
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Eclipse Operating System:
Providing Quality of Service via Reservation Domains

John Bruno, Eran Gabber, Banu Ozden, and Abraham Silberschatz
Bell Laboratories, Lucent Technologies

The Eclipse Operating System:
Providing Quality of Service via Reservation Domains

John Bruno, Eran Gabber, BanuÖzden and Abraham Silberschatz
Bell Laboratories, Lucent Technologies

600 Mountain Ave.
Murray Hill, NJ 07974

fjbruno, eran, ozden, avig@research.bell-labs.com

Abstract

In this paper, we introduce a new operating system ab-
straction calledreservation domains, and describe its
implementation in Eclipse, an experimental operating
system that provides a testbed for Quality of Service
(QoS) support for applications.

Reservation domains enable explicit control over the
provisioning of system resources among applications in
order to achieve desired levels of predictable perfor-
mance. In general, each reservation domain is assigned
a certain fraction of each resource (e.g., 25% CPU, 50%
disk I/O, etc.). Eclipse implements reservation-domain
scheduling of multiple resources. It currently supports
CPU and disk and physical memory (working set size)
scheduling.

Eclipse implements a new scheduling algorithm,
Move-to-Rear List Scheduling (MTR-LS), that provides
a cumulative service guarantee, in addition to fairness
and delay bounds. Cumulative service guarantee is nec-
essary for ensuring predictable aggregate throughput for
applications that require multiple resources. Preliminary
experiments indicate that MTR-LS provides good QoS
in overloaded systems. In particular, MTR-LS favors
less-greedyprocesses.

The Eclipse operating system is based the Plan9
from Bell Labs, and can run any Plan9 application with-
out modification. Eclipse emphasizes the use of per-
process name space, and it can schedule any I/O device
or user level file system without any change to device
driver or file system code.

1 Introduction
New multimedia applications, which require support for
real-time processing, are pacing the demand for operat-
ing system support for Quality of Service (QoS) guar-
antees. The desire to support multiple real-time appli-
cations on a single platform requires that the operating
system have the ability to provision system resources
among applications in a manner that achieves the desired

levels of predictable performance. Moreover, computer
networks are starting to provide QoS guarantees with re-
spect to packet delay and connection bandwidth. These
QoS guarantees are of little use if they cannot be ex-
tended to applications executing at the endpoints. Cur-
rent general-purpose multiprogrammed operating sys-
tems do not provide QoS guarantees since the perfor-
mance of a single application is, in part, determined by
the overall load on system. As a result, many users pre-
fer to use stand-alone systems with limited dependency
on shared servers in order to achieve some semblance
of QoS by indirectly controlling the system workload.
Real-time operating systems are capable of delivering
performance guarantees such as delay bounds, but re-
quire that applications be modified to take advantage of
the real-time features.

Our goal is to provide QoS guarantees in the context
of a general-purpose multiprogrammed operating sys-
tem, without modification to the applications, by giving
the user the option to provision system resources among
applications in order to achieve the desired performance
levels.

This paper introduces a new operating system ab-
straction calledreservation domains, which is intended
to provide predictable QoS by controlling resource pro-
visioning. The basic idea behind reservation domains is
to isolate the performance of reservation domains from
each other. In particular, time-sensitive processes can
coexist with batch processes on the same system.

We discuss the importance ofcumulative service
guarantee, which complements other QoS parameters
such asdelayand fairness. Informally, guaranteed cu-
mulative service means that the scheduling delays en-
countered by a process on various resources do not accu-
mulate over the lifetime of the process. In other words,
a process that is competing for resources will execute at
a predictable rate, which is determined by the fraction of
the resources that is reserved for that process, regardless
of the intensity of the competition for the resource.

We continue with the description of a new schedul-

1

ing policy called Move-To-Rear List Scheduling (MTR-
LS), that provides cumulative service guarantees, as well
as fairness and delay bounds.

Next we describe the Eclipse operating system,
which is a testbed for operating system support for QoS.
Eclipse implements reservation domains and MTR-LS
scheduling. Eclipse can schedule multiple resources in-
dependently. The current implementation can schedule
CPU, disk I/O and physical memory (working set). Ex-
perimental results indicate that MTR-LS outperforms
the standard Plan9 priority scheduler and a weighted
round-robin scheduler. We also include an excerpt from
the Eclipse implementation of MTR-LS, which illus-
trates the simplicity of the implementation.

The remainder of this paper is organized as fol-
lows. In Section 2 we discuss related work. Section 3
introduces the concept of a reservation domain. Sec-
tion 4 presents the QoS parameters of interest. Section 5
presents the MTR-LS scheduling policy and its proper-
ties. The implementation of the Eclipse operating sys-
tem is described in Section 6. Section 7 presents the
results of our preliminary experiments with Eclipse. Fi-
nally, Section 8 describes our future work and conclu-
sions. The Appendix contains a code excerpt from the
Eclipse implementation of MTR-LS.

2 Related Work
Stride scheduling [16] and lottery scheduling [17] at-
tempt to provide each process with a share of the
server in proportion to its corresponding weight (num-
ber of “tickets”). Start-time fair queuing [4] and ear-
liest eligible virtual deadline first [13] guarantee fair-
ness bound. Class based queuing (CBQ) [15] uses band-
width reservations to schedule packets on shared data
links. Processor capacity reserves [7] provides each
process with its reserved share and delay guarantees.
The SMART scheduler [8] provides predictable perfor-
mance for real-time applications, which may executed
concurrently with non real-time applications. SMART
allows processes to specify their scheduling constraints,
and provides dynamic feedback to applications when the
constrains cannot be met. The Rialto operating sys-
tem [5] provides resource reservations similar to Eclipse.
However, both SMART and Rialto schedule only CPU.
The Nemesis operating system [6] provides accurate ac-
counting of resource consumption by running the appli-
cation and most of the kernel code in the same address
space. Nemesis is similar to Eclipse by providing pre-
dictable performance via allocation of CPU and disk I/O
to domains. However, Nemesis employs a radically dif-
ferent OS structure, which necessitates rewriting of most
applications and device drivers. The above algorithms
and systems were not designed with our cumulative ser-
vice measure in mind, so it is not surprising that the

RD1

RD3

RD2

P1 P3

P2

P4

R1
R2

P6

R2
R3

R1

R1

Figure 1: A Reservation-Domains System

properties they do enjoy are not sufficient to guarantee
cumulative service effectively.

