode
files (without jump offsets) breaks up the input into
two classes of tokens: parameter tokens and non-
parameter tokens. Offsets are computed for pa-
rameter tokens but not for non-parameter tokens.
Parameter tokens include indices into the constant
pool, indices into the local variable table, labels for
jumps, and signed and unsigned integers; the vari-
ous types of parameter tokens are distinguished so
that the offsets are computed separately and tokens
of different types will not be matched to each other
in parameterized matches. The non-parameter to-
kens include opcodes.

3.4 Further preprocessing for siff and
diff via offsets

Even though absolute values of table indices in byte-
code files may change with slight changes to the Java
source, there are still hidden similarities in the byte-
code files. In particular, the corresponding uses of
indices maintain the same positional relationship.

Consequently, we use the same offset encoding that
is used in dup. In the context of disassembled byte-
code, what corresponds to the “identifiers” are the
indices into the constant pool or local variable ta-
ble. (Jumps are already encoded as offsets in the
bytecodes.) Siff and diff are then run on the offset-
encoded files.

We treat each index into the constant pool or lo-
cal variable table as a parameter to be replaced by
an offset. The first occurrence of each index is en-
coded as 0, and thereafter each use of an index is

encoded as the negative of the number of lines since
the previous use (if any) of the same index. Offsets
for indices into tables are negative to be consistent
with jump offsets, which are negative for a jump to
a preceding line and positive for a jump to a later
line. The offsets are calculated independently for
the constant table and the local variable table. The
example of Figure 1 is shown in Figure 2 after cal-
culating offsets for the entire file from which this
section was extracted.

0182
c-26
0153
j+17
0025
v-10
0180
c-10
0025
v-10
0182
c-26
0025
v-8

0180
c-8

0025
v-4

0182
c-26
0025
v-12
0180
c-8

Figure 2: Disassembled bytecode after calculating
offsets

This encoding decreases reliance on the absolute
value of the indices but preserves the information
as to whether indices for different instructions are
the same or different. For example, if two files are
the same except that indices in one file are always
one larger than indices in the other, the encodings
of the two files will be identical. The next section
describes experiments demonstrating that this en-
coding enables siff and diff to work effectively.

4 Experiments

4.1 Experiment 1: Random changes

In the first experiment, we took one Java program
and made many different random changes to it.
These changes included addition of statements (e.g.,
“newvariable = 43;”) in random places, and substi-
tution/deletion of statements (e.g., changing com-
plex conditions in “if” and “while” statements to
“l < 17). We varied the number of changes and
the ratio between additions and deletions. We ran
these tests on two different Java programs. For
each run, we measured the similarities of the source
code (using the original siff) and the similarities of
the bytecode files. The results, shown in Table 1,
consistently show that the bytecode similarities are
close to the source code similarities. For each of the
two programs we partitioned the tests into three
groups according to source similarities: 90-100%,
80-89%, and 70-79%. The results are averages for
each group, showing the number of trials, the av-
erage similarity for source and bytecode, and the
maximal difference between them in all the trials.

Furthermore, we also ran siff on all the variants of
the two programs together, and found no false pos-
itives.

4.2 Experiment 2: a large set of byte-
code files

In the second set of experiments we took 2056 Java
bytecode files (from 38 collections of files from many
different sources) and ran tests on all of them at
the same time (allowing for at least 50% similarity).
The goal was to look for similar files from different
collections.

Siff reported 634 ordered pairs of files with similari-
ties of at least 50%. We define similarity of two files
as the percentage of one file that is contained in the
other. As a result, similarity is an asymmetric rela-
tion: for example, if a file A is contained in another
file B twice its size, then A is 100% similar to B, but
B is 50% similar to A. We use ordered pairs here for
this reason.

Of the 634 pairs, 591 were between files in the same
collection, and 43 were between files in different col-
lections. Next, we use dup to aid in analyzing which

of these similar pairs represent interesting relation-
ships.

