
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Automatic Program Transformation with JOIE

Geoff A. Cohen and Jeffrey S. Chase
Duke University

David L. Kaminsky
IBM Application Development Technology Institute



Automatic Program Transformation with JOIE
Geoff A. Cohen�

Jeffrey S. Chase
Department of Computer Science

Duke University
fgac,chase g@cs.duke.edu

David L. Kaminsky
Application Development Technology Institute

IBM Research Triangle Park
dlk@us.ibm.com

Abstract

While the availability of platform-independent code on
the Internet is increasing, third-party code rarely exhibits
all of the features desired by end users. Unfortunately,
developers cannot foresee and provide for all possible
extensions.

In this paper, we describe load-time transformation,
a stage in the program development lifecycle in which
classes are modified at load time according to user-
supplied directives. This allows the users to select trans-
formations that add new features, customize the imple-
mentation of existing features, and apply the changes to
all classes in the environment.

The Java Object Instrumentation Environment (JOIE)
is a toolkit for constructing transformations of Java
classes. An enhanced class loader calls user-supplied
transformersthat specify rules for transforming target
classes. We describe some applications of load-time
transformation, including extending the Java environ-
ment, integrating classes with specialized environments,
and adding functionality directly to classes.

1 Introduction

The accelerating use of Java [GJS96] to enable trans-
portable code over the Internet has created both the need
and an opportunity to take a larger view of program de-
velopment. The possibility that programs will consist
of components loaded dynamically, possibly from mul-
tiple diverse sources, creates challenges for program de-
velopers: How can third-party code be adapted to local
environments? How do we add functionality to “shrink-
wrapped” code? Is it possible to insert new behaviors,

�This work is supported by the National Science Foundation under
grants CCR-96-24857 and CDA-95-12356. Geoff Cohen is supported
in part by an IBM Cooperative Graduate Fellowship. Portions of the
work described in this paper were done at IBM Research Triangle Park.

such as recoverability, caching, or visualization, into ex-
isting implementations?

Fortunately, Java bears within itself the seeds of the
solution. Java is an ideal environment forload-time
transformation, a powerful technique in which user-
specified transformers (possibly supplied by a third
party) add, remove, or change fundamental details of
transportable code as it is imported into the local Java
Virtual Machine (JVM)[LY97]. Java has several proper-
ties that assist load-time transformation. Transportable
Java code arrives from the network as compiledclass-
files containing procedures (methods) and related data
definitions for an object type (class): these classfiles re-
tain a great deal of symbolic information, allowing the
receiver to determine the structure of the class and to
modify it on-the-fly. Secondly, methods are represented
as JVM bytecodes: since bytecodes are stack instruc-
tions, it is relatively easy to splice new code into exist-
ing methods. Finally and most importantly, the JVM
uses a user-extensibleclass loaderto locate and load
new classes on demand: the class loader can be modi-
fied to apply load-time transformations to every classfile
brought into the local environment.

Load-time transformation has far-reaching implica-
tions for the balance of responsibility between class au-
thors and users. In the traditional model, users run pro-
grams whose attributes are statically determined by the
original authors. Load-time transformation enables a
new model, one in which end users assemble and cus-
tomize applications by chaining together combinations
of original code and third-party transformers. The role
of the transformers is to implement class features or ex-
tensions that the authors did not foresee or chose not
to support directly in the original class. Our hypothe-
sis is that many program behaviors are best applied by
generic class transformers as needed, rather than hard-
wired into the class source. Broadly, transformers are
useful for implementing any behavior that is orthogonal
to the purpose of the class and can be specified indepen-



dently. Moreover, support for transformers can improve
reuse of existing code by providing a means to adapt it
to local needs.

This paper describes load-time transformation us-
ing the Java Object Instrumentation Environment, or
JOIE1, a toolkit for specifying transformations for Java
classes. JOIE transformers are written in Java and
use JOIE primitives to analyze and modify classes.
The JOIE toolkit includes an enhanced class loader
that invokes transformers at load time. JOIE works
with any JVM, and is available for download at
http://www.cs.duke.edu/ari/joie/ .

The remainder of the paper addresses four main ques-
tions that arise from the introduction of load-time trans-
formation and its use in JOIE. What are its capabilities?
How is it implemented? What are the useful applica-
tions? Can it compromise existing guarantees of security
and safety?

Section 2 introduces load-time transformation within
the context of the program lifecycle. Section 3 presents
the environment and the capabilities JOIE offers to en-
able transformations. Section 4 examines some imple-
mentation details for Java transformations. Section 5
outlines some application areas for JOIE, and Section
6 presents in more detail the implementation of a spe-
cific transformer, Automatic Observable, which adds to
classes the ability to detect state changes and report them
to registered observers. Section 7 discusses issues aris-
ing from load-time transformation, including security,
safety, debugging complexity, and legal concerns.

2 Program Transformation

In this section, we take a broad look at the stages of
the program lifecycle, and examine in detail the load-
ing stage as a point for transformation. We discuss Java
in particular, but the principles apply generally to many
other languages and environments.

2.1 Stages of the Program Lifecycle

There are a number of stages in the program lifecycle
during which a program author or user can specify the
functionality of a class or set of classes. Some examples
of tools used at different stages are detailed in Table 1.
Originally, of course, the base functionality is declared
by the class author in source code, and that source code
is translated into an executable by a compiler.