3 Reservation Domains
In order to incorporate QoS into operating systems, we
introduce the notion of areservation domain. A reserva-
tion domain is a collection of processes and correspond-
ing resource reservations. A computer system may run
several reservation domains and provide several types
of resources (e.g., CPU, disk, network, physical mem-
ory), which are reserved and scheduled independently.
The processes that belong to a particular reservation do-
main are guaranteed to receive at least their reserved por-
tions of the domain’s associated resources. Figure 1 il-
lustrates a system that runs three reservations domains:
RD1, RD2 andRD3: Each domain contains an explicit
resource reservation for the resourcesR1, R2 andR3.
One or more processes may run within a single reserva-
tion domain.

Reservation domains are designed to combine the
advantages of real-time, time-sharing, and stand-alone
systems. Benefits of reservation domains, which are
impossible to achieve with priority based scheduling or
real-time scheduling algorithms, are:
� Provides QoS guarantees even when the system is

overloaded. In fact, a reservation domain is sim-
ilar to a smaller, dedicated machine. Application
programs need not be rewritten to use real-time
services in order to deliver predictable QoS in a
shared environment.

� Allows division of resources according to a policy.
For example, two reservation domains may each
reserve half the CPU, although one of them con-
tains more processes than the other, and all pro-
cesses are CPU bound.

� Supports interesting ways of controlling the com-
puting environment. For example, the windowing
system may be able to change resource reserva-
tions of domains associated with the window in
focus (important) and of closed windows (less im-
portant). Another possibility is a resource super-

visor, that adapts resource reservations dynami-
cally according to the “complaints” of processes.
A process that misses its deadlines will complain,
which will prompt the supervisor to increase its
reservations. A process that meets its deadlines
will keep silent, and will get a smaller reservation.

A variety of applications can benefit from reserva-
tion domains. For example, soft-real-time applications
can use bounded response times, hosting applications
can benefit from provisioning the system resources, and
long running OLAP (on-line analytical processing) ap-
plications can use protection between reservation do-
mains to complete their tasks in a timely manner with-
out impacting current workload. Reservation domains
can also benefit PC users, who would like to run sev-
eral applications concurrently, when the applications are
written with the assumption that they run on a dedicated
machine.

4 QoS Guarantees
The reader who is familiar with QoS parameters and
with [2] may skip this section. In this section we intro-
duce three Quality of Service (QoS) parameters: cumu-
lative service, delay bound and fairness. Cumulative ser-
vice is a new QoS parameter, while delay bound and fair-
ness are well known, and many scheduling algorithms
do provide them. We start with an example that shows
the need for the cumulative service guarantee. The def-
inition of fairness and delay bounds will be given at the
end of this section.
Example 1: We assume that the system runs one I/O
bound process together withn infinite loops. The sys-
tem employs a weighted round-robin scheduler, similar
to the one described in Section 6.2. The I/O bound pro-
cess issues I/O requests sequentially. It requires 1 msec.
of CPU in order to issue the next I/O request. Each I/O
request requires 23 msec. to complete. There is no con-
tention on the I/O device. We reserve 0.5 of the CPU to
the I/O bound process. We expect that each iteration of
the I/O bound process will last2 + 23 msec., where 2
msec. is the expected execution time of the CPU phase
of each iteration (1 msec. on an idle machine is equiva-
lent to 2 msec. elapsed time when the process is reserved
0.5 of the CPU). Thus the expected execution rate of this
program is1000=25 = 40 iterations per second.

However, whenever the I/O bound process arrives at
the CPU, it is appended to the end of the ready processes
queue, so it has to wait for at leastn time slices before it
can run. Thus the actual execution time of each iteration
is 1 + n� + 23, where� is the time slice length. For
example, forn = 10 and� = 10 msec. the execution
rate of the I/O bound process is1000=(1+100+23)� 8,
which is one fifth of the expected rate!

Note that the round-robin scheduler provides fair-
ness and delay bounds, since all processes are scheduled
within n + 1 time slices. However, the execution rate
of the I/O bound process can be arbitrarily low, since
round-robin does not provide a cumulative service guar-
antee. 2

We will need the following definitions for the rest of
the section: A system is considered to be a collection
of resources (servers). Each resource is modeled by a
“service rate” and a “preemption interval”�t. �t is the
minimum time that the resource must run before a pre-
emption can occur. A resource with a zero preemption
interval can preempt a process at any time.

A process is considered to execute an ordered set
of of phases,where a phase is a resource-duration pair,
(s; t), wheres is one of the system resources andt is
the amount of time it would take resources to complete
the phase running alone on the resource. The phases of
a process are not known in advance. The identity of the
next phase is known only after executing the previous
phase.

Even though we are interested in the performance of
our system over all resources, it turns out that, due to the
definition of the cumulative service guarantee, it is suffi-
cient to study the performance at a single resource. From
the point of view of resources, a process is denoted by
an ordered set of phases that alternate between resource
s andelsewhere. The “elsewhere” resource represents
the phases of processes at resources other thans.

