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Abstract

Several techniques for detecting similarities of Java
programs from bytecode �les, without access to the
source, are introduced in this paper. These tech-
niques can be used to compare two �les, to �nd
similarities among thousands of �les, or to compare
one new �le to an index of many old ones. Experi-
mental results indicate that these techniques can be
very e�ective. Even changes of 30% to the source
�le will usually result in bytecode that can be as-
sociated with the original. Several applications are
discussed.

1 Introduction

Java bytecode, particularly in the form of applets,
is geared to become the common way to execute
programs through the web, and not only by tradi-
tional computers. Network computers, even appli-
ances, are expected to be controlled by Java byte-
code, which will arrive through the net transpar-
ently and for the most part, automatically. There
is obviously a great need to be able to control all
these programs. There will be problems of security,
management of updates, portability, handling pref-
erences, deletions, and so on.

This paper introduces several techniques to help one
aspect of these problems. We show that it is pos-

sible, given a large set of bytecode �les, to iden-
tify most of those that originate from similar source
code. In addition, an index can be built from any
number of bytecode �les, such that given a new
bytecode one can very quickly �nd all the old ones
that are similar to it. Our tools also can detail in
a convenient way just which sections of the �les are
similar.

Our techniques make it possible to identify byte-
code �les that came from the same source without
knowing the actual source even if signi�cant parts
of the source �les are di�erent. The �les do not even
have to be of similar sizes. For example, the orig-
inal source code �les may be di�erent versions of
the same program or di�erent programs containing
similar sections.

Finding similarities from compiled code is much
more di�cult than �nding similarities in source code
or text, because a small change in the source code
can produce completely di�erent binaries when they
are viewed just as sequences of bytes.

To accomplish these goals, we adapt three tools de-
signed to �nd similarity in source code and text to
work with bytecode �les. Si� [24] 1 is designed
to analyze large number of text �les to �nd pairs
that contain a signi�cant number of common blocks
(\�ngerprints"), where a block corresponds to a
non-trivial segment of code, usually a few lines.

1The original name was SIF, but at some unknown point

during the development an extra f was added to make it more

natural.



Dup [5], searches sets of source �les to look for
su�ciently long sections that match except for sys-
tematic transformations of names, such as variable
names, and can deal e�ciently with a few mil-
lion lines of source code. The UNIX utility di�
(described in [21]) uses dynamic programming to
identify line-by-line changes (insertions or deletions)
from one �le to another, and is useful for detailed
comparison of two �les and for automated distribu-
tion of patches.

None of the programs mentioned above was de-
signed to deal with binaries. The only work that
we know of that may have applied one of these to
binaries is .RTPatch [27], a tool for creating patches
(di�erences between �les) for updating �les. This
tool is claimed to work for arbitrary �les, even bina-
ries; while no technical description is given of their
methods, it seems likely that it applies the di� al-
gorithm to arbitrary bytes rather than to hashes of
lines of text. We are not familiar with any work that
can �nd similarities in large number of binaries.

Our adaptations of si� and di� do not work directly
on bytecode �les, or even on disassembled bytecode
�les. Bytecode �les contain many indices into ta-
bles, and values of most indices can be changed by a
slight (even one character) change to a Java source
�le. Therefore, we encode disassembled bytecode
�les in a \normal form" which takes into account po-
sitional values that are less a�ected by small changes
than absolute values of indices. This encoding,
based on a technique �rst used in dup, enables the
programs to �nd the hidden similarity in bytecode
�les. Since this technique is already incorporated
into dup, dup can work on disassembled bytecode
�les; however, additional simple preprocessing im-
proves its performance.

There are other tools for �nding similarities in text
or source code, as well. However, tools based on
style metrics, such as [7, 19, 25], or data ow graphs
[17] would require decompilation of bytecode �les
in order to be applied. Some other tools based on
�ngerprints, such as [16, 20, 10], chunks of text [9,
30, 34], or visualization via a graphical user interface
[11] may be adaptable to byte code �les using the
same techniques that we use for si�, dup, and di�.

To search for similar �les in a large set of bytecode
�les, we run si� on the encoded disassembled byte-
code �les and dup on the preprocessed disassembled
bytecode �les. We show that combining the output
from si� and dup is more e�ective than either indi-

vidually at �nding similar �les while keeping false
positives low. We then use dup and di� on the sim-
ilar pairs to examine the similarities in more detail.