Authors or users can employ post-processors such as
instrumentation tools to insert new method calls into an
existing executable image. A popular example of this

1Proper pronunciations includejoy, joey, or zhwa, depending on
your cultural preference.

is the tool ATOM [SE94], which works on executable
images for the Alpha processor; similar functionality is
available for Java with BIT [LZ97]. Most often, this
instrumentation is used for performance analysis or as
an interface to platform simulation. An important guar-
antee typically made by instrumentation tools is that
the semantics of the original program are not changed.
However, Shasta [SG97] processes executable images to
run on distributed shared memory systems. Object De-
sign Incorporated’s ObjectStore PSE [Obj98] also uses
a post-processor, to insert persistence methods into ex-
isting code. Rational Software Corporation’s tool Purify
[Rat98] changes code to detect memory leaks.

Multiple third-party components (classes or more of-
ten collections of interacting classes) are integrated dur-
ing application composition. In Java, these components
are known as Beans and are often handled in visual
builders. This composition allows consumers of code—
either end-users or programmers using components in
their own application—to modify certain properties of
the component. However, users can only modify those
properties foreseen by the original author; they can-
not independently add features except through the basic
object-oriented techniques of inheritence.

After application composition, the classes are eventu-
ally loaded into the environment. During execution, the
bytecodes can be translated into native local platform in-
structions by a Just-In-Time compiler (JIT). JITs only
reimplement the bytecodes in a different language; they
do not add new functionality (although JITs may trans-
form the code for optimization, for example unrolling
loops or reordering instructions).

2.2 Load-time Transformation

The architecture of the JVM, in which classes are loaded
on demand by a user-extensible class loader, offers a
complementary alternative to the previous steps: load-
time transformation, in which the loader is responsible
not only for locating the class, but for transforming it in
ways specified by the user.

Load-time transformation is precisely late enough that
the transformation cannot burden other users (as it would
if it were performed at, say, component integration), and
yet early enough that the JVM is unaware that any trans-
formation has taken place, and the transformed class is
still verified by the JVM before it is accepted.

A transformation registered with a class loader can be
applied to all classes—or some specific subset—that are
eventually loaded into the machine.



Stage Example Use Example Tool

Pre-processor macros or conditional compilation cpp
Compiler translation from source to classfile javac
Post-processor Instrumentation ATOM, BIT, ObjectStore
Component Integration Setting text, color BeanBuilder
Load-time User-supplied transformation, templatesClassLoader, JOIE
Just-in-time compilation Compilation to native code JIT

Table 1: Stages in the program development life cycle.

2.3 Other Related Work

The idea of load-time transformation itself is not an es-
pecially new one: for example, many operating systems
and programming environments support dynamic link-
ing, which binds references to library routines at load
time. However, these transformations do not alter se-
mantics of the programs themselves (although the se-
mantics of the routines could vary from library to li-
brary), and users cannot specify the type or scope of the
transformation.

The power of load-time transformation in Java has
been recognized by other groups recently. An imple-
mentation of parameterized types (i.e. templates) in
Java [AFM97] uses the loader to instantiate an appropri-
ate new class. Binary Component Adaptation [KH97]
uses load-time transformation to ensure compatibility
between third-party components, by performing such
symbolic manipulations as renaming methods, mark-
ing classes as implementing common interfaces, and re-
structuring class hierarchies and relationships.

Two other research projects deal with late binding of
functionality to objects and classes. “Subject-Oriented
Programming” [OHBS94] is a model of object-oriented
programming that allows late composition of compo-
nents from multiple, independently-developed groups of
classes. SOP allows new fields and methods to be added,
possibly overriding old definitions. “Aspect-Oriented
Programming” [KLM+97] emphasizes that differentas-
pectsof a class (such as the base algorithm, desired pre-
cision, data structure, etc.) should be written seperately,
to be woven together later into a single class; this sim-
plifies the programming model for modules that contain
different aspects.

3 The JOIE Environment

This section outlines how load-time transformation
works in the JOIE environment. We first describe how
transformers are installed and invoked using the JOIE
class loader. We then present the key facilities of the
JOIE toolkit that allow transformers to parse, analyze,

and modify the transformed classes.

3.1 The JOIE ClassLoader

Before a class can execute in a JVM it must be loaded
by a class loader. The JVM invokes a class loader to re-
solve a reference to a class that has not yet been loaded.
The class loader is responsible for locating the miss-
ing class file, fetching it from the file system or a net-
work server, and returning it to the JVM. The JVM
then verifies the new class to ensure that it is seman-
tically valid and safe. To allow for flexibility in load-
ing and instantiating classes, the Java environment al-
lows users to define new class loaders as subclasses of
java.lang.ClassLoader .

JOIE supports load-time transformation in a special
subclass of the ClassLoader. The JOIE ClassLoader ex-
ports methods for registering transformers, and it applies
registered transformers to each loaded class after fetch-
ing the class file into memory but before submitting it
to the JVM for verification. The JVM has no way to
determine that any changes were made from the origi-
nal class (although we have adopted the convention of
marking transformed classes as implementing an inter-
faceTransformed , and recording the transformer re-
sponsible).

To expose the class internals to the transformers, the
JOIE ClassLoader creates ajoie.ClassInfo object
for each class as it is loaded. The transformers access
the features of the JOIE toolkit by invoking methods
of ClassInfo and related classes, as described be-
low. Section 4.1 deals with the internals of the JOIE
ClassInfo class in more detail.

