
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

The Design and Implementation of an
IPv6/IPv4 Network Address and Protocol Translator

Marc E. Fiuczynski, Vincent K. Lam, Brian N. Bershad
University of Washington

The Design and Implementation of an
IPv6/IPv4 Network Address and Protocol Translator

Marc E. Fiuczynski Vincent K. Lam Brian N. Bershad
Department of Computer Science and Engineering

University of Washington
Seattle, Washington 98195

Abstract
IPv6 is a new version of the internetworking protocol
designed to address the scalability and service
shortcomings of the current standard, IPv4.
Unfortunately, IPv4 and IPv6 are not directly
compatible, so programs and systems designed to one
standard can not communicate with those designed to
the other. IPv4 systems, however, are ubiquitous and
are not about to go away “over night” as the IPv6
systems are rolled in. Consequently, it is necessary to
develop smooth transition mechanisms that enable
applications to continue working while the network is
being upgraded. In this paper we present the design and
implementation of a transparent transition service that
translates packet headers as they cross between IPv4
and IPv6 networks. While several such transition
mechanisms have been proposed, ours is the first actual
implementation. As a result, we are able to demonstrate
and measure a working system, and report on the
complexities involved in building and deploying such a
system.

1 Introduction
The current internetworking protocol, IPv4 [11],
eventually will be unable to adequately support
additional nodes or the requirements of new
applications. IPv6 is a new network protocol that
features improved scalability and routing, security,
ease-of-configuration, and higher performance
compared to IPv4. Unfortunately, IPv6 is incompatible
with IPv4 and to use the new protocol will require
changes to the software in every networked device.
IPv4 systems, however, are ubiquitous and are not
about to go away “over night” as the IPv6 systems are
rolled in. Consequently, it is necessary to develop
transition mechanisms that enable applications to
continue working while the hosts and networks are
being upgraded. One suggested strategy is to translate
IP headers as they cross between IPv4 and IPv6
networks [3]. The requirement of header translation is
to remain transparent to applications and the network.
In this paper we present two variations of IPv6/IPv4
translators that address these difficulties. The first
variation uses special IPv6 addresses, as proposed in
[4], to easily translate packets transparently for all

applications. Unfortunately, these special IPv6
addresses also require IPv6 routers to contain special
routes to them, which is considered to be a bad idea
because it creates more state for the router to maintain
[4]. The second variation maintains an explicit
mapping between IPv4 and IPv6 addresses, and is
therefore able to use standard IPv6 addresses that do
not require any special treatment by IPv6 routers. Its
drawback is that IP-addresses embedded in some
applications' data stream, such as FTP, must be updated
as well for the translation to be completely transparent.
We have built an IPv6/IPv4 network address and
protocol translator as a device driver running in the
Windows NT operating system [15]. Our test
environment consists of the translator as a gateway
between IPv6 and IPv4 hosts connected to separate
Ethernet segments, and it incurs little performance
overhead. Between a pair of IPv6 and IPv4 nodes
communicating via the translator, we have measured
TCP bandwidth of 7210 Kbytes/second and roundtrip
packet latencies of 424 microseconds over
100Mbit/second Ethernet links.

1.1 Motivation
Our efforts began with an implementation of the IPv6
protocol for the SPIN [13] extensible operating system,
which enables the rapid prototyping of kernel
extensions. After completing the initial IPv6
implementation we connected our system to the 6Bone
[12]. We were interested in accessing services using
IPv6, but quickly discovered that there were only a few
hosts (roughly 250) accessible via the 6Bone with even
fewer IPv6 native services to talk to. Thus, we decided
to build an IPv6/IPv4 translator to enable IPv6 systems
to access the IPv4 systems and services, and vice versa.
There are two main scenarios where network address
and protocol translation are applicable:
• An IPv6 site communicating with IPv4 nodes. For

example, a completely new network with new
devices that all support IPv6 may occasionally need
to communicate with some IPv4 nodes out on the
Internet.