Our programs are fast and can analyze thousands
of bytecode �les in minutes. A new �le can be com-
pared to an index of thousands of existing �les in
a second or two. The number of false positives is
kept to a very small minimum. Our programs are
written in C and run under UNIX. Detailed experi-
mental results are given later in the paper.

We foresee several applications for our tool.

program management: When people have numerous
Java classes, and get many more on a regular basis,
there will be a great need to organize them, often
not according to the original \plan." Being able
to tell which classes are similar can be very help-
ful. Sometimes a similarity will identify the source.
Knowing that a very similar class is already installed
on one's disk may be helpful in deciding what to do
with the new class. It can also help with version
control, etc. In some cases, especially for programs
that perform mostly arithmetic operations, it may
be possible to identify programs that implement the
same algorithm, even when they are written by in-
dependent writers. For example, when we ran ex-
periments on thousands of arbitrary class �les, we
discovered two MD5 programs with 78% similarity
in their bytecode �les.

Plagiarism detection: Our approach will identify
stolen code if only minor changes are made to it
(including any amount of syntactic changes such as
changing variable names). However, the advance in
sophistication of obfuscators [13, 12], especially for
Java, would allow someone to hide any code segment
pretty well, and our methods (and very possibly any
other method) will not be able to identify it. One
may be able to identify that obfuscators were used,
on the other hand, which may be good enough (e.g.,
in a classroom).

Program reuse and reengineering: It will obviously
be useful to know which classes are similar when
trying to reuse them. Identifying versions is a good
example of that.

Uninstallers: If you �nally obtain the exact code
you wanted, then you probably want to get rid of
other code that is very similar.

Security: Detecting that a class is similar to a known



bad class can be very helpful.

Compression: It may be possible to store only di�er-
ences among classes that are very similar. But �rst
one must detect all such similarities. This could be
especially useful for low-storage devices.

Clustering: Small similarities are quite typical
among programs written by the same person. Our
tools cannot by themselves cluster everything, but
they can help a clustering program identify many
candidates.

Miscellaneous: There was recently discussion in the
press about Sun Microsystems allegedly using a
copy of a popular benchmark program directly in its
Java compiler. We believe that our program would
have discovered that easily and could be used to
continuously monitor for cases like that.

The rest of the paper is organized as follows. The
next section describes the three similarity tools that
we adapt to Java bytecode �les. Section 3 describes
how we process Java class �les to make them suit-
able for comparisons by dup, si�, and di�. In Sec-
tion 4 we present experimental results. These in-
clude experiments with si� alone, si� and dup to-
gether, and di� alone. Section 5 describes related
work. We end with conclusions and future research.

2 Tools for �nding similarity

This section describes the three tools (di�, si�, and
dup) that we adapt to �nding similarity in Java
bytecode �les. All three were designed originally
for source or text �les.

2.1 Si�

Si�[24] is a program to �nd similarities in text �les.
It uses a special kind of random sampling, such that
if a sample taken from one �le appears in another
it is guaranteed to be taken there too. A set of
such samples, which are called in si� approximate

�ngerprints, provides a compact representation of
a �le. With high probability, sets of �ngerprints
of two similar �les will have large intersection, and
the �ngerprints of two non-similar �les will have a
very small intersection. Si� works in two di�erent

modes: all-against-all and one-against-all. The �rst
mode �nds all groups of similar �les in a large �le
system and gives a rough indication of the similarity.
The running time is essentially linear in the total
size of all �les, which makes si� scalable. (A sort,
which is not a linear-time routine, is required, but
it is performed only on �ngerprints, and therefore
does not dominate the running time unless the total
size of all �les is many GBytes.) The second mode
compares a given �le to a preprocessed approximate

index of all other �les, and determines very quickly
all �les that are similar to the given �le. In both
cases, similarity can be detected even if the similar
portions constitute as little as 25% of the size of the
smaller �le (for smaller percentages, the probability
of false positives is non trivial, so although si� will
work, its output may be too large).