For the same 2056 Java bytecode files, dup reported
92 ordered pairs of files to have at least one common
code section of 200 lines or more, in comparison to
the 634 ordered pairs reported by siff. Table 2 shows
the breakdown as to how many ordered pairs were
reported by siff alone, by both siff and dup, and by
dup alone.

The goal of the experiment was to look for similarity
in files from different collections (out of the 38 col-
lections we downloaded). The second line of the ta-
ble gives the breakdown with respect to similarities
between files from different collections. The initial
analysis was in terms of ordered pairs, since similar-
ities can be asymmetric, but for ease of discussion,
the third line shows the corresponding number of
unordered pairs.

Of the 9 different-collection (unordered) pairs re-
ported by both siff and dup, we believe that 8 pairs
are originally from the same source, based on the
pairs of files having the same name. Of the 8 pairs,
four pairs are identical files, and four are in the
range of 57%-100% similar according to siff and 45%
to 97% similar according to dup (based on just the
code sections of at least 200 lines that match.)

The remaining different-collection (unordered) pair
of files reported by both siff and dup are a pair of
programs from different sources (cryptiX, developed
by Wolfgang Platzer, and part of JavaFaces, devel-
oped by John Thomas) to compute MD5. Siff found
them to have 78% similarity (and 86% in the other
direction), and dup found them to have a single
common code segment of 1336 lines. The common
code segment corresponded to 60 identical lines in
the Java files. There was no similarity otherwise in
the Java files, but siff found additional similarities in
the bytecode files. The 60 identical lines are differ-
ent from the corresponding lines of the MD5 RFC
[29], but semantically equivalent. Interestingly, a
search of the WWW turned up a third Java program
with the same 60 lines. Possibly two of these pro-
grams borrowed from the third, or all three copied
a description of MD5 other than the RFC.

The different-collection (unordered) pair reported
only by dup looks at first glance as if it surely must
come from a common source, because dup reported
a common code section of 1521 lines, representing
85% of one file and 28% of the other. We didn’t have

range of average average max
program | source similarity | number of | source similarity | bytecode similarity | difference
percent trials percent percent percent
90-100 59 93.2 88.7 9
Program 1 80-89 76 84.4 78.7 9
70-79 35 75.9 71.9 7
90-100 17 92.9 91 9
Program 2 80-89 25 83.4 80.2 8
70-79 6 76.2 74.2 5

Table 1: Similarity found by siff for corresponding Java files and bytecode files

siff only | both | dup only

ordered pairs 552 82 10

ordered pairs, different collections 25 18 2
unordered pairs, different collections 23 9 1

Table 2: Similarities reported by siff and dup for 2056 bytecode files

the java source to compare. Upon inspection of the
bytecode files, however, the common code turned
out to be the initialization of an array of size 256.
Since the stored values (retrievable from the con-
stant pool of the bytecode files) appeared unrelated,
the similarity is probably coincidental, merely an ar-
tifact of how the compiler generates code for a series
of 256 array assignments.

For the pairs reported only by siff, the Java source
was not available. However, almost all result from
comparing a very small file (500 bytes or less in most
cases) to a large file; the small file was found to
be similar to the large one, but not the other way
around. In addition, the names of these pairs in-
dicate that the purposes of the files are unrelated.
We conclude that these are false positives. The ex-
ceptions were matches whose names included H or
V (apparently for horizontal and vertical); the H/H
and V/V pairs were reported by both siff and dup,
but the H/V and V/H pairs only by siff. The names
of another two pairs of matching files related to but-
tons and checkboxes, but the remaining pairs of files
appear to be totally unrelated based on the subject
matter indicated by the names.

To summarize, we found many similarities and very
few false positives by combining the information
from dup and siff. The different-collection pairs re-
ported by both dup and siff all appear to be valid
instances of similarity. The one reported only by
dup was not; some of the ones reported only by
siff were not, especially for small files. Overall, the

number of false positives was very small: at most
18 out of more than 2 million pairs.