• An IPv4 site communicating with IPv6 nodes. For
example, upgrading an IPv4 site to IPv6 on a node-
by-node basis requires that critical services, such as

IPv6
Internet

IPv4
Site

Translator

Host B
3ffe:a00:4::805f:29c

Host A
128.95.4.112

Figure 2. Translator for an IPv4 site.

IPv4
Internet

IPv6
Site

Translator

Host B
128.95.2.157

Host A
5f02::971b:fea2

Figure 1. Translator for an IPv6 site.

web, file, and print services are accessible from both
IPv6 and IPv4 nodes.

The rest of this paper describes the design and
implementation of the IPv6/IPv4 translator and is
organized as follows. In Section 2 we describe network
address and protocol translation. In Section 3 we
present the applications and benchmarks used to test the
translator. In Section 4 we discuss possible solutions for
some unresolved issues. In Section 5 we survey related
work regarding network address and protocol
translation. Finally, in Section 6 we conclude.

2 Network Address and Protocol
Translation

The address and protocol translation presented in this
section enables both the communication between nodes
in an IPv4 site with nodes in the IPv6 network, and
between nodes in an IPv6 site with nodes in an IPv4
nodes. Figures 1 and 2 illustrate these scenarios, and the
following paragraphs describe them in more detail.
Figure 1 illustrates a translator for an IPv6 site
communicating with nodes in an IPv4 network. The
internal routing of the IPv6 site must be configured
such that packets intended for IPv4 nodes route to the
translator. Hosts in the IPv6 site send packets to nodes
in the IPv4 network using IPv6 addresses that map to
individual IPv4 hosts. For this scenario, a design
presented in [4] proposes that IPv6 nodes use an IPv4-
compatible IPv6 address as their own address and an
IPv4-mapped IPv6 address when communicating with
IPv4-only nodes. An IPv4-compatible IPv6 address
holds an IPv4 address in the low-order 32-bits, with a
unique high-order 96-bit prefix of 0:0:0:0:0:0 (all
zero bits), and always identifies an IPv6/IPv4 or IPv6-
only node; they never identify an IPv4-only node.
Similarly, an IPv4-mapped IPv6 address identifies an
IPv4-only node and its high-order 96-bits bear the
prefix 0:0:0:0:0:FFFF. The address of any IPv4-
only node may be mapped into the IPv6 address space
by prefixing 0:0:0:0:0:FFFF to its IPv4 address.
The benefit of this approach is that the translator can be

stateless. However, regardless of the 96-bit IPv6 prefix
that is used to map between the IPv4 and IPv6 address
domains it still remains necessary to identify a host in
the IPv6 site with an unique IPv4 address. That is, in
Figure 1, for Host B to communicate with Host A
requires an IPv4 address that can be routed through the
IPv4 Internet. To overcome this limitation a stateful
translator could multiplex several IPv6 hosts onto a
single, globally unique IPv4 address using the
TCP/UDP port translation technique described in [2].
Figure 2 illustrates a translator for an IPv4 site
communicating with nodes in an IPv6 network. Hosts
in the IPv4 site send packets to nodes in the IPv6
network using IPv4 destination addresses assigned by
the translator that map to individual IPv6 hosts. For this
to work, the internal routing of the IPv4 site must
contain routes to the translator for packets with the
destination field using one of these IPv4 addresses. The
translator, upon receiving such packets, will do the
IPv4-to-IPv6 translation and forward the packet to the
IPv6 network. In contrast to the above scenario, the
translator can use unique IPv6 addresses to refer to
nodes in the IPv4 site in order to do IPv6-to-IPv4
translation for packets it receives from the IPv6
network. These IPv6 addresses may come from a pool
that is dynamically assigned to the set of IPv4 hosts
communicating with IPv6 hosts. A better approach is to
assign unique and routable IPv6 addresses to all nodes
in the IPv4 site and to register them with DNS. This
should be easily possible given that the IPv6 address
space is sufficiently large, and also has the benefit that
arbitrary hosts in the IPv6 Internet can easily lookup
and initiate sessions with nodes in the IPv4 site via the
translator.
In summary, the subtle difference between these two
scenarios is that the former involves mapping a pool of
global IPv4 addresses referring to IPv6 addresses,
whereas the latter can leverage site private IPv4
addresses to refer to IPv6 addresses. Global IPv4
addresses will be scarce and mechanisms are required
to dynamically assign a pool of these IPv4 addresses on
a temporary basis to IPv6 nodes so that they can