2.2 Dup

Dup [4, 5, 6] looks for similarity of source codes
based on �nding su�ciently long sections of code
that almost match. Dup's notion of almost-
matching is the parameterized match (p-match): two
sections of code are a p-match if they are the same
textually except possibly for a systematic change of
variable names; e.g. if all occurrences of \count"
and \fun" in one section are changed to \num" and
\foo", respectively, in the other. For a threshold
length (in lines) speci�ed by the user, dup reports all
longest p-matches over the threshold length within
a list of �les or between two lists of �les. It can
compute the percentage of duplication between two
�les or the percentage of duplication for the cross-
product of two lists of �les. It can also generate a
pro�le that shows the matches involving each line
in the input and a plot showing where matches oc-
cur. Dup has been found useful for identifying unde-
sirable duplication within a large software system,
looking for plagiarism between systems, and for an-
alyzing the divergence of two systems of common
origin.

Using dup, one may choose to base a notion of sim-
ilarity on the existence of matching sections over a
threshold length, on the percentage of common code
resulting from these matching sections, or on some
combination of the two.

The key idea that enables dup to identify p-matches
is to replace tokens such as identi�ers by o�-
sets to remove the identity of the identi�er while



preserving the distinctness of di�erent identi�ers.
In particular, the �rst occurrence of an identi-
�er is replaced by a 0, and each later occurrence
of the same identi�er is replaced by the number
of tokens since the previous one. For example,
u(x,y)=(x>y)?x:y; and v(w,z)=(w>z)?w:z; are
both encoded as 0(0,0)=(6>6)?5:5; because u and
v occur in the same positions, as do the pair x
and w and the pair y and z; the numbers 6 and
5 represent the number of tokens (single symbols,
in this case) between successive occurrences of the
same identi�er token. More generally, if max, arg1,
and arg2 are tokens, the same encoding represents
max(arg1,arg2)=(arg1>arg2)?arg1:arg2;.

Dup computes longest p-matches via a data struc-
ture called a parameterized su�x tree (p-su�x tree).
The p-su�x tree is a compacted trie that represents
o�set encodings of su�xes of the token string, but
only uses linear space because only the o�set encod-
ing of the entire input is stored. At each access to
an o�set, the previous context is used dynamically
to determine whether this is the �rst use of this
parameter within the su�x being processed. The
algorithms for building a p-su�x tree and searching
it for duplication are described in [5, 6].

2.3 Di�

Di� is the oldest tool for �nding commonality be-
tween �les. Given two text �les, di� reports a min-
imal length edit script for the di�erences between
the two �les, where edit operations include inser-
tions and deletions. Many algorithms for minimal
edit scripts have appeared in the literature. A popu-
lar version of di� today is the GNU implementation
based on an algorithm of Myers [26]. Because of the
quadratic worst-case running time, di� can be slow
for comparing large amounts of code with many dif-
ferences.

Graphical user interfaces such as gdi� (which runs
on SGI workstations under UNIX) make it conve-
nient to look at output from di� by aligning iden-
tical sections of two �les, side by side. Variants of
gdi� exist for other platforms; a list is given in [15].

2.4 Combining the tools

The three tools use three very di�erent notions of
similarity. In this paper, we show that a combina-

tion of the three is more powerful than any of them
individually.

For searching large numbers of �les, si� and dup
can be used together either to broaden the notion
of similarity (by taking the union of pairs of �les
found by si� and dup) or to make it more stringent
(by taking the intersection of the pairs reported as
similar by dup and si�).

Si� �nds similarities that are not found by dup be-
cause occasional di�erences may disrupt the longer
matches looked for by dup; on the other hand, dup
�nds some �les that have long matches but aren't
reported by si� because the overall percentage of
similarity in the �les is too low. For example, if a
block of code is added to an otherwise unmodi�ed
�le, the percentage of similarity might fall below
the percentage of similarity selected for si� to re-
port, but dup would �nd that the rest of the �le
was unchanged.

For more detailed analysis of �les found to be sim-
ilar, dup, di�, and gdi� are useful. Dup provides
a list of matching sections of code, a pro�le show-
ing for each line what other lines match (based on
matches over threshold length), and scatter plots for
visualization. Di� and gdi� provide an alignment of
the two �les that enable looking at the di�erences
line-by-line, and are especially e�ective when the
number of di�erences is very small.

3 Adapting the tools to Java byte-

code �les

This section describes how we adapt dup, si�, and
di� to handle Java class �les. A class �le, usually
obtained by compiling a Java �le, is a stream of
bytes representing a single class in a form suitable
for the Java Virtual Machine [22]. We use the terms
\class �les" and \bytecode �les" interchangeably.