The motivation for reservation domains is to isolate
the each reservation domain from the others. We would
like to guarantee a lower bound on the performance of a
reservation domain, which is independent of other reser-
vation domains. Let�i be the fraction of a resource al-
located to a reservation domainDi: Ideally, each reser-
vation domainDi should receive at least�i fraction of
the resource wheneverDi has a process requiring the
resource (a.k.a., wheneverDi is busy). We refer to the
minimum service time received in theidealizedservice
model asvirtual service time.We denote the virtual ser-
vice time received by reservation domainDi in any real
time interval[�; t] by vi(�; t). Similarly, we denote the
real service time(running on the resource) received by
reservation domainDi in any real time interval[�; t] by
si(�; t). Note that�ivi(�; t) = si(�; t):

Realizable scheduling policies require that we run at
most one process at a time on the resource. This means
that if there is more than one process waiting to run on
the resource, then one or both of the processes will ex-
perience (queuing) delay. We definewi(�; t) be the cu-
mulativereal waiting time(blocked by other domains’
processes running on the resource) obtained by domain
Di in the interval[�; t]. By definition,wi(�; t) + si(�; t)
is the totalreal timespent by domainDi at the resource

in the interval[�; t] either by running or waiting.
In the idealized model, receivingvi(�; t) virtual ser-

vice time takes at mostvi(�; t) real time. With realizable
scheduling policies, in order to provide a performance as
good as the one in the idealized model, the total real time
wi(�; t) + si(�; t) spent by domainDi at the resource in
the interval[�; t] to receivevi(�; t) virtual service time
should be less than or equal tovi(�; t). We express the
real system’s ability to match the performance of the ide-
alized system in terms of a cumulative service guarantee
[2].

Definition 1: We say that a scheduling policy pro-
vides acumulative service guaranteeif there exists a
constantK such that for all domainsDj and � � t,
we havevj(�; t) � wj(�; t) + sj(�; t)�K. 2

Although the definition of cumulative service guar-
antee is in terms of a single resource, it implies a
“global” cumulative service guarantee (using cumula-
tive virtual service time and cumulative real time over
all resources) in the multi-resource case where there is a
constant number of resources [2]. Guaranteeing cumula-
tive service is vital for applications that require multiple
resources and arrival of a phase on a resource depends
on the departure of previous phases. Cumulative service
guarantee is necessary to ensure a predictable aggregate
throughput over all the resources for such applications.

We will define the delay guarantee for the case when
at any given time there is only one process within a
reservation domain. For the more general case, when
there can be multiple concurrent processes within a do-
main, the delay a phase experiences also depends how
the reservation domain schedules its phases. This case
requires elaborate treatment, and will not be covered in
this paper.

Definition 2: A scheduling policy providesdelay
boundif, for a phase of any domainDj ; the real wait-
ing time plus service time to complete the phase takes at
most a constant amount more thand=�j , whered is the
duration of the phase. 2

The fairness parameter measures the ability of the
system to ensure that domains that are simultaneously
contending for the same resource will “share” that re-
source inproportion to their reservations, independent
of their previous usage of the resource [3]. That is, a fair
scheduling policy does not penalize a domain that uti-
lized an idle resource beyond its reservation when other
domains become busy on that resource.

The definition of fairness is based on another ideal-
ized service model calledprocessor sharing[11]. Under
processor sharing, each domain receives a service pro-
portional to its fraction on a resource. Since ideal pro-
cessor sharing cannot be implemented in practice, fair-
ness is defined as:

Definition 3: A scheduling policy isfair if there ex-

ists a constantF such that for any time interval[�; t]
during which a pair of domains,Di andDj , both con-
tinuously require the resource, we havejsi(�; t)=�i �

sj(�; t)=�j j � F . 2

Reservation domains specify their QoS requirements
by providing a service fraction�i for each system re-
source. Admission control ensures that the sum of the
service fractions of all domains do not exceed certain
prescribed limits. Admission control is necessary for de-
lay and cumulative service guarantees. It is not required
for fairness.

5 Move-to-Rear List Scheduling
This section presents the Move-To-Rear List Schedul-
ing (MTR-LS) policy, which provides a cumulative ser-
vice guarantee, is fair, and has bounded delay. MTR-
LS policy is a generalization of the one presented in [2].
The main difference is that we allow here the aggregate
quantum allocated for a domain to be partitioned. This
improves QoS guarantees and average delay and waiting
time. In the following subsections we present the MTR-
LS policy, its complexity, and its properties.

5.1 Algorithm and Data Structures
Central to the MTR-LS policy is an ordered list,L, of
pairs(i,left) wherei is the index of a reservation domain
(i.e., Di) and left is size of thequantum,which is the
maximal amount of service time reservation domainDi

can receive without being interrupted. There can be mul-
tiple occurrences of domainDi on L, that is, pairs ap-
pearing at different positions in listL which have the
same first coordinatei: The pairs(i,left) will be called
tokensin the following discussion.

We say that domainDi is beforeDj onL if the first
token of domainDi on L appears before all tokens of
Dj on L. Each domain, whether it is busy or idle, has
at least one token onL. The system defines theservice
cycleas the constantT , which is the upper bound on the
sum of all the quanta represented in listL. The sum of
quanta inL that belong to domainDi is equal to�iT .
We require that�iT must be an integer.

MTR-LS performs the procedure shown in Figure 2
at everydecision epoch. Decision epochs occur at the
time of the arrival of a new domain, the departure of a
domain, the expiration of the current quantum, the com-
pletion of the phase of the current running process (e.g.
the process blocks), or the end of the current preemption
interval. In other words, a currently running process may
be preempted only at the end of the current preemption
interval (�t) or at the end of the current quantum.

Figure 3 depicts the domain update routine, which
is called every decision epoch to update the token of
currently running domain. This routine will either split
the current token into two, leaving one token in the cur-

DecisionEpoch()
stopelapsedcounter;
if a new domainDi is admitted to the systemthen

append the token(i; �iT) to listL;
if a domainDi is removed from the systemthen

remove all tokens belonging toDi fromL;
if state ==busy then

UpdateDomain();
Run a Domain();

Figure 2: Decision Epoch Processing

rent place and appending the other to the end ofL, or
move the token entirely to the end ofL, depending on
the remaining quantum in the token. In any case, the
sum of the quanta in the two tokens is equal to the quan-
tum in the original token. Figure 4 shows the routine
Run a Domain, which selects the next domain to run on
the resource. The counterelapsedrecords the elapsed
time to the next decision epoch.