IpxNODEy Definition
IP4NODE4 v4 address of a 4 node
IP6NODE6 v6 address of a v6 node
IP6NODE4 v6 address referring to a v4 node
IP4NODE6 v4 address referring to a v6 node

Table 1. IP address definition.

 Key-to-Value Definition
IP6NODE4-to-IP4NODE4 v6 addresses mapped

to v4 node addresses
IP4NODE6-to-IP6NODE6 v4 addresses mapped

to v6 node addresses

Table 2. Mappings between IPv4 and IPv6
addresses used by translation process.

v e r ihl tos total length
frag . ident i f ie r f lags frag . o f f se t
T T L protocol header checksum

source address
des t ina t ion address

I P v 4 h e a d e r0 31

IPv6 heade r
v e r class f low l abe l

pay load l eng th n e x t h d r hop l im i t

source address

des t ina t ion address

0 31

Figure 3. IPv4 and IPv6 header format.

communicate with IPv4 nodes. On the other hand, there
is a large pool of roughly 17 million site private IPv4
addresses defined by [14], which can be used by the
translator to map to IPv6 addresses. Our translator is
designed to support all of the scenarios just described.
To enable communication between an IPv4 and IPv6
node, a translator needs to do both address and protocol
translation. Protocol translation involves mapping most
of the fields illustrated in Figure 3 from one version of
IP to the other. Address translation involves converting
addresses for packets crossing the protocol boundary.

The following two subsections describe the address and
protocol translation process in further detail.

2.1 Address Translation
Address translation is trivial when using IPv4-mapped
and IPv4-compatible IPv6 addresses. For the IPv6-to-
IPv4 direction the translator simply extracts the lower
32-bits of an IPv6 address to obtain an IPv4 address.
For the opposite direction the translator sets the lower
32-bits of the IPv6 source/destination addresses to the
IPv4 source/destination addresses, and sets the upper
96-bits of the IPv4 source and destination addresses to
the IPv4-mapped and IPv4-compatible prefix,
respectively. However, it is considered to be a very bad
idea to use IPv4-mapped address as it has the drawback
of requiring IPv6 routers to contain routes to IPv4-
mapped addresses [4]. The alternative is to use IPv6-
only addresses to refer to IPv4 nodes, which requires
the translator to maintain an explicit mapping between
IPv4 and IPv6 addresses.
For clarity, we introduce an IPxNODEy notation to
disambiguate among the types of addresses used in the
translation process. Table 1 defines the four types of
addresses in terms of this notation. The first two rows
define the addresses that are native to the IPv4 and IPv6
nodes. The last two rows define address aliases, which

are assigned by the translator, used to translate between
the IPv4 and IPv6 address domains.
As an example of using this IPxNODEy notation
consider the following scenario: an arbitrary IPv6-only
host wishes to communicate with our IPv4-only web
server via the translator. For an IPv6 host to
communicate with our IPv4 web server requires an
IPv6 address that is an alias (IP6NODE4) address for
the web server’s native IPv4 host (IP4NODE4) address.
Similarly, for the web server to reply to the IPv6 host
requires an IPv4 address that is an alias (IP4NODE6)
address for the IPv6 host’s native (IP6NODE6) address.
That is, the translator maps the IP6NODE4 address to
the IP4NODE4 address of the web server, and the
IP4NODE6 address to the IP6NODE6 address of the
IPv6 host.
The translation of addresses has three phases: address
binding, address lookup and translation, and address
unbinding, which we describe in the following
subsections.

2.1.1 Address Binding
Address binding is the phase where an IPv4 address is
associated with an IPv6 address and vice versa. The
translator maintains key-to-value tuples, listed in Table
2, to map between IPv4 and IPv6 addresses.