3.1 Information in Java class �les

The �rst items encoded in a class �le are a magic
number that identi�es the �le as a class �le, the mi-
nor version number, and the major version number.
A Java Virtual Machine of a particular major and
minor version number may run code of the same



major version number and the same or lower mi-
nor version number. The version handled currently
by our system is major version 45, minor version 3,
described in [22].

The remainder of a class �le is mainly tables of
structures. Of these, the \constant pool" and the
method table are important to the design of our
tools.

The constant pool contains information about all
the constants used in the class, e.g. strings, integers,
�elds, and classes. This table is very important as
many other parts of the class �le (including code
for methods) contain indices into the constant pool.
For example, a reference to a di�erent class includes
the index for the string that names that class.

For each method, the method table contains the
code and other information such as the number of
local variables, exception-handlers, the maximum
stack length, indices into the constant pool repre-
senting the method name and a string describing
the method type, and optional tables aimed at de-
buggers, such as line number relationships between
bytecode and source and information relating local
variable names to the code.

3.2 Disassembly of Java class �les

The �rst step in processing a Java class �le is to
disassemble it. Disassembling a class �le requires
keeping track at each point of how far the parsing
has gotten in the conceptual hierarchy of tables and
structures, based on tables in the disassembler de-
rived from [22]. We wrote our own disassembler,
although others have been implemented previously;
a list appears in [32].

After disassembling the �le, we extract the code of
each method for further analysis. The disassem-
bled code contains opcodes and arguments for a se-
quence of assembly-language-level instructions. Fig-
ure 1 shows an example of a section from the mid-
dle of a disassembled bytecode �le, with comments
added to identify the numerical opcodes. Since op-
codes can have variable numbers of arguments, we
put one opcode or argument per line. A character
at the start of the line identi�es the type of item on
the line. Opcodes, indices into the constant pool,
indices into the local variable table, signed integers,
unsigned integers, and jump o�sets are identi�ed by

`o', `c', `v', `i', `u', and `j', respectively. Jump o�sets
are translated from numbers of bytes in the class �le
to numbers of lines in the disassembled �le.

o182 #invokevirtual

c106

o153 #ifeq

j+17

o025 #aload

v4

o180 #getfield

c253

o025 #aload

v5

o182 #invokevirtual

c102

o025 #aload

v4

o180 #getfield

c253

o025 #aload

v4

o182 #invokevirtual

c260

o025 #aload

v5

o180 #getfield

c253

Figure 1: Disassembled bytecode

Dup can be run on disassembled bytecode if it is pro-
vided with an appropriate lexical analyzer, though
performance is improved by undoing the jump o�-
sets before running dup. (See the next section.)

Running si� or di� on the disassembled �le without
further preprocessing does not produce useful infor-
mation. For example, changing a 4 to a 5 in two
places in a 182-line Java �le resulted in over 1100
lines of di� output on the disassembled bytecode
�le, and less than 1% similarity reported by si�.

The reason that si� and di� fail is that indices into
the constant table or local variable table may change
with slight changes to the Java �le, due to additions,
deletions, or reorderings of the constant pool and/or
local variable table. Such indices typically occur fre-
quently in the code, as in the example of Figure 1.
When the �les mentioned in the previous paragraph
are preprocessed as described shortly, di� reports
only changes in two lines (containing opcodes refer-
ring to a constant of 5 rather than 4) and si� �nds
98% similarity.



3.3 Preprocessing for dup

With an appropriate lexical analyzer, dup can be
run on disassembled bytecode �les. However, be-
fore running dup, it is preferable to undo the jump
o�sets already present in the disassembled code by
changing jumps into a \goto label" form. Dup will
compute the o�sets itself for the labels. The dy-
namic way in which dup calculates o�sets relative
to su�xes means that when two otherwise identical
sections of code contain jumps to earlier points and
the jumps cross insertions or deletions, these jumps
will not cause mismatches, as would happen with a
precomputed �xed encoding. Thus, this preprocess-
ing enables dup to �nd longer p-matches.

Our lexical analyzer for the disassembled bytecode
�les (without jump o�sets) breaks up the input into
two classes of tokens: parameter tokens and non-
parameter tokens. O�sets are computed for pa-
rameter tokens but not for non-parameter tokens.
Parameter tokens include indices into the constant
pool, indices into the local variable table, labels for
jumps, and signed and unsigned integers; the vari-
ous types of parameter tokens are distinguished so
that the o�sets are computed separately and tokens
of di�erent types will not be matched to each other
in parameterized matches. The non-parameter to-
kens include opcodes.