3.2 Transformers and the ClassLoader

JOIE transformers are written in Java. This design
choice offers three important benefits. First, transform-
ers have access to the full power of the Java language,
including procedures and variables, conditional logic,
and arbitrary control flow. Second, Java vastly simplifies
JOIE’s design, as no special interpreter for transformers



is needed. Finally, since the transformers are executed
by the JVM, they are subject to the same safety checks
as any Java program.

A JOIE transformer is simply a Java class implement-
ing the interfacejoie.ClassTransformer . To in-
stall a transformer, the user installs a bootstrap wrap-
per that instantiates the JOIE ClassLoader and the de-
sired transformer classes, and then registers the trans-
former objects with the ClassLoader. The wrapper then
requests the ClassLoader to load the main class of the
application to execute; the ClassLoader automatically
invokes each registered transformer for each class sub-
sequently loaded by the application. The current ver-
sion of the JOIE ClassLoader rejects attempts to regis-
ter new transformers once the first class is loaded. This
effectively prevents untrusted application code from in-
stalling transformers. This issue is discussed in more
detail in Section 7.2.

The core of each transformer is implemented in its
transform(ClassInfo) method, which is invoked
by the ClassLoader to apply the transformation. Mul-
tiple transformers can be chained together by passing
the ClassInfo object for each target class to each
transformer in sequence. The ClassLoader invokes the
transformers in order of priorities specified at registra-
tion time. Within the methodtransform , transform-
ers may call upon the JOIE toolkit routines for reflec-
tion, class modification, or bytecode modification, as de-
scribed in the following subsections.

3.3 Load-time Reflection

A transformer uses thereflectionportion of the JOIE
API to expose the structure of the target class, includ-
ing symbolic information, fields, methods, interfaces,
and attributes. Using the API, a transformer can deter-
mine the name, signature, and modifiers (public, syn-
chronized, static, etc.) for any class member. Given a
class, it can identify the superclass and any implemented
interfaces. Most importantly, a transformer can directly
access and browse the class methods and their bytecode
instructions.

These reflection features of the JOIE toolkit are sim-
ilar to those present in a number of languages to al-
low the discovery of the structure of classes at run time.
Java added runtime reflection functionality in the 1.1 re-
lease of the Java Developer’s Kit (JDK). However, the
Java reflection API is available only after the class has
been loaded into the JVM. This is too late for load-time
transformation, which seeks to transform the class be-
fore loading takes place. Additionally, reflection was not
designed to extend functionality, and so does not make
available the implementation of class methods. Method
implementations are accessible through thejavap dis-

assembler included in the standard Java Developer’s Kit
(JDK), but javap runs from the shell and prints to its
standard output; it is not integrated into the Java reflec-
tion API, nor does it produce a data structure that can be
manipulated by the program.

JOIE’s reflection features are useful for a wide variety
of analyses, both in their own right as program analysis
tools and as the basis for more powerful transformations.
For example, JOIE can be used to construct the class
hierarchy, build a call graph, or create interprocedural
control-flow or dataflow graphs.

3.4 Class Modification

Transformers call upon the JOIE API not only to dis-
cover elements of classes through reflection, but also to
change or modify those elements. That is, given ac-
cess to a class (ClassInfo ) or a member of a class,
a transformer can change aspects of the class implemen-
tation. For example, transformers can: set or unset mod-
ifiers; add, remove, or rename fields or methods; change
method signatures or field types; adjust the list of in-
terfaces implemented by the class; adjust references to
fields or methods to point to new fields or methods; ad-
just the value of embedded constants; or manipulate the
inheritance hierarchy.

The structure of Java classfiles allows the JOIE toolkit
to implement a wide range of class modifications with-
out the need to modify other classes that refer to the tar-
get class. This is because all references to class mem-
bers, including external references, are symbolic and
stored in aConstant Pool. Section 4.1 discusses imple-
mentation issues for class modification in JOIE.

3.5 Bytecode Modification

The power of JOIE stems primarily from its ability to
modify the bytecode instructions as well as the fields
and properties of a class. Given aClassInfo , the
JOIE reflection API allows the transformer to iterate
through eachMethod of the class. Given aMethod ,
the API exports an array ofInstruction objects
along with ancillary information such as parameters to
the method, maximum stack and frame size, exception
handling information, etc. The transformer can reorder
or replace instructions, insert new instructions, alter the
stack depth, reassign values to different frame locations,
or modify exception handling by inserting new handlers
or modifying the range of instructions protected by a
handler. One important use of these features is tosplice
new code into the existing implementation, changing the
behavior of the method without affecting the code that is
already there.



Class Method Explanation

ClassInfo getMethods returns array of Methods
ClassInfo getFields returns array of Fields
ClassInfo addField inserts new Field in class
Field set sets a flag (such as private)
Method getCode returns Code for Method
Code getInstructions returns array of Instructions
Code getExceptionTable returns exception-handler table
Code insert inserts new Instructions into Code
Instruction getMnemonic returns string mnemonic
Instruction getOp returns first operand of instruction

Table 2: Selected methods from JOIE API.

Transformers can use JOIE’s bytecode modification
features for a variety of purposes. For example,
transformers may instrument classes by inserting static
method calls to global analysis routines, or instructions
to increment per-instance counters. Another use is to add
exception handling code to allow classes to run in an en-
vironment that can produce exceptions not anticipated or
handled by the original class author. Such a transformer
would contain a list of unsafe operations together with a
body of code to deal with exception types that could be
raised by those operations. The transformer installs the
code as an exception handler in each transformed class,
and updates the classfile’s table of exception handlers to
reflect which regions of code are protected by that han-
dler.