For addresses that are statically mapped, the binding
happens when the translator is initialized. If the
translator is configured to use IPv4 mapped/compatible
IPv6 addresses then all the bindings are implicitly static
as they are defined by these special IPv6 addresses.
Other static mappings could be setup between arbitrary
IPv4 and IPv6 addresses. For example, the binding of
addresses for an IPv4 node to an IPv6 node could be
done statically by a network manager when assigning
IPv6 addresses to existing nodes in the IPv4 site. That
is, IP6NODE4-to-IP4NODE4 are static mappings of
IPv6 addresses assigned to IPv4 hosts. Otherwise, the

Address Mapping
IP4NODE4-to-IP6NODE4={128.95.2.15,beef::805f:020f}
IP4NODE6-to-IP6NODE6={10.0.200.23,5f02::971b:fea2}

IPv6/IPv4 NAPT

S= IP4NODE4
128.95.2.15{ }

D= IP4NODE6
10.0.200.23{ }

IP6NODE6
5f02::971b:fea2

IP4NODE4
128.95.2.15

IP6NODE4
beef::805f:020fS=

IP6NODE6
5f02::971b:fea2D={ }

}{

Figure 4. Basic address translation operation.

binding between addresses needs to happen
dynamically.
IPv6 addresses are larger than IPv4 addresses and it is
not possible to create a one-to-one IP4NODE6-to-
IP6NODE6 binding. Consequently, it will be necessary
to reuse IP4NODE6 addresses to bind them to other
IP6NODE6 addresses. In Section 2.1.3 we discuss this
issue in more detail.

2.1.2 Address Lookup and Translation
Once a binding is established it can be used for address
lookup and translation. The example in Figure 4
illustrates the translation using the IPxNODEy notation
defined earlier. When the IPv4 node sends a packet to

the IPv6 node it is routed through the translator. The
translator receives the packet, translates the 128.95.2.15
to beef::805f:020f source address using the IP4NODE4-
to-IP6NODE4 mapping, and translates the 10.95.2.23 to
5f02::971b:fea2 destination address using the
IP4NODE6-to-IP6NODE6 mapping. Likewise, IP
packets on the return path go through a reverse address
translation.
Notice that this requires no changes to hosts or routers.
As far as the IPv4 host is concerned,
IP4NODE6=10.0.200.23 is the address used by the
IPv6 hosts. Conversely, the IPv6 host believes that
IP6NODE4=beef::805f:020f is the address used by the
IPv4 hosts. The address translation is transparent to
both hosts.

2.1.3 Address Unbinding
Address unbinding is the phase when the association
between an IPv4 and IPv6 address is broken. We
expect the number of bindings of the IP6NODE4-to-
IP4NODE4 mapping to remain fairly constant during
the day-by-day operation of the translator; new bindings
are only necessary when adding new hosts to the site.
On the other hand, the number of bindings of the
IP4NODE6-to-IP6NODE6 mapping are more dynamic
and depend on the number of connections established to
different hosts in the network. The number of reserved

IP4NODE6 addresses used by the translator limits the
number of bindings possible for the IP4NODE6-to-
IP6NODE6 mappings.
For the scenario where the translator is providing
service for an IPv6 site (as illustrated in Figure 1), the
IP4NODE6 addresses are a small number of unique
IPv4 addresses. It is crucial for the translator to detect
when an IP4NODE6 address can be reused in order to
create new bindings; otherwise, new sessions may be
refused if there are no IP4NODE6 addresses available.
For the scenario where a translator is providing service
to an IPv4 site (as illustrated in Figure 2), the
IP4NODE6 addresses may come from a relatively large
pool of private network addresses (as mentioned earlier,
there are roughly 17 million of such addresses
available). Here the concern is to safely remove unused
bindings to ensure that the mapping table does not
require too much memory and that address lookup
performance does not deteriorate. Removing a binding
too early should never occur, as it would effectively
terminate any ongoing communication that relied on
the binding.