3.4 Further preprocessing for si� and
di� via o�sets

Even though absolute values of table indices in byte-
code �les may change with slight changes to the Java
source, there are still hidden similarities in the byte-
code �les. In particular, the corresponding uses of
indices maintain the same positional relationship.

Consequently, we use the same o�set encoding that
is used in dup. In the context of disassembled byte-
code, what corresponds to the \identi�ers" are the
indices into the constant pool or local variable ta-
ble. (Jumps are already encoded as o�sets in the
bytecodes.) Si� and di� are then run on the o�set-
encoded �les.

We treat each index into the constant pool or lo-
cal variable table as a parameter to be replaced by
an o�set. The �rst occurrence of each index is en-
coded as 0, and thereafter each use of an index is

encoded as the negative of the number of lines since
the previous use (if any) of the same index. O�sets
for indices into tables are negative to be consistent
with jump o�sets, which are negative for a jump to
a preceding line and positive for a jump to a later
line. The o�sets are calculated independently for
the constant table and the local variable table. The
example of Figure 1 is shown in Figure 2 after cal-
culating o�sets for the entire �le from which this
section was extracted.

o182

c-26

o153

j+17

o025

v-10

o180

c-10

o025

v-10

o182

c-26

o025

v-8

o180

c-8

o025

v-4

o182

c-26

o025

v-12

o180

c-8

Figure 2: Disassembled bytecode after calculating
o�sets

This encoding decreases reliance on the absolute
value of the indices but preserves the information
as to whether indices for di�erent instructions are
the same or di�erent. For example, if two �les are
the same except that indices in one �le are always
one larger than indices in the other, the encodings
of the two �les will be identical. The next section
describes experiments demonstrating that this en-
coding enables si� and di� to work e�ectively.



4 Experiments

4.1 Experiment 1: Random changes

In the �rst experiment, we took one Java program
and made many di�erent random changes to it.
These changes included addition of statements (e.g.,
\newvariable = 43;") in random places, and substi-
tution/deletion of statements (e.g., changing com-
plex conditions in \if" and \while" statements to
\i < 1"). We varied the number of changes and
the ratio between additions and deletions. We ran
these tests on two di�erent Java programs. For
each run, we measured the similarities of the source
code (using the original si�) and the similarities of
the bytecode �les. The results, shown in Table 1,
consistently show that the bytecode similarities are
close to the source code similarities. For each of the
two programs we partitioned the tests into three
groups according to source similarities: 90-100%,
80-89%, and 70-79%. The results are averages for
each group, showing the number of trials, the av-
erage similarity for source and bytecode, and the
maximal di�erence between them in all the trials.

Furthermore, we also ran si� on all the variants of
the two programs together, and found no false pos-
itives.

4.2 Experiment 2: a large set of byte-
code �les

In the second set of experiments we took 2056 Java
bytecode �les (from 38 collections of �les from many
di�erent sources) and ran tests on all of them at
the same time (allowing for at least 50% similarity).
The goal was to look for similar �les from di�erent
collections.

Si� reported 634 ordered pairs of �les with similari-
ties of at least 50%. We de�ne similarity of two �les
as the percentage of one �le that is contained in the
other. As a result, similarity is an asymmetric rela-
tion: for example, if a �le A is contained in another
�le B twice its size, then A is 100% similar to B, but
B is 50% similar to A. We use ordered pairs here for
this reason.

Of the 634 pairs, 591 were between �les in the same
collection, and 43 were between �les in di�erent col-
lections. Next, we use dup to aid in analyzing which

of these similar pairs represent interesting relation-
ships.

For the same 2056 Java bytecode �les, dup reported
92 ordered pairs of �les to have at least one common
code section of 200 lines or more, in comparison to
the 634 ordered pairs reported by si�. Table 2 shows
the breakdown as to how many ordered pairs were
reported by si� alone, by both si� and dup, and by
dup alone.

The goal of the experiment was to look for similarity
in �les from di�erent collections (out of the 38 col-
lections we downloaded). The second line of the ta-
ble gives the breakdown with respect to similarities
between �les from di�erent collections. The initial
analysis was in terms of ordered pairs, since similar-
ities can be asymmetric, but for ease of discussion,
the third line shows the corresponding number of
unordered pairs.