Splicing can be combined with class modification to
enable a powerful new way to extend functionality. The
transformer can add new generic methods that imple-
ment some functionality within the class, then splice in
calls to those methods at appropriate points. For ex-
ample, a transformer that adds persistence methods for
moving objects to and from a persistent store could also
splice calls to those methods in constructors and finaliz-
ers. Section 5 outlines potential applications in more de-
tail, and Section 6 presents a case study of such a trans-
formation.

4 Implementation of the JOIE Toolkit

This section outlines the implementation of the JOIE
toolkit in more detail, and addresses several implemen-
tation issues for transformation in the Java environment.

4.1 ClassInfo

JOIE transformers operate onClassInfo objects,
which encapsulate and export all of the information
present in class files. The JOIE ClassLoader creates

a ClassInfo object for the class before invoking
the first transformer, then passes theClassInfo to
each registered transformer in sequence. After the last
transformer completes, the ClassLoader converts the
ClassInfo into a transformed classfile byte array in
memory, and submits it to the JVM for verification.

To improve performance, the JOIE toolkit methods
parse the elements of the target classfile lazily as they
are requested by transformers. For example, if a trans-
former simply adds a new interface to the list of in-
terfaces implemented by the class, thenClassInfo
need not parse the list of fields, methods, or byte-
codes. Since eachClassInfo instance preserves pars-
ing state across transformers, each element of a trans-
formed class is parsed at most once.

Java classfiles retain a great deal of symbolic in-
formation in a data structure known as theConstant
Pool, including variable-length symbol entries for all
methods, fields, and constants defined or referenced by
the class. Entries in the Constant Pool may address
other entries by index. For example, an entry for a
methodBanana.peel() contains the index of the en-
try for classBanana and the index of an entry hold-
ing the name and type of the method. The entry for
classBanana in turn contains the index for the UTF-
8-encoded string “Banana.” The name and type are also
stored as indices that point to encoded strings for the
name (“peel” in our example) and the descriptor, which
encodes parameter and return types.

All references in instructions — including field ac-
cesses and method invocations — are represented as in-
dices pointing to symbolic names stored in the Constant
Pool. The JVM resolves external references by symbolic
name as the program executes.

This structure allows the JOIE toolkit to implement
a wide range of load-time class modifications easily. In
particular, it is rarely necessary to update classes that ref-
erence the transformed class, since all references into the



target class are resolved by symbolic lookup in their own
Constant Pool. Moreover, many class modifications can
be implemented simply by adding or manipulating indi-
vidual entries in the Constant Pool. In particular, it is un-
necessary to modify the bytecode instructions in the tar-
get class unless the transformer explicitly requests it. A
change to the Constant Pool affects method instructions
only if it changes the index of an entry in the Constant
Pool. Fortunately, there are no ordering constraints on
the Constant Pool, so any new entries can be appended
rather than inserted in the middle, preserving the indices
of existing entries. Unreferenced entries are simply left
in place.

As the JOIE toolkit parses the Constant Pool, it cre-
ates a list for each type of entry, storing each symbol
value and its index. This allows us to more quickly add
new entries without duplication. For example, to insert
a new entry for a Field we first search the list of field
entries to ensure that an entry with the requested class,
name, and type is not already present. If not, we con-
struct a new field entry, and must then search for or cre-
ate appropriate class, name, and type entries.

4.2 Splicing and Inserting Bytecodes

In a typical JVM, each method invocation runs with
an operand stack and a single index-addressableframe
whose size is statically determined. JVM bytecodes op-
erate on elements at the top of the operand stack or move
operands from the frame to the operand stack or vice
versa. For example, theiadd instruction pops the top
two elements off the stack as integers, adds them, and
pushes the result onto the stack. Similarly, a method in-
vocation pops the target of the method and the appropri-
ate number of parameters, and places the result (if any)
onto the stack.

This architecture has interesting implications for byte-
code modification. First, being stack instructions, byte-
codes are sensitive to placement and ordering. For ex-
ample, simply inserting a method call instruction into a
sequence might consume the wrong value off the stack,
and leave an unexpected value on the top. In gen-
eral, splices must bestack-neutral, i.e., the spliced code
must leave the depth and types of the stack unchanged.
However, the values of the entries in the stack may be
changed, and the splice may have other side effects that
affect the rest of the method, such as modifying the
frame or some object.

A second issue is that all branches are relative, so
inserting instructions between a branch and its destina-
tion will make the destination field incorrect. To pre-
serve the original control flow, JOIE must correctly up-
date the destination field. JOIE solves this by applying
modifications to collections of Instruction objects linked

to theClassInfo . The Instruction objects represent
branch targets as pointers to the destination Instruction.
A similar approach is used to update the exception han-
dler table, to preserve the binding of exception han-
dlers to ranges of instructions. In each case, JOIE re-
generates the relative addresses when it linearizes the
ClassInfo to a classfile. For load-time transforma-
tion, the JOIE ClassLoader generates the transformed in-
memory classfile with the correct relative offsets before
submitting it to the JVM for verification.

4.3 Modifying the Frame

As described above, each method invocation places the
method’s arguments and local variables in the frame.
Thus any method transformers that change the number
of arguments or local state of the method must modify
the method’s frame.

Modifying the frame is somewhat trickier than modi-
fying the Constant Pool. In particular, the JVM specifi-
cation requires that the arguments to the method appear
in order at the low end of the frame, before local vari-
ables held in the frame. This means that adding a new
argument to a method may displace existing local vari-
ables or even other arguments. In these cases, the trans-
former must update the method’s instructions to redirect
loads and stores from one frame location to another.