2.2 Protocol Translation
Protocol translation consists of a simple mapping
between the two IP protocols, with some special rules
for handling fragments and path MTU discovery. The
basic operation is to remove the original IP header and
replace it with a new header from the other IP version.
The rest of this section provides a high-level overview
of the protocol translation process and the issues
involved. In the Appendix of this paper we present the
details of protocol translation between IPv4/IPv6 and
ICMPv4/ICMPv6 headers.

2.2.1 IP Translation
The IPv6 and IPv4 headers have some similarity, but
there are a number of fields that are either missing or
have different sizes or meaning. The translator either
directly copies, translates, ignores, or sets fields in the
IP header to a default value when translating from one
version of IP to the other. Figure 5 illustrates the
actions taken by the translator for each header field.
Many of the fields require a simple adjustment. The
IPv4 checksum field is computed when translating from
IPv6-to-IPv4, and ignored when translating from IPv4-
to-IPv6. The IPv4 total-length field includes the IPv4
header size whereas the IPv6 payload-length field does
not. The translation needs to account for this
difference. The hop-limit/time-to-live fields are copied
and decreased by one. Finally, the protocol field can be
directly copied from one version of IP to the other, with
ICMPv4 and ICMPv6 protocol numbers being the only
exception.

I P v 4

I P v 4

I C M P v 4

I P v 6

I P v 6

I C M P v 6

Figure 6. ICMP error messages include the
IP header of the error causing packet,
which must be translated as well.

ver ihl tos total length
frag . identifier flags frag . offset
TTL protocol header checksum

source address
destination address

IPv4 header

not translated

computed for IPv4 only

directly copied
translation required

0 31

IPv6 header
ver class flow label

payload length next hdr hop l imit

source address

destination address

flagsnext hdr reserved
fragment identif ier

IPv6 Fragment Header
frag . offset

Figure 5. This Figure illustrates which fields
of the IPv6/IPv4 header are directly copied,
require translation, or are ignored. In contrast
to IPv4, the IPv6 header does not have
explicit fields to support fragmentation; it
uses a separate Fragment header for this
information.

With the exception of the IPv6 Fragment header, all
other IPv6 extension headers and IPv4 options are
silently ignored by the translator. The IPv4 type-of-
service and IPv6 traffic-class and flow-label fields are
also ignored by the translator, as there does not exist a
semantic mapping between them (specifically, the use
of the IPv6 flow-label field has not been specified yet).
We discuss this loss of information in Section 4.1
further.
When the translator receives a fragmented packet, the
translation is straightforward since there is a direct
mapping between the IPv4 and IPv6 fragmentation
fields. The only caveat is the size difference of the
fragment identifier field between the two protocols. In
IPv6, this field is 32-bits wide and twice as large as its
IPv4 counterpart. To account for this, we currently just
copy the lower 16 bits of the IPv6 fragmentation
identifier when translating from IPv6 to IPv4.
Whenever the translator encounters a non-fragment
IPv4 packet with the Don’t Fragment flag set to false
(i.e., fragmentation is allowed for that packet), it notes
that by adding an IPv6 Fragment header and copying

the IPv4 fragmentation fields to it, which indicates the
following:
1. The sender allows fragmentation and that the

fragmentation information is carried end-to-end to
ensure that packets are correctly reassembled.

2. The sender is not using path MTU discovery and the
Don’t Fragment bit must be set to false should the
packet be translated back to IPv4.

The translation from IPv4 to IPv6 increases the packet
size by at least 20 bytes due to the header length
difference between the two protocols (28 bytes if it
needs to add a Fragment header). If the Don't
Fragment flag is set to true and the resulting packet is
greater than the next-hop MTU, then the translator will
return an ICMP error message (Packet Too Big).
Otherwise, the translator will fragment the resulting
packet into next-hop MTU-sized packets. Note that
this fragmentation results in an inefficient packet
stream in the case where the IPv4 host is sending MTU-
sized packets (e.g., a network file system, such as
NFS). For this situation, we are experimenting with
returning ICMPv4 “Packet Too Big” error message to
the IPv4 host that contains a next-hop MTU that
accounts for the size difference in the IP header size,
giving the host the opportunity to re-adjust its path
MTU value. If the host continues to send large packets
(i.e., it does not support path MTU discovery), then the
translator will stop sending the ICMP error message
and continue fragmenting the packet.