4.3 Experiment 3: False negatives

The first two experiments indicate that our tools
can effectively discover similarities while minimizing
false positives. But the question of false negatives —
that is, how many similar pairs we missed — remains
unresolved. There were none in the first experiment,
but it was too limited.

Since there are no other tools to compare to, there is
no guaranteed way for us to measure false negatives.
Nevertheless, we believe that the following ”blind”
experiment gives a reasonable indication.

We asked a friend who was familiar with the goals
of our work, but not with the techniques we use, to
randomly pick 10 programs from a set of 765 java
programs (a subset of the 2056 programs for which
we had the source), make random changes to them,
compile them (possibly under a different version of
the compiler) and give the set of bytecode files in a
random order. We then ran siff and dup to see how
many of his changes we can detect.

To make the test even more blind, our tester actu-
ally made changes to 12 programs, and added to our
original test some additional programs (as well as re-
moved some programs). siff running with a thresh-

old of 65% similarity discovered 9 of the 12. Dup,
with a threshold of 100 common lines, discovered
8. Together, they discovered 10. All 12 were found
by siff when run with a 25% similarity threshold
and by dup when run with a 50-line threshold. (On
the other hand, decreasing the threshold to 25% in-
creases the number of ordered pairs siff finds among
the 2056 original files from 634 to 1430. Still reason-
ably small compared to the total of over 4 million
possible pairs, but clearly the number of false posi-
tives grows when the threshold is decreased.)

Out of the two programs that were missed by both
siff and dup, one is particularly interesting. It in-
volved relatively few changes to the source, but they
made the bytecode file very different. On close in-
spection, we found that the main culprit was a move
of a segment of code, which resulted in a bytecode
file with many jumps around the relocated code. For
siff, the offsets of all these jumps were affected by the
relocation, resulting in different fingerprints. For
dup, the relocated code broke up long matches in
both places, which mattered since the bytecode files
were small - only four times the threshold length.

To validate the usefulness of the offset encoding for
diff, we ran diff on the disassembled code with and
without the offset encoding. The results are shown
in Table 3. The pairs varied in file size and how
many changes were made. To get a relatively size-
invariant measure, we use the length of the diff out-
put (in lines) divided by the sum of the file sizes,
for each type of file. (Pair 6 is special: different
versions of the JDK compiler were used to generate
two class files from the same java file. Consequently,
no value is given for this measure for the java file.)
Our second measure is the average length of blocks
of identical lines reported by diff. The last column
contains the sum of the sizes of the offset-encoded
disassembled files, which is the same as the sum of
the file sizes without the offset-encoding.

For most of the pairs, the data in Table 3 show a
significant improvement from using offset encodings
for diff. In a few instances, the values are about
the same with and without offsets. Pair 11 is the
only instance where diff found significantly less sim-
ilarity with offset encodings, but just for the second
measure. Note that pairs 3, 10, and 12 were the
ones not discovered by siff with a 50% threshold, as
discussed above, and pairs 9-12 were the ones not
discovered by dup with a 100-line threshold.

To validate our approach of using offset encodings

for siff, we also ran siff on the disassembled code
without applying the offset encoding. With a 25%
threshold of similarity, siff discovered only three of
the 12 pairs (4, 5, and 10), a much worse perfor-
mance than that described above for the offset en-
coding.

4.4 Running times and scalability

For the 2056 files, siff used 41 seconds of elapsed
time and 4 seconds of user time while dup used 1
minute 55 seconds of elapsed time and 1 minute 7
seconds of user time (running under IRIX 5.3 and
using one of 12 150 MHZ IP19 Processors, with
data cache size 16 Kbytes, instruction cache size
16 Kbytes, secondary unified instruction/data cache
size 1 Mbyte, and main memory size 1280 Mbytes).
Encoding the 2056 bytecode files took 7 minutes
of elapsed time for siff and 8 minutes (indepen-
dently) for dup. (Most of the preprocessing could be
shared.) Siff also enables the creation of an index so
that new files can be compared with an index of files
processed earlier. Comparing one 50K bytecode to
all the 2056 files in the index (within 50% similar-
ity) takes a couple of seconds for encoding the new
file and thereafter the processing by siff is essentially
instantaneous (0.2 user time and between 0:00 and
0:01 elapsed time). The size of the index depends
on the amount of sampling done and the precision
of results; for the experiments used here the index
occupied about 5% of the total size of all files.