The service obtained by a process may be less than
the allocated quantum due to the termination of a phase
or the arrival of a process. In the former case, the
phase terminates, the process goes elsewhere, and the
first runnable domain onL is serviced next. In the latter
case, if the arriving process belongs to a domain which
is ahead of the current running process’s domain in the
list L, then the running process is preempted (as soon
as the preemption interval permits) and a process of the
first runnable domain onL is serviced next.

Figure 5 shows the CombineElements routine,
which combines neighboring tokens belonging to the
same domain. It is called whenever the listL is changed.
This routine has to examineL only in the vicinity of the
last change (removal or addition of tokens).
Example 2: Figure 6 illustrates the operation of MTR-
LS. There are three tokens onL, which belong to do-
mainsD1; D2 andD3. The processesP1; P2 andP3 are
associated with domainsD1; D2 andD3, respectively.
The total quanta ofD1; D2 andD3 are 10, 5 and 15, re-
spectively. Initially (Figure 6a) all the domains are busy.
Since the first busy domain isD1, processP1 is exe-
cuted. P1 goes “elsewhere” after receiving seven time
units of service.L is updated such that quantum ofD1

Update Domain()
Let (i,left) be the current token being serviced inL
Append(i,elapsed) to the end of listL;
left’ left - elapsed;
if left’ == 0 then

remove current token(i,left) fromL
else

replace current token with(i,left’) ;
CombineElements();

Figure 3: Domain Update

Run a Domain()
if there is no runnable domain on the listL then

state idle;
else

Let (j,left) be the first runnable token inL;
state busy;
runDj on the resource for at mostleft time

units (current quantum);
startelapsedtimer;

wait for next decision epoch;

Figure 4: Run a Domain

is partitioned as shown in Figure 6b. Now the first busy
domain isD2: Therefore, processP2 is executed. Once
the quantum ofD2 is exhausted in five unit of time,D2’s
token is placed at the tail of the list (Figure 6c). The
next busy domain isD3: Therefore, processP3 selected
for execution. After three units of time, domainD1 be-
comes busy (processP1 arrives at the resource). Since
D1’s token precedesD3’s token in the list,P3 is pre-
empted. The quantum ofD3 is partitioned as shown in
Figure 6d, and processP1 is scheduled. 2

5.2 Complexity
In a simple implementation of MTR-LS, a domain may
have multiple tokens onL. Each token corresponds to a
quantum of a given size and the sum of all the quanta for
a given domain is equal to�iT . The listL should sup-
port the following operations: 1) find the first busy do-
main inL; 2) split a token, and append one of the parts at
the end ofL; the original token is either updated in place
or deleted; 3) append tokens of a new domain; 4) delete
all tokens of a domain; and 5) combine tokens inL. All
of the operations except the first may be performed in
constant time. The first operation may takeO(T) if all
domains have�iT tokens of one time quantum each.

The worst case running time of MTR-LS may be im-
proved by keeping the domains in a heap instead of in
a list, marking the tokens by an increasing time-stamp,
and sorting the domains by the lowest time-stamp they
currently have. The complexity of this implementation
isO(logn)wheren is the number of busy domains. Fur-
ther time reduction can be achieved by using a priority
queue or other data structures that are described in [14].

5.3 Properties of the MTR-LS Policy
The MTR-LS policy provides fairness, delay bound and
cumulative service guarantees. The proofs for these
properties can be found in in [1]. In particular, MTR-

Combine Elements()
if (i;m1) and(i;m2) are consecutive inL then

replace them with(i;m1 +m2)

Figure 5: Combines tokens inL

D1
10

D2 D3
155

(a)

(b)
D1 D2 D3

1553
D1
7

D1
3

(c)
D3 D1 D2
15 7 5

(d)
D1
3

D3 D1 D2
7 512

D3
3

MTR−LS list L

P1 P2 P3

P2 P3

P3 P2

P1 P3 P2

Figure 6: Example of MTR-LS Scheduling

LS policy is fair with a bound ofT . MTR-LS pro-
vides cumulative service guarantee with a bound ofT

if
P

i �i � 1 and the preemption interval is zero, which
means that a running process is preempted immediately
by a ready process that is ahead of it inL. However,
if the preemption interval is positive, MTR-LS requires
that �j � 1 �

P
i �i for all domainsDj in order to

provide a cumulative service guarantee with boundT .
The reason is that a ready process may be delayed by
the currently running process until the end of the cur-
rent preemption interval. The delay bound provided by
MTR-LS follows directly from the cumulative service
guarantee (Section 4).

6 The Eclipse Operating System
Eclipse is derived from the Plan9 operating system from
Bell Labs [12]. It provides a per-process name space, ac-
cess to resources via the name space, a file access proto-
col (9P), that provides a uniform interface to all servers,
and many interesting file servers, such as the windowing
system8 1

2
, an FTP file system, etc. [10].

Eclipse provides reservation domain functionality on
top of Plan9, without any change to existing applications
or servers. Eclipse is compatible with Plan9; that is,
Eclipse retains the external interface of Plan9 (system
calls, protocols, name space structure, etc.).

Eclipse implements reservation and scheduling of
CPU, I/O and physical memory (working set size),
which we describe in Sections 6.2, 6.3, and 6.4, respec-
tively. The resources are managed independently. Re-

name access description
rdcpu r/w % CPU reservation of current RD
rdcpusum r sum of current CPU reservations
rdcpulim r maximum allowed CPU reservation
rdio r/w % I/O reservation of current RD
rdiosum r sum of current I/O reservations
rdiolim r maximum allowed I/O reservation
rdmem r/w physical memory reservation in KB
rdmemsum r sum of physical memory reservation
rdmemlim r available physical memory
rdsched r/w current CPU scheduling algorithm

Table 1: Control Files for Resource Reservation

source reservations and reservation domain management
can be done by the shell; no systems level programming
is needed.