2.2.2 ICMP Translation
The translator silently drops single hop ICMP messages
as well as ICMP messages with unknown Type fields.
For the remaining ICMP messages the header format is
nearly identical for ICMPv4 and ICMPv6. The only
exception is the ICMP Parameter Problem message,
which an 8-bit pointer value in ICMPv4 and a 32-bit
pointer value in ICMPv6. The following ICMP
messages and errors have a counterpart in each version:
Echo Request, Echo Reply, Time Exceeded,
Destination Unreachable, Packet Too Big, and
Parameter Problem. For most cases there is a simple
translation of the ICMP Type and Code fields. When a
Packet Too Big error message reaches the translator, it
needs to adjust the Maximum Transmission Unit
(MTU) field during the translation to account for the

Link Speed v4-v4 v6-v6 FWD NAPT
Ethernet 1095 1092 1093 1089

Fast Ether 11003 9076 8005 7210

Table 4. TCP bandwidth measured in Kbytes/second.

Msg. size
in bytes

v4-v4 v6-v6 FWD NAPT

64 246 244 397 424
128 262 261 448 463
256 297 295 508 540
512 364 360 630 658

1024 487 482 871 918
1440 603 596 1059 1104

Table 3. Roundtrip latency of PING packets
measured in microseconds.

difference between IPv4 and IPv6 header sizes. Also,
for a Parameter Problem error message the Pointer field
needs to be adjusted to point to the corresponding field
in the error causing IP header.
ICMP error messages contain as much of the error
invoking packet's IP header and data as can fit, and
needs to be translated just like a normal IP header that
delivered the message. That is, it requires a recursive
translation of the IP packet contained in the ICMP error
message, as illustrated in Figure 6. The caveat is that
the translation of the IP header is likely to change the
length of the datagram, in which case the IPv6 Payload-
length and IPv4 Total-length fields need to be adjusted
as well. Finally, the translator silently drops all IGMP
messages.

2.2.3 Adjusting Checksum Values
Several higher-layer protocols (e.g., TCP, UDP)
compute their checksum values on a pseudo-header that
consists of fields from the IP header. The checksum
value needs to be adjusted with the difference between
the original IP addresses and the translated IP
addresses.
The checksum adjustment for ICMP is slightly more
complex. ICMPv6 uses a pseudo-header checksum
similar to UDP and TCP, whereas ICMPv4 does not.
For ICMP Echo and Echo Request informational
messages we calculate the incremental checksum
adjustment, as only the Type value changes. When
translating from ICMPv6 to ICMPv4 we need to
subtract the pseudo-header checksum. Conversely,
when translation from ICMPv4 to ICMPv6 we need to
add the pseudo-header checksum. Note that these
informational messages may be fragmented either by
the sending host or intermediate routers if their size
exceeds the path MTU. For this case, the translator
cannot calculate the correct checksum value for ICMP
Echo and Echo Request messages, because it does not
know the total size of the packet, which it requires to
add/subtract the pseudo-header checksum value when
translating between the ICMP versions. Finally, since
ICMP error messages are never fragmented, our
approach is to recalculate the checksum value from
scratch rather than incrementally, because most of the
ICMP header and data values have changed.

3 Implementation
In this section we present basic performance
measurements and describe a set of applications that we
have used to verify whether the translator works for real
applications. Our experimental setup consists of IPv6
and IPv4 machines connected to separate, private
Ethernet segments. The translator is equipped with two
Ethernet cards and acts as a gateway between the IPv6
and IPv4 Ethernet segments. All machines in our setup

are Intel PCs equipped with a 200Mhz Pentium Pro
processor, 64MB of RAM, and 3COM 3c905 fast
Ethernet cards. We use both Linux (2.1.95) and
Windows NT 4.0 as our IPv6 test machines. For
Windows NT we use Microsoft Research’s publicly
released IPv6 stack [16]. The translator is implemented
as a Windows NT device driver and roughly consists of
2000 lines of C code. It uses the IPv4 and IPv6 stacks
in Windows NT to send IP packets.