Dup is much greedier in space than siff, and conse-
quently will not scale to processing huge numbers
of bytecode files at one time. If the goal were to
process an enormous number of bytecode files, say
to provide a registry service for the World Wide
Web as has been proposed for text files [9], then siff
should be used to screen for similarities that should
be checked subsequently by dup.

5 Related Work

Java bytecode files are relatively easy to decompile
into Java. Programs can be rewritten in structured
form by analyzing the flow of control, and the names
of classes, fields, and methods are available from the
class file. In fact, at least four bytecode decompilers
have been implemented: Mocha (by Hanpeter Van

diff-size/total-lines ave. ident. block size sum of file

pair as % in lines sizes in lines

java offset no-offset | offset no-offset offset = no-offset
1 13 6 a7 185 3 2740
2 14 17 68 18 2 1040
3 30 24 61 8 2 2098
4 14 14 21 173 20 1603
5 59 40 42 10 10 988
6 - 2 34 198 5 6041
7 19 13 32 22 6 8789
8 23 24 59 36 12 941
9 14 8 45 61 4 265
10 24 32 31 7 8 662
11 50 55 56 7 24 428
12 18 41 67 6 2 1037

Table 3: Results of running diff with and without the offset encoding

Vliet, now deceased, and according to [31], taken
over as part of Borland’s JBuilder [8]), WingDis [33],
DejaVu [18], and Krakatoa [28]. A discussion of
these appears in [14]. These produce quite readable
code except for variable names, and even those may
be available (perhaps inadvertently) from the class
file if the compiler generated optional information
aimed at debuggers.

Because class files are relatively easy to decompile
readably, Java applications are potentially vulner-
able to theft, even if they are distributed only as
bytecode files. An unscrupulous person could use
one of the decompilers mentioned above to decom-
pile the bytecode files of an application, modify the
resulting source, recompile into bytecode files, and
distribute the bytecode files.

In fact, a number of “obfuscators” have been writ-
ten to make decompilation less successful. These in-
clude Crema (by Van Vliet, and like Mocha, also re-
portedly taken over by Borland’s JBuilder|[8]), Hose-
Mocha, by Mark LaDue, HashJava (now renamed
SourceGuard [1]), by K.B. Sriram, and Jobe, by
Eron Jokipii; for discussion of these, see [23, 32].
Early obfuscators either changed symbol names or
added no-ops to bytecode files in such a way that
particular decompilers crashed. New obfuscators
(e.g., [13, 12]) employ much more sophisticated tech-
niques, some of cryptographic strength, to change
the appearance of code. These techniques not only
make it harder to decompile, but they also make it
possible to change the appearance of bytecode files
that come from the same source. Our methods will
not be able to defeat such techniques, although it

may be possible to detect that they are used.

Another technique for enabling detection of stolen
code is steganography, the art of hiding information
such that the information can later be detected [2].
For object code, insertions of extra no-op sequences
of instructions would slow it down, but Intel reports
that it has successfully replaced code fragments by
equivalent ones to customize security code [3]. How-
ever, this is not common practice.

For Java bytecode files, the single Java Virtual Ma-
chine means that the variety of platforms is not an
issue. Multiplicity of compilers can be dealt with by
having the owner of the code compile the source files
with each of the available Java compilers and com-
pare the resulting bytecode files with the bytecode
files that were suspected to be stolen. Currently, the
number of different compilers is not large, so this is
manageable. Code compiled by different releases of
the same compiler will probably still be very similar,
although not necessarily identical. In our experi-
ments we found that, given the same source files, jdk
1.0.2 and jdk 1.1.x generated class files that rarely
differed in any significant way.