Of the 9 di�erent-collection (unordered) pairs re-
ported by both si� and dup, we believe that 8 pairs
are originally from the same source, based on the
pairs of �les having the same name. Of the 8 pairs,
four pairs are identical �les, and four are in the
range of 57%-100% similar according to si� and 45%
to 97% similar according to dup (based on just the
code sections of at least 200 lines that match.)

The remaining di�erent-collection (unordered) pair
of �les reported by both si� and dup are a pair of
programs from di�erent sources (cryptiX, developed
by Wolfgang Platzer, and part of JavaFaces, devel-
oped by John Thomas) to compute MD5. Si� found
them to have 78% similarity (and 86% in the other
direction), and dup found them to have a single
common code segment of 1336 lines. The common
code segment corresponded to 60 identical lines in
the Java �les. There was no similarity otherwise in
the Java �les, but si� found additional similarities in
the bytecode �les. The 60 identical lines are di�er-
ent from the corresponding lines of the MD5 RFC
[29], but semantically equivalent. Interestingly, a
search of the WWW turned up a third Java program
with the same 60 lines. Possibly two of these pro-
grams borrowed from the third, or all three copied
a description of MD5 other than the RFC.

The di�erent-collection (unordered) pair reported
only by dup looks at �rst glance as if it surely must
come from a common source, because dup reported
a common code section of 1521 lines, representing
85% of one �le and 28% of the other. We didn't have



range of average average max
program source similarity number of source similarity bytecode similarity di�erence

percent trials percent percent percent

90-100 59 93.2 88.7 9
Program 1 80-89 76 84.4 78.7 9

70-79 35 75.9 71.9 7

90-100 17 92.9 91 9
Program 2 80-89 25 83.4 80.2 8

70-79 6 76.2 74.2 5

Table 1: Similarity found by si� for corresponding Java �les and bytecode �les

si� only both dup only

ordered pairs 552 82 10

ordered pairs, di�erent collections 25 18 2

unordered pairs, di�erent collections 23 9 1

Table 2: Similarities reported by si� and dup for 2056 bytecode �les

the java source to compare. Upon inspection of the
bytecode �les, however, the common code turned
out to be the initialization of an array of size 256.
Since the stored values (retrievable from the con-
stant pool of the bytecode �les) appeared unrelated,
the similarity is probably coincidental, merely an ar-
tifact of how the compiler generates code for a series
of 256 array assignments.

For the pairs reported only by si�, the Java source
was not available. However, almost all result from
comparing a very small �le (500 bytes or less in most
cases) to a large �le; the small �le was found to
be similar to the large one, but not the other way
around. In addition, the names of these pairs in-
dicate that the purposes of the �les are unrelated.
We conclude that these are false positives. The ex-
ceptions were matches whose names included H or
V (apparently for horizontal and vertical); the H/H
and V/V pairs were reported by both si� and dup,
but the H/V and V/H pairs only by si�. The names
of another two pairs of matching �les related to but-
tons and checkboxes, but the remaining pairs of �les
appear to be totally unrelated based on the subject
matter indicated by the names.

To summarize, we found many similarities and very
few false positives by combining the information
from dup and si�. The di�erent-collection pairs re-
ported by both dup and si� all appear to be valid
instances of similarity. The one reported only by
dup was not; some of the ones reported only by
si� were not, especially for small �les. Overall, the

number of false positives was very small: at most
18 out of more than 2 million pairs.

4.3 Experiment 3: False negatives

The �rst two experiments indicate that our tools
can e�ectively discover similarities while minimizing
false positives. But the question of false negatives {
that is, how many similar pairs we missed { remains
unresolved. There were none in the �rst experiment,
but it was too limited.

Since there are no other tools to compare to, there is
no guaranteed way for us to measure false negatives.
Nevertheless, we believe that the following "blind"
experiment gives a reasonable indication.

We asked a friend who was familiar with the goals
of our work, but not with the techniques we use, to
randomly pick 10 programs from a set of 765 java
programs (a subset of the 2056 programs for which
we had the source), make random changes to them,
compile them (possibly under a di�erent version of
the compiler) and give the set of bytecode �les in a
random order. We then ran si� and dup to see how
many of his changes we can detect.