3.1 Latency and Bandwidth
To evaluate the performance of the translator we used
the ttcp tool to measure bandwidth and ping to
measure latency between a pair of IPv6 and IPv4 hosts.
We compare the packet forwarding performance of the
IPv6/IPv4 translator with NT’s built-in IPv4 forwarding
support.
We measured the roundtrip latency of ping packets
ranging in size from 64 bytes to 1440 bytes on
100Mbps Ethernet links. In Table 3, the columns
labeled v4-v4 and v6-v6 show the latency between two
machines communicating directly using the same
protocol. The columns labeled FWD and NAPT show
the roundtrip latency going through NT’s forwarder and
our translator, respectively. The translator is on average
about 30 microseconds slower compared to the
forwarder.

Table 4 shows the bandwidth of sending 64 Mbytes
using TCP for both 10Mbps and 100Mbps Ethernet.
Note that for 10Mbps Ethernet the overhead of the
translator and the forwarder are essentially
unnoticeable. However, the bandwidth for the
forwarder and the translator on fast Ethernet is much
lower compared to two machines communicating
directly using either IPv4 or IPv6. Using NT’s
performance monitor we noticed that processor
utilization reaches nearly 100% on our
forwarder/translator machine when running the ttcp

ICMP Error Message Error causing action
Destination unreachable UDP packet to

unreachable port
Packet Too Big packet exceeding path

MTU size
Time Exceeded single incomplete IP

fragment
Parameter Problem packet with invalid

field
Table 5. Error causing actions to verify ICMP
translation.

bandwidth benchmark over fast Ethernet. The reason
for the high CPU utilization is NT’s packet receive
architecture, which assumes the device driver owns the
packet buffer rather than passing buffer ownership to
the module receiving the packet (as is the case in most
UNIX systems). Consequently, we believe that
bandwidth through the translator and the forwarder are
CPU limited, as they incur significant overhead due to
NT’s packet receive architecture; they must allocate
buffer space for the IP packet’s payload and copy the
data in its entirety before being able to forward it.
Additionally, note that the bandwidth through the
translator is 10% slower compared to the forwarder. We
attribute this performance degradation partly to the IPv6
prototype from Microsoft Research, which is roughly
1.9Mbytes/second slower than the production IPv4
stack shipped with Windows NT. We expect the end-to-
end TCP bandwidth to improve as the IPv6
implementation for Windows NT matures.
We are pleased with the current latency and bandwidth
measurements, as they indicate that translation does not
inherently have a significant impact on performance.

3.2 Applications
The goal of the translator is to transparently work for
“real world” applications, and we used a representative
set of programs that exercise the TCP, UDP, and ICMP
protocols via the translator. Our test applications consist
of an IPv6 version of an Apache web-server, ttcp,
finger, telnet, ping, traceroute, and ftp.
We knew from our experiments with ttcp that the
TCP protocol translation works, but wanted to verify
this with common TCP applications. We were able to
use telnet and finger to connect between IPv6 and
IPv4 hosts through the translator. Additionally, a web
browser on an IPv4 host retrieving documents from an
IPv6 Apache web-server was equally successful.
The ping program uses ICMP messages to determine
whether a particular host is alive. We also used ping to
measure basic roundtrip latency between hosts.
The traceroute program tracks the flow of a packet
from router to router. When tracking routes from an
IPv6 node through the translator along an IPv4 network,
the addresses of the IPv4 routers are translated into
IPv4-mapped IPv6 addresses. For the other direction,
the translator establishes bindings, described in Section
2.1.1, for the IPv6 router addresses to private network
addresses.
Although ping and traceroute use ICMP, they do
not adequately test whether the recursive ICMP
translation, described in Section 2.2.2, was working
properly. Table 5 lists how we caused various ICMP
error messages to verify their correct translation.
Finally, we tested ftp, which is an application that
embeds an ASCII IP address and sends it to its peer.