Since the sum of the explicit reservations of a re-
source

P
i �i may be less than one, Eclipse distributes

the unreserved portion of the resource evenly among all
reservation domains. For example, the effective reserva-
tion of domaini is �i + (1 �

P
�i)=n, wheren is the

number of reservation domains.

6.1 Managing Reservation Domains
Eclipse maintains a list of all active reservation do-
mains (RDs). Each process belongs to a single reser-
vation domain. A new process inherits the reservation
domain of its parent, unless the process is created by
rfork(RFPROC|RFRDG) , which places the process
in a newly created reservation domain. A process may
remove itself from its current reservation domain and
start a new reservation domain by an appropriate call
to rfork . In fact, each process may belong to a dif-
ferent reservation domain. A new reservation domain is
created without any explicit reservations. However, the
new domain is assigned an effective reservation, that in-
cludes its proportional share of the unreserved portion of
the resources, as described above.

Resource reservation is accomplished by writing
strings to the appropriate control files. Table 1 de-
scribes some of the control files. For example, the shell
commandecho 50 > /dev/rdcpu requests reser-
vation of 50% of the CPU to the reservation domain
which runs this command. Eclipse will deny resource
reservations if total reservation exceeds the correspond-
ing limit. Eclipse deletes a reservation domain and re-
leases its resources as soon as the last process belonging
to this reservation domain is terminated.

6.2 CPU Scheduling
Eclipse implements MTR-LS and weighted round-
robin scheduling (WRR), which can be selected
by the rdsched control file. For example,

echo w > /dev/rdsched selects WRR, and
echo m > /dev/rdsched selects MTR-LS.

Weighted Round-Robin (WRR) is similar to round-
robin scheduling, but the CPU slice of each process is
proportional to its reservation. In our case, the CPU slice
of the processes belonging to a particular reservation do-
main is proportional to the domain’s reservation. Note
that WRR scheduling without an explicit CPU reserva-
tion is identical to regular round-robin.

Eclipse implements WRR scheduling by maintain-
ing a acpu time left field for each reservation domain,
which contains its remaining CPU reservation for the
currentCPU service cycle. Eclipse maintains two ready
queues: run hi and run lo. Ready processes are ap-
pended torun hi if the corresponding reservation do-
main has acpu time left > 0. Otherwise, the process
is appended torun lo. Eclipse selects the first process
from run hi that has an associatedcpu time left > 0.
Requests withcpu time left � 0 are moved torun lo.
The clock interrupt handler decreases the correspond-
ing cpu time left, appends the current process to either
run hi or run lo according to the above criterion, and
calls the scheduler. Thecpu time left of all reservation
domains is renewed at the beginning of every CPU ser-
vice cycle according to the corresponding CPU reser-
vation. At this time all processes are moved from the
run lo to therun hi queue.

Eclipse does not maintain a global tokens listL for
MTR-LS, rather it keeps the creation time-stamp for
each token, and sorts the reservation domains by the
lowest time-stamp of the tokens that they hold. In this
way, the listL is replaced with a collection of cyclic
buffers, one for each reservation domain, which keep the
tokens of that domain. Each reservation domain con-
sumes its tokens in their time-stamp order. The Ap-
pendix contains code excerpts from the Eclipse kernel
that illustrate the implementation of MTR-LS. This im-
plementation scans the ready process list, and selects
the ready process that is associated with the reservation
domain that holds the token with with the lowest time
stamp. The advantage of this implementation is its sim-
plicity. However, the time complexity of each schedul-
ing decision isO(n), wheren is the number of ready
processes. A more sophisticated implementation may
scan the ready domains queue instead, which may re-
duce the scheduling time. The overhead of maintaining
the tokens during a clock interrupt is constant.

The current Eclipse implementation uses clock in-
terrupts rate of 200Hz. The CPU service cycle(T) is
1/2 second long. More frequent clock interrupts improve
responsiveness at the expense of more frequent context
switches.

kernel device

server process

/

#cmount point

pipe
calls
direct

 (messages)

Figure 7: Eclipse/Plan9 Name Space

6.3 I/O Scheduling
Eclipse assumes that I/O devices handle a series of non-
overlapping requests (one request at a time), although
servers may queue several requests internally. This as-
sumption is adequate for disks with single arms, but
grossly inaccurate for network devices, which can han-
dle several full duplex streams of interleaved packets.

The implementation of I/O scheduling is closely re-
lated to the structure of Eclipse/Plan9 name space, as
illustrated in Figure 7. The name space is formed by
joining independent hierarchies of files, which are pro-
vided by file servers and kernel devices. File servers are
user level processes, which respond to 9P requests over
bi-directional pipes. Kernel drivers are directly called by
the kernel, which avoids the 9P protocol overhead.

Only a part of the name space may be subject to I/O
scheduling, according to a flag in themount andbind
system calls. All other parts of the name space are not
affected by I/O scheduling. This is essential, since all
resources in Eclipse are part of the name space. For ex-
ample, it is inappropriate to schedule requests to screen
and mouse. Moreover, an attempt to schedule paging
requests may cause a deadlock.

Eclipse implements I/O scheduling by intercepting
read and write system calls, as illustrated in Fig-
ure 8. The rectangles inside each reservation domain
denote resource reservations, and the circles denote pro-
cesses. Since all I/O requests pass through the same
system calls interface, I/O scheduling can be applied to
all clients and all servers, without any change to either.
Moreover, clients and servers may not be aware that they
are subject to I/O scheduling. Scheduling can be applied
to both file servers and kernel devices with equal ease,
without any change to them.

RR

R

server

read

open/close

write

q
u
e
u
e

interface
system calls

read reply

write reply

RD1

RD2

P1

P3

P2

Figure 8: Implementation of I/O Scheduling

I/O scheduling is implemented similar to WRR CPU
scheduling, by maintaining two I/O queues,io hi and
io lo, and anio time left field for each reservation do-
main, which is reduced by the elapsed time of the re-
quest. Since the server may re-order the requests, the
elapsed time is computed from the end of the previous
request (if the previous request ended after the current
request was delivered to the server). The reservations
are renewed at the beginning of every I/O service cycle,
and the requests are moved to theio hi queue.