To make the test even more blind, our tester actu-
ally made changes to 12 programs, and added to our
original test some additional programs (as well as re-
moved some programs). si� running with a thresh-



old of 65% similarity discovered 9 of the 12. Dup,
with a threshold of 100 common lines, discovered
8. Together, they discovered 10. All 12 were found
by si� when run with a 25% similarity threshold
and by dup when run with a 50-line threshold. (On
the other hand, decreasing the threshold to 25% in-
creases the number of ordered pairs si� �nds among
the 2056 original �les from 634 to 1430. Still reason-
ably small compared to the total of over 4 million
possible pairs, but clearly the number of false posi-
tives grows when the threshold is decreased.)

Out of the two programs that were missed by both
si� and dup, one is particularly interesting. It in-
volved relatively few changes to the source, but they
made the bytecode �le very di�erent. On close in-
spection, we found that the main culprit was a move
of a segment of code, which resulted in a bytecode
�le with many jumps around the relocated code. For
si�, the o�sets of all these jumps were a�ected by the
relocation, resulting in di�erent �ngerprints. For
dup, the relocated code broke up long matches in
both places, which mattered since the bytecode �les
were small - only four times the threshold length.

To validate the usefulness of the o�set encoding for
di�, we ran di� on the disassembled code with and
without the o�set encoding. The results are shown
in Table 3. The pairs varied in �le size and how
many changes were made. To get a relatively size-
invariant measure, we use the length of the di� out-
put (in lines) divided by the sum of the �le sizes,
for each type of �le. (Pair 6 is special: di�erent
versions of the JDK compiler were used to generate
two class �les from the same java �le. Consequently,
no value is given for this measure for the java �le.)
Our second measure is the average length of blocks
of identical lines reported by di�. The last column
contains the sum of the sizes of the o�set-encoded
disassembled �les, which is the same as the sum of
the �le sizes without the o�set-encoding.

For most of the pairs, the data in Table 3 show a
signi�cant improvement from using o�set encodings
for di�. In a few instances, the values are about
the same with and without o�sets. Pair 11 is the
only instance where di� found signi�cantly less sim-
ilarity with o�set encodings, but just for the second
measure. Note that pairs 3, 10, and 12 were the
ones not discovered by si� with a 50% threshold, as
discussed above, and pairs 9-12 were the ones not
discovered by dup with a 100-line threshold.

To validate our approach of using o�set encodings

for si�, we also ran si� on the disassembled code
without applying the o�set encoding. With a 25%
threshold of similarity, si� discovered only three of
the 12 pairs (4, 5, and 10), a much worse perfor-
mance than that described above for the o�set en-
coding.

4.4 Running times and scalability

For the 2056 �les, si� used 41 seconds of elapsed
time and 4 seconds of user time while dup used 1
minute 55 seconds of elapsed time and 1 minute 7
seconds of user time (running under IRIX 5.3 and
using one of 12 150 MHZ IP19 Processors, with
data cache size 16 Kbytes, instruction cache size
16 Kbytes, secondary uni�ed instruction/data cache
size 1 Mbyte, and main memory size 1280 Mbytes).
Encoding the 2056 bytecode �les took 7 minutes
of elapsed time for si� and 8 minutes (indepen-
dently) for dup. (Most of the preprocessing could be
shared.) Si� also enables the creation of an index so
that new �les can be compared with an index of �les
processed earlier. Comparing one 50K bytecode to
all the 2056 �les in the index (within 50% similar-
ity) takes a couple of seconds for encoding the new
�le and thereafter the processing by si� is essentially
instantaneous (0.2 user time and between 0:00 and
0:01 elapsed time). The size of the index depends
on the amount of sampling done and the precision
of results; for the experiments used here the index
occupied about 5% of the total size of all �les.

Dup is much greedier in space than si�, and conse-
quently will not scale to processing huge numbers
of bytecode �les at one time. If the goal were to
process an enormous number of bytecode �les, say
to provide a registry service for the World Wide
Web as has been proposed for text �les [9], then si�
should be used to screen for similarities that should
be checked subsequently by dup.

5 Related Work

Java bytecode �les are relatively easy to decompile
into Java. Programs can be rewritten in structured
form by analyzing the ow of control, and the names
of classes, �elds, and methods are available from the
class �le. In fact, at least four bytecode decompilers
have been implemented: Mocha (by Hanpeter Van



di�-size/total-lines ave. ident. block size sum of �le
pair as % in lines sizes in lines

java o�set no-o�set o�set no-o�set o�set = no-o�set

1 13 6 57 185 3 2740
2 14 17 68 18 2 1040
3 30 24 61 8 2 2098
4 14 14 21 173 20 1603
5 59 40 42 10 10 988
6 - 2 34 198 5 6041
7 19 13 32 22 6 8789
8 23 24 59 36 12 941
9 14 8 45 61 4 265
10 24 32 31 7 8 662
11 50 55 56 7 24 428
12 18 41 67 6 2 1037

Table 3: Results of running di� with and without the o�set encoding

Vliet, now deceased, and according to [31], taken
over as part of Borland's JBuilder [8]), WingDis [33],
DejaVu [18], and Krakatoa [28]. A discussion of
these appears in [14]. These produce quite readable
code except for variable names, and even those may
be available (perhaps inadvertently) from the class
�le if the compiler generated optional information
aimed at debuggers.