6 Conclusions and Future Work

Our experiments have validated our approach by
showing that our tools are able to deduce similar-
ity in Java source from similarity in the bytecode
files. We can make the rate of false positives very

low while keeping false negatives reasonably mini-
mal. Our positional encoding proves to be a very
powerful technique. Since the three tools siff, dup,
and diff are based on different techniques, one may
detect similarity when another one misses it. Local
modifications within sections of code will reduce the
percentage of similarity found by siff, but dup will
still find long matches in the unchanged sections.
Name changes of variables would not be a problem
since the compiler turns variable references into ta-
ble indices, which we have shown our methods to
handle despite change in absolute values. Reorder-
ing major sections of code, e.g. by changing the
order of methods, will have little effect on siff and
dup, though it will greatly affect diff.

A major advantage of looking at Java class files
rather than at binaries for other programming lan-
guages is that there is just one version of the Java
Virtual Machine for all platforms (or at least that is
Sun’s intention), while binaries of other languages
are different for different platforms. Extending our
techniques to binaries is a natural step to take, al-
though binaries present several additional problems:
They are strongly tied to the architecture, there
are many compiler and even more optimization and
code restructuring programs, and the information in
binaries as not as well organized as in bytecode files.
Nevertheless, we believe that it will be possible, at
least in some degree, to identify similar binaries.

It would be helpful to have a graphical user interface
that links the output of siff and dup to a decompiler,
allowing a developer to see the evolution of two sim-
ilar programs clearly.

7 Acknowledgements

Peter Bigot was our blind tester, and we thank him
for a thankless job well done.

8 Availability

Contact Brenda Baker, bsb@bell-labs.com, for in-
formation about licensing the software from Lucent
Technologies.

References

[1]

2]

3]

[5]

[6]

[10]

[11]

[12]

4thpass Software Corporation. Protect your
Java investment. http://www.4thpass.com/,
Apr. 7, 1998.

Ross Anderson and Fabien Petitcolas. On the
limits of steganography. In IEEE J-SAC, to
appear.

D. Aucsmith. Tamper resistant software: An
implementation. In Information Hiding, vol-
ume 1174 of Lecture Notes in Computer Sci-
ence, pages 317-333. Springer-Verlag, 1996.

Brenda S. Baker. On finding duplication and
near-duplication in large software systems. In
Second Working Conference on Reverse Engi-
neering, pages 86-95, 1995.

Brenda S. Baker. Parameterized pattern
matching: Algorithms and applications. J.
Comput. Syst. Sci., 52(1):28-42, Feb. 1996.

Brenda S. Baker. Parameterized duplication
in strings: Algorithms and an application to
software maintenance. SIAM J. Computing,
26(5):1343-1362, Oct. 1997.

H.L. Berghel and D.L. Sallach. Measurements
of program similarity in identical task environ-
ments. SIGPLAN Notices, 9(8):65-76, August
1984.

Borland. Jbuilder. http://www.borland.com/
jbuilder/, Oct. 23, 1997.

S. Brin, J. Davis, and H. Garcia-Molina. Copy
detection mechanisms for digital documents. In
Proceedings of the ACM Special Interest Group
on Management of Data (SIGMOD), 1995.

Andrei Broder, Steve Glassman, Mark Man-
asse, and Geoffrey Zweig. Syntactic clustering
of the web. In Proceedings of the Sizth Inter-
national World Wide Web Conference, pages
391-404, April 1997.

Kenneth Ward Church and Jonathan Isaac
Helfman. Dotplot: A program for exploring
self-similarity in millions of lines of text and

code. Journal of Computational and Graphical
Statistics, 2(2):153-174, June 1993.