Eclipse allows the server to queue up tomaxactive
requests internally, since performance is generally im-
proved when servers have some internal queuing (e.g.,
by sorting disk accesses to reduce arm movement).
The current implementation has a single global requests
queue. Future versions will have a queue for each server.
An I/O service cycle is 1/2 second long andmaxactiveis
4.

The above scheduling algorithm is bypassed if the
server is currently idle or if there is no contention (all
active requests belong to the same reservation domain).

6.4 Memory Scheduling
Eclipse implements reservation of physical memory by a
selective page-out strategy. The pager process scans the
entire memory, and selects pages which where not ac-
cessed since the last scan and belong to reservation do-
mains that exceeded their reservation of physical mem-
ory. This strategy ensures that the working set size does
not fall below the reservation, and all pages above the
reservation are subject to global LRU replacement.

6.5 Source Code
Eclipse is derived from the 2nd edition of Plan9. It
is currently implemented on PC based machines. Ta-
ble 2 describes the breakup of source lines in Plan9 and
Eclipse. In both cases, we refer to an extravagant kernel
including all device drivers and protocols. As Table 2

part Plan9 2nd Ed. Eclipse
portable 31,046 lines �1,143 lines
PC dependent 19,031 lines +22 lines
total 50,077 lines 51,040 lines

� means changed source lines (additions and deletions)

Table 2: Plan9 and Eclipse Source Size

indicates, Eclipse is machine independent. The tiny ma-
chine dependent part of Eclipse is contained in the clock
interrupt handler, and is shown in the Appendix. It can
be easily ported to other architectures.

7 Experience and Measurements
Eclipse has been operational since October 1995. It
proved to be stable, useful and instructional. In par-
ticular, we can easily demonstrate and control extreme
conditions, such as overloading, memory thrashing and
starvation. We use Eclipse for running multimedia appli-
cations, such as MPEG players, concurrently with other
demanding activities. The applications meet their dead-
lines when they run in reservation domains with appro-
priate resource reservations.

We used two methods for determining the appropri-
ate reservations: manual trial and error (actually, a bi-
nary search), and an automatic resource monitor, which
is a user-level process, that collect “complaints” from
application programs and adjusts the reservations appro-
priately. The automatic monitor increases the reserva-
tion (fast) when the application suffers from delays, and
reduces the reservation (slowly) when the application is
not delayed.

We have two MPEG-1 players for Eclipse: a player
which reads from a file, and aFellini [9] client, which
receives a stream of information from theFellini contin-
uous media server.

The rest of this section describes several experiments
that illustrate the effectiveness of MTR-LS scheduling
algorithm. In those experiments we used reservation do-
mains extensively to distinguish between several classes
of applications that run concurrently on the same ma-
chine.

7.1 Experimental Setup
All experiments were run on a Micron Millenia PC with
an Intel Pentium processor running at 133MHz. The PC
has a Talisman XL MPEG-1 decoder card.

The experiments compared three scheduling algo-
rithms: the original Plan9 scheduler, which is a priority
based scheduler, that adjusts the priorities of processes
according to their CPU consumption, the MTR-LS
scheduler, and a weighted round-robin (WRR) sched-
uler.

0

50

100

150

200

0 20 40 60 80 100

MPEG
bu�er

under
ows
per sec.

% CPU Reservation for MPEG Player

Plan9 priority

3 3

3

WRR

+
+
+
+
+
+

+

++++++

+
MTR-LS

2

2

2

2

2

Figure 9: Buffer Underflows of an MPEG Player Under
CPU Overload

The first experiment runs a MPEG player under CPU
and I/O overload. The MPEG-1 player has 10 read-
ahead threads, that read a movie from the local disk and
send it to the MPEG decoder card. The MPEG player
requires both I/O and CPU resources.

We repeatedly created CPU overload by running
multiple copies of theonoff program. Each copy of
this program consumes 11ms of CPU and then sleeps
for 5ms. Theonoff program poses a challenge to most
CPU schedulers, since it consumes CPU with a duty cy-
cle of about 60%, and it sleeps frequently.

7.2 Providing QoS in Overloaded System
by Resource Reservation

Figures 9 and 10 depict the effects of resource reserva-
tion on an MPEG-1 player under CPU and I/O over-
loads, respectively. In the CPU load experiment, the
MPEG player was run against 8 concurrent instances of
the onoff program. In the I/O load experiment, the
MPEG player was run against 10 I/O processes that were
accessing random locations on the disk that holds the
MPEG movie. In all cases, the file system was running
in reservation domain #1 with a fixed 20% CPU reserva-
tion (where applicable). The MPEG player was running
in reservation domain #2. The I/O workload was running
in reservation domain #3, and each competing instance
of onoff was running in its own reservation domain
without any explicit reservations. In all cases, we varied
the corresponding resource reservation of domain #2.

Figures 9 and 10 show the average number of buffer
underflowsin the MPEG card (which indicate missed

0

50

100

150

200

0 20 40 60 80 100

MPEG
bu�er

under
ows
per sec.

% I/O Reservation for MPEG Player

Figure 10: Buffer Underflows of an MPEG Player Under
I/O Overload

deadlines). Buffer underflows are sampled at a 200Hz
rate. A zero value indicates no missed deadlines, and
it is always achieved when the MPEG player is running
in an otherwise idle system. The value 200 indicates
that all deadlines were missed (the buffer underflowed
continuously).

This experiment demonstrates thatreservation do-
mains provide guaranteed execution rate in an over-
loaded system. Both MTR-LS and WRR provided good
quality of service under CPU load. However, MTR-
LS required a reservation of 15% to prevent underflows,
while WRR required a reservation of 55%. The reason
for MTR-LS superiority is that it prefers less greedy pro-
cesses, such as the MPEG player, over more greedy pro-
cesses, such asonoff , which exhausted its entire reser-
vation. Note that eachonoff consumes more than 60%
of the CPU on an idle machine, and here it was reserved
less than 9% of the CPU. The Plan9 priority scheduler
failed in this experiment to prevent buffer underflows,
since it did not prefer the MPEG player over theonoff
processes. The Plan9 scheduler detects CPU bound pro-
cesses, but it failed to recognize theonoff processes as
CPU hogs since they sleep frequently.