Relocating references to frame locations is simple in
concept but more complex in implementation. There
are twenty-five separate instruction types responsible
for loading operands from the frame to the stack, and
twenty-five complementary instructions for storing from
the stack to the frame. Since the instruction set is
strongly typed (for ease of verification), each type (inte-
ger, long, float, double, and reference) has its own fam-
ily of loads and stores. Moreover, JVM load and store
instructions encode their operands in any of several dif-
ferent ways. For example, references to frame locations
0, 1, 2, and 3 may use efficient “shortcut” instructions
with the location encoded in the opcode. If the frame
has more than 256 locations, load and store instructions
that reference locations at the high end of the frame must
be prefixed by a “wide” bytecode, indicating that the
frame offset is specified as two bytes rather than one.
In these cases, changing the frame offset of the operand
may force a change to the opcode itself, or make it nec-
essary to insert or delete a “wide” prefix. For example,
the instruction could be a shortcut that references frame
location 3; if the new target is location 5 then the opcode
must be changed to take an explicit operand, since there
is no shortcut for frame location 5. JOIE correctly gen-
erates the correct opcode and operand in the face of such
changes.



4.4 Performance Issues

Delays for loading classes are already substantial, given
the high latency of loading the class from disk or from
across the network, and the time required to verify the
class. Even so, the performance of load-time transfor-
mation is a critical concern, since the overhead of trans-
formation may be perceived by the user.

Despite the incremental parsing optimization, the
class parsing and modification code in our current pro-
totype is fairly slow. While we have put little effort
into performance tuning at this point, initial experiments
with simple JOIE transformers show that it takes mil-
liseconds or even tens of milliseconds to parse and trans-
form typical classes. We did these experiments on 167
MHz Sun Microsystems Ultra 1 systems with Solaris
2.4, and using Sun’s JDK 1.2 beta 3 and JIT compiler.

We plan to improve our current JOIE prototype in sev-
eral important ways.ClassInfo currently represents
all internal data structures (lists of methods, fields, in-
terfaces, and instructions) as Java arrays. This makes
access fast (as compared to Vectors, for example), but
it also makes insertion extremely expensive. In a future
release we plan to instead use the Java Collection in-
terface available in JDK 1.2. In addition to improving
performance, this will allow transformers to use the it-
erators and update primitives in the Collection interface
to access the Methods, Fields, and Instructions of each
target class, streamlining the JOIE interface and imple-
mentation.

Adding fields or methods to a class often requires
repeated searches of the Constant Pool, since we are
forbidden from repeating any entry. Currently these
searches are linear; an index structure would signifi-
cantly reduce the cost of adding and accessing entries
in the Constant Pool during transformation.

5 Example Applications

There is a vast array of different types of applications of
JOIE. In this section we consider three broad categories:
extending Java, integrating classes with a system infras-
tructure, and adding functionality to classes. These ex-
amples are meant to be suggestive, not exhaustive. Other
uses of JOIE include instrumentation, program analysis,
and optimization.

5.1 Extending Java

There is always a demand for new features in Java, but
it is difficult to extend the environment while preserv-
ing Java’s “Write Once, Run Anywhere” promise. New
features for Java could be implemented at a number of
different levels: the source language, the compiler, the

JVM, or the JIT compiler. JOIE adds a new level where
extensions to the environment can be prototyped eas-
ily and safely. Once the extensions prove useful, they
may be implemented at other levels, or perhaps remain
implemented as a JOIE transformer. More generally,
transformers can be used to run non-conforming code
on standard JVMs, or conforming code on non-standard
JVMs.

For example, consider the demand for support for
complex numbers as primitives. While a developer
could add such a feature to a compiler and matching
JVM, classfiles produced by the compiler would not
run correctly on any standard JVM. Alternatively, one
could use a Complex class, with appropriate methods
for adding, multiplying, etc. This solution is portable
but inefficient.

However, a transformer could recognize the instanti-
ation of Complex, and replace each instance with a pair
of floats, and similarly replace method invocations with
inline floating point operations. The transformed code
will incur lower overhead than the relatively expensive
method invocation, while conforming to the JVM stan-
dard. More importantly, the classfile running in a sys-
tem without JOIE will still run correctly, if more slowly.
Adding such a feature to Java does not require the trans-
former author to rewrite or even look at JVM source
code.

A different style of extension could add new byte-
codes to the JVM implementation. For example, the
performance of numerical analysis programs may be im-
proved by augmenting the instruction set with vector
bytecodes implementing matrix operations such as sum,
dot product, min, max, etc. A compiler could easily gen-
erate code using the new bytecodes, but the code would
not run on any JVM that does not implement them. As-
suming that a transformer could recognize these con-
structs, it could replace the standard long version of the
code with the new bytecodes (or vice versa).

Parametric types are another example. The Thor
group proposes an implementation of parametric types
for Java [MBL97] that requires a modified JVM and
compiler. A load-time transformer could translate a less
efficient but standard implementation to use special new
instructions.

More ambitious language extensions could add pre-
and postconditions to methods [Mey92], continuations,
closures, or multimethods. An implementation of
“security-style passing” at Princeton [WF98] uses JOIE
to achieve a feature similar to continuations, making
some subset of the state of the computation available at
all times.