Christian Collberg, Clark Thomborson, and
Douglas Low. Breaking abstractions and un-
structuring data structures. In IEEE Inter-
national Conference on Computer Languages
1998, Chicago, 1L, May 1998.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Christian Collberg, Clark Thomborson, and
Douglas Low. Manufacturing cheap, resilient,
and stealthy opaque constructs. In Principles
of Programming Languages 1998, POPL’98,
San Diego, CA, Jan. 1998.

Dave Dyer. Java decompilers compared.
JavaWorld, July 16, 1997. http://wuw.
javaworld.com/javaworld/jw-07-1997/jw-
07-decompilers.html.

Luis Fernandes. Are there any apps
that can display files in parallel, high-
lighting (in color) the differences between
them? http://www.ee.ryerson.ca:8080/~
elf/xapps/Q-XI.html, April 3, 1997.

Nevin Heintze. Scalable document fingerprint-
ing. In Proceedings of the Second USENIX
Workshop on Electronic Commerce, Nov. 18-
21, 1996.

Susan Horwitz. Identifying the semantic and
textual differences between two versions of a
program. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design
and Implementation (PLDI), pages 234-245,
June 1990.

Innovative Software. OEW for Java. http://
www.isg.de/0EW/Java/, Oct. 2, 1997.

H.T. Jankowitz. Detecting plagiarism in stu-
dent PASCAL programs. Computer Journal,
31(1):1-8, 1988.

J. Howard Johnson. Substring matching for
clone detection and change tracking. In Proc.
International Conf. on Software Maintenance,
pages 120-126, 1994.

Brian W. Kernighan and Rob Pike. The UNIX
Programming Environment. Prentice-Hall, En-
glewood Cliffs, New Jersey, 1984.

Tim Lindholm and Frank Yellin. The Java Vir-
tual Machine Specification. Addison-Wesley,
Reading, Massachusetts, 1997.

Qusay H. Mahmoud. Java tip 22: Pro-
tect your bytecodes from reverse engineer-
ing/decompilation. JavaWorld, Jan. 2, 1997.
http://www.javaworld.com/javatips/jw-
javatip22i.html.

Udi Manber. Finding similar files in a large file
system. In Proc. 199/ Winter Useniz Technical
Conference, pages 1-10, Jan 1994.

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

[34]

T.J. McCabe. Reverse engineering, reusability,
redundancy: the connection. American Pro-
grammer, 3(10):8-13, Oct. 1990.

Eugene W. Myers. An O(ND) difference algo-
rithm and its variations. Algorithmica, 1:251—
266, 1986.

PocketSoft. .RTPatch Professional, Feb.
23, 1998. http://www.pocketsoft.com/
products.html.

Todd Proebsting and Scott A. Watterson.
Krakatoa: Decompilation in java (does byte-
code reveal source?). In USENIX Conference
on Object-oriented Technologies and Systems,
June 1997.

Ronald Rivest. The MD5 message digest
algorithm. RFC 1321, Apr. 1992. http://
info.internet.isi.edu:80/in-notes/rfc/
files/rfc1321.txt.

Narayanan Shivakumar and Hector Garcia-
Molina. Building a scalable and accurate copy
detection mechanism. In Proceedings of 1st
ACM International Conference on Digital Li-
braries (DL’96), March 1996.

Eric Smith. Mocha, the Java decom-
piler. http://www.brouhaha.com/~eric/
computers/mocha.html, Dec. 28, 1997.

Thomas Traber. Tools for working with byte-
code: Bytecode assemblers, disassemblers and
dumps. http://www.oasis.leo.org/java/
development/bytecode/00-index.html. Part
of Java Oasis, http://www.oasis.leo.org/
java/00-oasis.html.

Wingsoft. Wingsoft Products Information.
http://www.wingsoft.com/products.shtml.

Tak Yan and Hector Garcia-Molina. Duplicate
removal in information dissemination. Techni-
cal report, Stanford Computer Science Dept.,
1995. submitted for publication.