7.3 Comparison of MTR-LS with Prior-
ity Scheduling and Weighted Round-
Robin

Figure 11 compares the scheduling delays of MTR-LS
with the Plan9 priority scheduler and WRR. We run a
single copy ofsleeper concurrently with a varying

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10

avg.
wakeup
delay

(msec.)

Number of Concurrent onoff Processes

Plan9 priority

3 3

3

3

3

3

3

3

3
3

3

3

WRR with 0% reservation

+ +

+
+

+

+

+ +
+

+

+
WRR with 25% reservation

2 2

2

2
2

2

2

2

2

2 2

2

MTR-LS with 0% reservation

� � � � � � � � � � �

�

Figure 11: Wakeup Delay in Overloaded Systems

number ofonoff programs under different scheduling
algorithms. Thesleeper program consumes 11msec.
of CPU time and then sleeps for 100 msec. repeatedly.
Sleeper measures the difference between its actual
wakeup time and its anticipated wakeup time and reports
the average delay. Thesleeper program was run in
reservation domain #2, and each instance ofonoff was
run in a separate reservation domain without any explicit
CPU reservation.

Figure 11 illustrates the advantage of MTR-LS over
Plan9 priority scheduling and WRR. MTR-LS always
schedules thesleeper program beforeonoff , since
sleeper consumes CPU at a slower rate, and thus its
tokens tend to migrate to the beginning of the listL. In
other words,MTR-LS prefers less-greedy processes. In
fact, this experiment shows that MTR-LS provides a de-
lay bound to processes that do not exceed their reserva-
tion.

Of course, if sleeper had an explicit priority
(nice) in the priority scheduler, it would not suffer
from wakeup delays. However, changing the process
priority may not be available in many situations, and
may cause undesired side effects.

7.4 CPU Scheduling of I/O Bound Pro-
cesses

Figure 12 depicts the I/O rate of a single thread of an I/O
bound program when it runs concurrently with a varying
number ofonoff programs under different scheduling
algorithms. The I/O bound program was run in reser-
vation domain #2, and each instance of theonoff pro-

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

mean
I/O
rate
(/sec.)

Number of Concurrent onoff Processes

Plan9 priority

3

3

3

3

3
3

3 3 3 3 3

3

WRR with 0% reservation

+

+

+

+
+

+
+ + + + +

+
WRR with 25% reservation

2

2

2

2

2
2 2

2 2 2 2

2

MTR-LS with 0% reservation
� �

� � � � � � � � �

�

Figure 12: I/O Rate in Overloaded Systems

gram was run in a separate domain without any explicit
CPU reservation.

The most interesting result of this experiment is that
the I/O ratedecreasedunder increasing CPU load with
the Plan9 priority scheduling and WRR. The explana-
tion of this phenomenon is as follows: Although the I/O
process has an unlimited access to the disk, it must wait
for its turn for the CPU in order to issue the next I/O re-
quest. The I/O process is never granted the CPU imme-
diately in WRR, since it is always appended to tail of the
ready queue after then onoff processes. This is why
I/O throughput decreased as CPU contention increased.
Providing CPU reservation to both the I/O process and
to the file system process did not alleviate this problem.
Plan9 priority scheduling failed to prefer the I/O process
over theonoff processes, because all of them sleep fre-
quently.

MTR-LS successfully isolated the I/O process from
the CPU overload, even without any CPU reservations.
The reason is that the I/O process is less CPU-greedy
than theonoff processes. In other word, MTR-LS pro-
vided acumulative serviceguarantee for the I/O bound
process, which was not delayed by the CPU.

8 Conclusions and Future Work
In this paper we introduced a new operating system ab-
straction, calledreservation domains, which can be used
to provide predictable quality of service in overloaded
systems and to partition resources among concurrent
users. Reservation domains allow soft real-time appli-

cations to co-exist with batch applications in the same
system, without any change to the applications.

We also described a new scheduling algorithm,
Move-to-Rear List Scheduling (MTR-LS), that provides
fairness, delay bound, and cumulative service guaran-
tees. We explained why those QoS parameters are im-
portant. The rest of the paper described Eclipse, a
new experimental operating system, that implements
reservation domains and MTR-LS scheduling. Eclipse
can schedule three types of resources: CPU, disk I/O
and physical memory (working set). Experimental re-
sults indicate that Eclipse provide delay bounds and
cumulative service bounds in overload situations. We
also showed that MTR-LS prefersless-greedyprocesses,
which means that it automatically provides better perfor-
mance in many cases, as shown by our experiments. We
compared MTR-LS with Plan9 priority scheduling and
with weighted round-robin scheduling. MTR-LS pro-
vided superior results in several cases. We illustrated
a simple implementation of MTR-LS in the Appendix.
More time efficient implementations of MTR-LS are
possible, but they use more complex data structures.

Our ongoing work concentrates on extending the
reservation domain approach into a distributed environ-
ment with multiple clients and servers, investigating hi-
erarchical scheduling for reservation domains, develop-
ing new scheduling algorithms, and porting the reserva-
tion domains and MTR-LS into more popular operating
systems, such as Linux or FreeBSD.

Acknowledgments
The authors would like to thank Ron Phelps for helping
with programming the experiments.

References
[1] J. Bruno, E. Gabber, B.̈Ozden, H. Saran, and A. Sil-

berschatz. Closed-loop packet sources and cumulative
service. Technical report, Aug 1997.

[2] J. Bruno, E. Gabber, B.̈Ozden, and A. Silberschatz.
Move-to-rear list scheduling: a new scheduling algo-
rithm for providing qos guarantees. InProceedings of
ACM Multimedia, Seattle, Washington, November 1997.