Because class �les are relatively easy to decompile
readably, Java applications are potentially vulner-
able to theft, even if they are distributed only as
bytecode �les. An unscrupulous person could use
one of the decompilers mentioned above to decom-
pile the bytecode �les of an application, modify the
resulting source, recompile into bytecode �les, and
distribute the bytecode �les.

In fact, a number of \obfuscators" have been writ-
ten to make decompilation less successful. These in-
clude Crema (by Van Vliet, and like Mocha, also re-
portedly taken over by Borland's JBuilder[8]), Hose-
Mocha, by Mark LaDue, HashJava (now renamed
SourceGuard [1]), by K.B. Sriram, and Jobe, by
Eron Jokipii; for discussion of these, see [23, 32].
Early obfuscators either changed symbol names or
added no-ops to bytecode �les in such a way that
particular decompilers crashed. New obfuscators
(e.g., [13, 12]) employ much more sophisticated tech-
niques, some of cryptographic strength, to change
the appearance of code. These techniques not only
make it harder to decompile, but they also make it
possible to change the appearance of bytecode �les
that come from the same source. Our methods will
not be able to defeat such techniques, although it

may be possible to detect that they are used.

Another technique for enabling detection of stolen
code is steganography, the art of hiding information
such that the information can later be detected [2].
For object code, insertions of extra no-op sequences
of instructions would slow it down, but Intel reports
that it has successfully replaced code fragments by
equivalent ones to customize security code [3]. How-
ever, this is not common practice.

For Java bytecode �les, the single Java Virtual Ma-
chine means that the variety of platforms is not an
issue. Multiplicity of compilers can be dealt with by
having the owner of the code compile the source �les
with each of the available Java compilers and com-
pare the resulting bytecode �les with the bytecode
�les that were suspected to be stolen. Currently, the
number of di�erent compilers is not large, so this is
manageable. Code compiled by di�erent releases of
the same compiler will probably still be very similar,
although not necessarily identical. In our experi-
ments we found that, given the same source �les, jdk
1.0.2 and jdk 1.1.x generated class �les that rarely
di�ered in any signi�cant way.

6 Conclusions and Future Work

Our experiments have validated our approach by
showing that our tools are able to deduce similar-
ity in Java source from similarity in the bytecode
�les. We can make the rate of false positives very



low while keeping false negatives reasonably mini-
mal. Our positional encoding proves to be a very
powerful technique. Since the three tools si�, dup,
and di� are based on di�erent techniques, one may
detect similarity when another one misses it. Local
modi�cations within sections of code will reduce the
percentage of similarity found by si�, but dup will
still �nd long matches in the unchanged sections.
Name changes of variables would not be a problem
since the compiler turns variable references into ta-
ble indices, which we have shown our methods to
handle despite change in absolute values. Reorder-
ing major sections of code, e.g. by changing the
order of methods, will have little e�ect on si� and
dup, though it will greatly a�ect di�.

A major advantage of looking at Java class �les
rather than at binaries for other programming lan-
guages is that there is just one version of the Java
Virtual Machine for all platforms (or at least that is
Sun's intention), while binaries of other languages
are di�erent for di�erent platforms. Extending our
techniques to binaries is a natural step to take, al-
though binaries present several additional problems:
They are strongly tied to the architecture, there
are many compiler and even more optimization and
code restructuring programs, and the information in
binaries as not as well organized as in bytecode �les.
Nevertheless, we believe that it will be possible, at
least in some degree, to identify similar binaries.

It would be helpful to have a graphical user interface
that links the output of si� and dup to a decompiler,
allowing a developer to see the evolution of two sim-
ilar programs clearly.
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8 Availability

Contact Brenda Baker, bsb@bell-labs.com, for in-
formation about licensing the software from Lucent
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