5.2 Integrating Classes with a System In-
frastructure

Other transformations change classes to integrate them
into some runtime environment. This idea generalizes
the use of ATOM or BIT to instrument code to drive
an on-the-fly simulation, by inserting code to report se-
lected events (e.g., branches or method calls) to the sim-
ulator. This technique can be used for other purposes
as well. Some possibilities include integrating imported
classes with local system environments that support ob-
ject caching, distribution, debugging, or visualization.

The transformers for these environments have similar
structures. First, the transformer must identify the points
in the code that handle events of interest to the system
environment, e.g., object instantiation or method invo-
cation. The transformer then splices calls to the environ-
ment at these points, passing any necessary information
as arguments.

For example, a debugging environment may be inter-
ested in the values of parameters to methods, return val-
ues, etc. A debug transformer would identify areas of
interest and insert calls to the environment, allowing a
user perhaps to visualize and see results of the computa-
tion. The advantage of this approach is that the debug-
ging calls are inserted only at load time; if the user does
not require them, they are not inserted at all, reducing
the size of the transported class. Also, note that running
the debug version of the code requires no special JVM,
and only areas of interest are transformed.

5.3 Adding Functionality to Classes

More ambitious transformers seek to extend the func-
tionality of classes themselves as they are loaded. While
any sort of functionality could be added in principle, this
approach makes most sense when the new functionality
is orthogonal to the implementation of the class, such
as persistence or logging. This makes the transformer
easier to construct, and also creates a logical separa-
tion between the code of the original class and the new
functionality. Users who are uninterested in that specific
function avoid the cost of downloading, verifying, and
storing the unwanted code.

An existing approach to the late extension of classes
is known asmixins, which are implemented in LISP
[MSW83] and other languages. Mixins are groups of
methods and fields that are added to a class definition
sometime after compilation. Traditional mixins are pas-
sive: they add methods to the class, but those methods
are called only from outside of the class, and never by
the original methods.

JOIE can be used to implement a stronger model,ac-
tive mixins. An active mixin is structurally similar to a

traditional mixin. In addition to adding fields, methods,
or interfaces to an existing class, active mixins parse ex-
isting methods and insert or replace instructions. For
example, a mixin for versioning would contain methods
for reading the appropriate version, and writing changed
instances of objects to a storage system. However, these
methods must be explicitly called by external code. An
active mixin for versioning would not only add the meth-
ods, but also insert a read call in the constructor, and a
write call in the finalizer.

Recoverability could also be implemented as an active
mixin. Methods could be made recoverable by inserting
logging code: whenever these methods finish, parame-
ters or return values are written to disk, by calling meth-
ods supplied by the mixin author (possibly inserted as
methods into the class, or an auxiliary class). With the
addition of a mixed-in method to read the log and begin
computation at the point of failure, simple recoverability
could be added to a class.

6 Case Study: Automatic Observables

In this section, we describe an active mixin called Au-
tomatic Observable, and discuss its implementation in
JOIE.

6.1 Observer/Observable

The Observer pattern is a well-known design pattern
(also known as Model/View), discussed in [GHJV95].
In it, whenever anObservableobject changes state, its
Observerclasses are notified. This pattern is used when
there are common classes that encapsulate state, and
other classes that represent a “view” of that state.

Sun’s JDK provides an implementation of Ob-
server/Observable in Java. In it, Observer is an interface
containing the single methodUpdate(Observable,
Object) , which is called by an Observable object’s
notifyObservers method whenever it wishes to in-
form its Observers that its state has changed. User
classes acting as Observers need only implement the in-
terface, call theaddObserver method of an Observ-
able instance, and they will be able to begin observation.

In contrast, Observable is implemented as a class
which includes methods for managing Observer lists
and notifying Observers, as well as code to check, set,
and clear a hasChanged bit. Programmers define Ob-
servable classes by subclassing theObservable base
class. Unfortunately, requiring authors to use a specific
base class in this way is often limiting. For example,
third-party software cannot be made Observable without
changing an existing class hierarchy.



class AutoObservable implements ClassTransformer {
ClassInfo transform(ClassInfo cinfo) {

cinfo.addField(Type.BOOLEAN, "dirty");
Instruction[] splice = code.putField("dirty", true);
Method[] meths = cinfo.getMethods();
for(int i=0; i<meths.length; i++) {

if(!meths[i].isSet(Modifier.STATIC)) {
Code code = meths[i].getCode();
Instruction[] insts = code.getInstructions();
for(int j=0; j<insts.length; j++) {

if(insts[j].getMnemonic().equals("putfield")) {
code.insert(j+1, splice);
insts = code.getInstructions();
j += splice.length; } } } } } }

Figure 1: Code Fragment From JOIE Transformer for Automatic Observable

6.2 Observable Mixins

The problems with the Observable base class could be
avoided through the use of mixins. An Observable
mixin would mix the Observable code, including the
hasChanged bit, into an existing class, without mod-
ifying the inheritance hierarchy. However, with this
approach, the class author is responsible for properly
instrumenting the code to manage the hasChanged bit
and call notifyObservers at appropriate times. Unfor-
tunately, the traditional mixin model is not capable of
changing existing methods to include new method calls.

However, Observable is easily implemented as an ac-
tive mixin using a JOIE transformer. Figure 1 shows
a fragment of the code for the JOIE transformer for
Observable. The implementation resides in the single
methodtransform called by the JOIE ClassLoader
(of course, transformers may have additional methods).
The transformer first adds a new boolean field, “dirty”,
to the class. It then scans each instruction of each non-
static method defined in that class. If the instruction
changes an instance field (e.g., theputfield instruc-
tion), the transformer inserts a code sequence that sets
the dirty bit. The counter skips over those new instruc-
tions, and the scan continues. Not shown in the exam-
ple is code that inserts the method call to notify the ob-
servers, or to mix in the methods to return the dirty bit,
notify observers, or manipulate the list of observers.