[3] A. Demers, S. Keshav, and S. Shenker. “Design and
Analysis of a Fair Queuing Algorithm”. InProceedings
of the ACM SIGCOMM Austin, Texas, September 1989,
September 1989.

[4] P. Goyal, X. Guo, and H. M. Vin. “A Hierarchical CPU
Scheduler for Multimedia Operating Systems”. InPro-
ceedings of the USENIX 2nd Symposium on Operating
System Design and Implementation Seattle, Washington,
October 1996, October 1996.

[5] M. B. Jones, D. Ros¸u, and M.-Cătălin Roşu. Cpu reserva-
tions and time constraints: Efficient, predictable schedul-
ing of independent activities. InProceedings of the
16th ACM Symposium on Operating Systems Principles

(SOSP), pages 198–211, Saint-Malo, France, October 5-
8 1997.

[6] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Bra-
ham, D. Evers, R. Fairbairns, and E. Hyden. The de-
sign and implementation of an operating system to sup-
port distributed multimedia applications.IEEE Journal
on Selected Areas in Communication, 14(7):1280–1297,
September 1996.

[7] C. Mercer, S. Savage, and H. Tokuda. Processor capacity
reserves: Operating system support for multimedia ap-
plications. InProceedings of IEEE International Confer-
ence on Multimedia Computing and Systems, May 1994.

[8] J. Niehand and M. S. Lam. The design and evaluation
of smart: A scheduler for multimedia applications. In
Proceedings of the 16th ACM Symposium on Operating
Systems Principles (SOSP), pages 184–197, Saint-Malo,
France, October 5-8 1997.

[9] B. Özden, R. Rastogi, and A. Silberschatz.Fellini Con-
tinuous Media Storage Server. Kluwer Academic Pub-
lishers.

[10] Plan 9 Programmer’s Manual, Second Edition, volume 1
and 2. Computing Science Research Center, AT&T Bell
Labs, Murray Hill, NJ, 1995. ISBN 0-03-017138-5 and
0-03-017139-3.

[11] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services
networks–the single node case.IEEE/ACM Transactions
on Networking, pages 344–357, June 1993.

[12] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, The Journal of
the USENIX Association, 8(3):221–254, Summer 1995.

[13] I. Stoica and et.al. “A Proportional Share Resource Allo-
cation Algorithm For Real-Time, Time-Shared Systems”.
In Proceedings of IEEE Real-Time Systems Symposium,
December 1996.

[14] M. Thorup. “On RAM Priority Queues”. InProceedings
of the 7th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 1996, pages 59–67, Atlanta, January 1996.

[15] Ian Wakeman, Atanu Ghosh, and Jon Crowcroft. Im-
plementing real time packet forwarding policies using
streams. InProceedings of USENIX 1995 Technical Con-
ference, pages 71–82, New Orleans, Louisiana, January
16-20 1995.

[16] C. A. Waldspurger and W. Weihl. Stride scheduling:
Deterministic proportional-share resource management.
Technical Report TM-528, MIT, Laboratory for Com-
puter Science, June 1995.

[17] Carl A. Waldspurger and William E. Weihl. Lottery
scheduling: Flexible proportional-share resource man-
agement. InFirst Symposium on Operating System De-
sign and Implementation (OSDI), pages 1–11, Montrey,
California, November 14-17 1994.

Appendix: The Eclipse Implementa-
tion of MTR-LS

typedef struct Proc Proc;
typedef struct Rd Rd;

enum {
/* clock ticks per sched. cycle */
CYCLE2TK = (HZ/2),

};

struct Proc {
Proc *rnext; /* next process in run q */
int state;
Rd *rd; /* reservation domain */

};

struct Rd {
Rd *next; /* next RD in list */
int rdid; /* reservation domain ID */

/* 0 indicates a kernel proc. */
int cpu_resrv; /* CPU reservation in */

/* ticks */
uint lo_tok; /* lowest token time-stamp */
/* cyclic list of time-stamps */
uint tok_list[CYCLE2TK];
int head, tail;

};

/* Globals */
static Schedq runq; /* process run queue */
static RDq rd; /* reservation domains */
uint hi_stamp; /* current time-stamp */

/* Initialization of tokens list */
void
init_tok_list(void)
{

Rd *r;
int go;

/* first token in each domain */
hi_stamp = 0;
for (r = rd.head; r; r = r->next) {

r->lo_tok = r->tok_list[0] = hi_stamp++;
r->head = r->tail = 1;

}

/* assign tokens in interleaved fashion */
do {

go = 0;
for (r = rd.head; r; r = r->next)

if (r->head < r->cpu_resrv) {
go = 1;
r->tok_list[r->head++] = hi_stamp++;

}
} while(go);

}

/* Clock interrupt routine */
static void
clock(Ureg *ur, void *arg)
{

Proc *p;
Rd *r;

p = m->proc;

if (p) {
if (p->state == Running) {

r = p->rd;
if (++hi_stamp == 0)

/* re-initialize tokens list at */
/* time-stamp overflow */
init_tok_list();

r->tok_list[r->head++] = hi_stamp;
if (r->head >= CYCLE2TK)

r->head = 0;
r->lo_tok = r->tok_list[r->tail++];
if (r->tail >= CYCLE2TK)

r->tail = 0;
}

}

if (u && p && p->state == Running) {
/* preempt if not holding a spin lock */
...
sched();

}
}

/* Select the next process to run */
Proc*
runproc(void)
{

Proc *p, *prev, *best, *prevb;

loop:
prev = best = 0;
for (p = runq.head; p; p = p->rnext) {

/* run kernel processes first */
if (p->rd->rdid == 0) {

best = p;
prevb = prev;
break;

}

if (best == 0 ||
p->rd->lo_tok < best->rd->lo_tok) {

best = p;
prevb = prev;

}
prev = p;

}

if (best == 0)
goto loop;

/* remove process from run queue */
remq(&runq, best, prevb);
return best;

}