This transformer is meant to be illustrative only. A
more efficient scheme would build and traverse the con-
trol flow graphs, setting the dirty bit at most once per
path, and adding the notify call only to exit blocks that
could follow a block containing a set to dirty. A more
universal solution would also perform an interprocedu-
ral search on member objects, and also handle inheri-

tance (only a superclass needs to have the methods and
the dirty bit mixed in, but all subclass methods must be
scanned and spliced).

7 The Key to Pandora’s Box?

Introducing a new phase to specify functionality raises a
number of difficult issues. These are generally a result
of the fact that traditional tools, from design tools to de-
buggers and security systems, were not designed to take
load-time transformation into account.

We suggest that load-time transformation will be a
permanent part of the programming model in the future.
However, much work remains to be done to develop a
safe, general, and practical methodology for load-time
transformation. Here, we touch on four important is-
sues: debugging, security, legal issues, and the need for a
framework to guide transformer authors in writing trans-
formers that are general and correct as well as powerful.

7.1 Debugging Transformed Code

When a bug in a transformed application arises, it is of-
ten unclear if it is a bug in the original code, a bug in the
transformation code, or a bug that arose from the inter-
action of the two. Debugging JOIE transformers today
demands an understanding of the both the original code
and the transformer. The problem is particular severe
if multiple transformations were active. JOIE currently
has no support for controlling interactions among trans-
formers.

Some specific debugging support is essential to facil-
itate load-time transformation as a useful programming
tool. At the very least, the environment must be able to



determine if the failed code was transformed, if trans-
formed code appears in the call chain, and which trans-
formers were responsible for any transformed code. Ba-
sic information can be made available to the environ-
ment by tagging transformed classfiles in JOIE.

7.2 Security

A natural reaction when presented with JOIE is to worry
that it will break the security guarantees made by Java,
e.g., the promise that imported code cannot gain unau-
thorized access to resources or memory. With respect to
security, JOIE transformers are no more powerful than
any imported code. Put another way, code produced by
JOIE is as safe as code produced by an untrusted com-
piler. However, it is important to develop a rigorous
understanding of the effect of transformers on security.
For example, while class authors choose their compil-
ers, they do not necessarily choose their transformers; a
transformed digitally signed applet may not be as trust-
worthy as the original.

Java security is supported by two main pillars: the ver-
ifier and the SecurityManager. The Java verifier guar-
antees, among other things, that code is type-safe, and
particularly that pointers cannot be created or manipu-
lated. This prevents a malicious or buggy program from
walking through memory and reading or writing where
it normally would not have access.

The SecurityManager is a user-extensible class that is
asked by library code at execution time whether specific
classes have permission to access specific resources. For
example, a program loaded over the Internet might not
be permitted to read from the filesystem, but it could
spawn a new thread.

Since transformations are applied before the code is
verified, transformed code must still comply with the
same type-safety restrictions as non-transformed code.
The SecurityManager has the same ability to restrict
transformed code’s access to system resources as before.

There are also important security policy issues. For
example, is it safe for classes to instantiate and regis-
ter new transformations during the execution of the pro-
gram? Can transformers be loaded and applied from
over the network safely? Currently, JOIE’s default pol-
icy is to disable registration of transformers as soon the
first class is loaded, but this can be overridden by the
user. There is also the question of how to determine the
access permissions of a transformed class: can classes
ever gain or lose permissions due to being transformed?

7.3 Legal Concerns

An additional concern covers legal issues, which are be-
yond the scope of this paper and the authors’ experience.

One concern is that JOIE, like many utilities, includ-
ing decompilers, disk copy routines, and binary editors,
could be used to violate copyrights. However (like those
other tools), it has legitimate uses that remain within the
law.

A more complex and troublesome issue regards liabil-
ity: is a failure the result of the original class, the trans-
former, or both? Who has the ultimate responsibility?

7.4 Usability

To be useful, the software should also be convenient to
use. Currently, transformer authors must be conversant
with the bytecode structure of Java and have a deep un-
derstanding of classfile structure and layout. A set of ab-
stractions that sit on top of JOIE might provide a frame-
work in which less experienced programmers can con-
struct useful and correct transformations. We are inves-
tigating the development of such a framework.

8 Conclusion

This paper describes JOIE, a toolkit for automatic, user-
directed transformation of Java classfiles. Program
transformation using JOIE can be the basis for a wide
variety of extensions, including instrumentation, mixins,
automated inclusion of code for visualization or debug-
ging, and bytecode replacement.

A powerful feature of JOIE is its ability to apply trans-
formations at load time to meet the user’s site-specific
needs. Load-time transformations can include changing
the implementation of the original methods of the class,
introducing a new model for extending the functionality
of Java classes.

Load-time transformation is well-suited to use with
transportable code in the Internet. It allows soft-
ware consumers to assemble customized applications by
combining software modules and transformers obtained
from a variety of sources. To illustrate the potential of
load-time transformation, we outline several examples
of how it can be used to extend the Java programming
environment, integrate classes with system facilities in
the local environment, and adapt or extend third-party
classes. To show how these transformations would work,
we described in detail the Automatic Observable trans-
former, anactive mixinthat adapts existing classes to use
the Observer/Observable design pattern.

The introduction of program transformation — and
load-time transformation in particular — raises many
interesting research issues and practical concerns that
must be addressed. A fundamental question is: when
is it appropriate to specify functionality as a transforma-
tion? Other issues include the problems of debugging



transformations and transformed code, security and le-
gal concerns, and performance. Most of these issues are
common to any introduction of a new stage in the pro-
gram development lifecycle. This paper does not attempt
to present complete answers to these questions. Rather,
the contributions of the paper are to show the potential
of load-time transformation, present a prototype toolkit
as a basis for further experimentation, and identify the
key issues raised by the technique.

There are a number of features that we plan to add
to JOIE, including more advanced dataflow analysis for
methods. We are also extending a Java compiler to pass
programmer-supplied hints to JOIE. Such hints would
be useful, for example, to indicate blocks of code that
could be transformed to superoperators[Pro95], such as
dot product or a method invocation on a parametric type.
Also, JOIE adds functionality at the class level only. We
are considering extending this idea to instances, allow-
ing orthogonal features to be added on an instance-by-
instance basis.

Our plans for future work with JOIE include exploring
new uses for load-time transformations. JOIE is most
exciting when viewed as an enabling technology. We
believe that JOIE allows a fundamentally more power-
ful way to express functionality, and intend on explor-
ing the possibilities. The Automatic Observable active
mixin suggests that transformers can automate other de-
sign patterns [GHJV95] as well. Other promising possi-
bilities include automatic hooks and adaptation for sys-
tem facilities such as persistence, distribution, recover-
ability, survivability, caching, and mobility.

9 Acknowledgements

We’d like to thank Mike Fox, Jim Gray, Manoj Ka-
sichainula, R. Adam King, and Zhiyong Li of IBM Re-
search Triangle Park for assistance and guidance from
the earliest stages of the project. Thanks to early users
Jonathan Seeber and Anya Bilska for putting up with
bugs. Siddhartha Chatterjee and Jan Prins of UNC-
Chapel Hill, and Owen Astrachan and Robert Duvall
of Duke University all made very useful comments on
drafts of this paper. Chris Laffra and Lee Nackman of
IBM’s Thomas J. Watson Research Center gave advice
on bytecode manipulation, and the attendees of the IBM
Research Java Conference gave many useful comments.
Thanks also go to Dan Wallach, the anonymous review-
ers, and our shepherd Benjamin Zorn.

References

[AFM97] O. Agesin, S. Freund, and J.C. Mitchell.
Adding Type Parameterization to the Java

Language. InProceedings of the Sym-
posium on Object Oriented Programming:
Systems, Languages, and Applications,
pages 49–65, 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides.Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware. Addison Wesley Publishing Com-
pany, Reading, Massachusetts, 1995.

[GJS96] James Gosling, Bill Joy, and Guy Steele.
The Java Language Specification. Addi-
son Wesley Publishing Company, Reading,
Massachusetts, 1996.

[KH97] Ralph Keller and Urs H¨olzle. Binary
Component Adaptation. Technical Report
TRCS97-20, Department of Computer Sci-
ence, University of California at Santa Bar-
bara, December 1997.

[KLM +97] Gregor Kiczales, John Lamping, Anurag
Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin.
Aspect-Oriented Programming. Technical
Report SPL97-008 P9710042, Xerox Palo
Alto Research Center, February 1997.

[LY97] Tim Lindholm and Frank Yellin. The
Java Virtual Machine Specification. Addi-
son Wesley Publishing Company, Reading,
Massachusetts, 1997.

[LZ97] Han Bok Lee and Benjamin G. Zorn. BIT:
A Tool for Instrumenting Java Bytecodes.
In The USENIX Symposium on Internet
Technologies and Systems, pages 73–82,
1997.

[MBL97] Andrew C. Myers, Joseph A. Bank, and
Barbara Liskov. Parameterized Types for
Java. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages
132–145, January 1997.

[Mey92] Bertrand Meyer. Eiffel: The Language.
Prentice Hall, 1992.

[MSW83] David Moon, Richard Stallman, and Daniel
Weinreb. The Lisp Machine Manual.
AI Lab, MIT, Cambridge, Massachusetts,
1983.

[Obj98] Object Design Inc. Object-
Store PSE Resource Center, 1998.
http://www.odi.com/content/
products/PSEHome.html .



[OHBS94] Harold Ossher, William Harrison, Frank
Budinsky, and Ian Simmonds. Subject-
Oriented Programming: Supporting Decen-
tralized Development of Objects. InThe 7th
IBM Conference on Object-Oriented Tech-
nology, 1994.

[Pro95] Todd A. Proebsting. Optimizing an ANSI
C Interpreter with Superoperators. In
Proceedings of the 22th ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages, pages 322–332, Jan-
uary 1995.

[Rat98] Rational Software Cor-
poration. Purify, 1998.
http://www.pure.com/products/
purify .

[SE94] Amitabh Srivastava and Alan Eustace.
ATOM: A System for Building Customized
Program Analysis Tools. InProceedings of
the SIGPLAN ’94 Conference on Program-
ming Language Design and Implementa-
tion, pages 196–205, June 1994.

[SG97] Daniel J. Scales and Kourosh Gharachor-
loo. Towards Transparent and Efficient
Software Distributed Shared Memory. In
The Sixteenth ACM Symposium on Operat-
ing Systems Principles, 1997.

[WF98] Dan S. Wallach and Edward W. Felten. Un-
derstanding Java Stack Inspection. In1998
IEEE Symposium on Security and Privacy
(to appear), May 1998.