For it to work correctly via the translator, the IPv6

implementation of the ftp client needs to detect whether
the connection is with an IPv6 or IPv4 version of the
ftp daemon. When communicating with an IPv4 ftp
daemon it needs to use as an ASCII IP address of its
host's IPv4-compatible IPv6 address instead of the
host's native IPv6 address. Conversely, when an IPv4
ftp client contacts an IPv6 ftp daemon, the daemon
must treat the ASCII IP address as an IPv4-mapped
IPv6 address. With this approach it is not necessary for
the translator to update the ASCII IP address.

4 Discussion
The previous section illustrated that the basic
translation between the two IP protocols is possible for
real applications. In this section, we discuss some
unresolved issues regarding loss of information,
applications with IP address content, and how IPv6
hosts resolve to IPv6 addresses referring to IPv4 hosts
(i.e., IP6NODE4 addresses) and vice versa (i.e.,
IP4NODE6 addresses). Finally, we discuss an
integrated translator approach that addresses the host
lookup problem and address-unbinding problem
mentioned in Section 2.1.3.

4.1 Loss of Information
Although a basic mapping exists between the two IP
protocols there are certain fields, options, and
extensions that cannot be translated. The result is a loss
of information that may have some impact on
applications. For example, IPv4 type-of-service values
cannot be equivalently expressed in an IPv6 context
where quality of service for a packet is marked by two
fields, traffic-class and flow-label, as they differ in their
currently specified semantics. Another example is the
use of extension headers by IPv6. These headers can be
of arbitrary length and can encapsulate options greater
than the IPv4 limit of 40 bytes. Further, the IPv6
specification defines extensions for features such as
Authentication, Encapsulation, and Extended Routing
that are a superset of the IPv4 feature domain. Thus, it
is not possible for fully transparent header translation to
occur without loss of information in cases where the

disjoint functionality is exploited. Our current
approach is to ignore all of these features during the
translation process and observe the impact on
applications. So far our experience is that applications
generally rely on basic IP features and do not use the
extended fields of the IP header.

4.2 Applications with IP Address Content
Some applications embed their IP addresses in the
packet payload, above Layer 3. This is the case for a
number of applications, including certain File Transfer
Protocol (FTP) programs, and the Windows Internet
Name Service (WINS) registration process of Windows
95 and Windows NT. Unless the translator parses every
packet all the way to the application level, it has no way
of translating embedded IP addresses, which can lead to
application failures. Our implementation does not do
any application-level IP address translation, but as
described in Section 3.2, this is not an issue with new
IPv6 applications that are IPv4-aware, like FTP. We
hope that a similar solution can be used with IPv6
versions of all legacy applications that embed IP
address content. If that’s not possible, then the
translator will need to be complemented with
application level gateways to expand the list of
supported applications [7].

4.3 Hostname Lookup
Before a host can initiate a session with another host it
has to lookup its address. This is generally done using
host tables or DNS. The problem when using a
translator is that the lookup needs to resolve to an
address alias that refers to the actual host. For the case
where the translator enables nodes in an IPv4 site to
communicate with nodes in the IPv6 network it is
reasonable to assume that each IPv4 node has assigned
to it a unique IPv6 address. Thus, arbitrary IPv6 nodes
can lookup its address and initiate a session. However,
the converse of an IPv4 looking up an IPv6 host is more
difficult, as the IPv4 node needs to obtain the address
alias from the translator that refers to the IPv6.
There are several approaches that can be taken to
translate an IPv6 DNS record to an IPv4 DNS record.
First, the resolver library of the IPv4 nodes could be
modified to request the alias from the translator when
encountering IPv6 DNS records. Second, the site's DNS
servers could be modified to request a temporary
address from the translator on behalf of its IPv4 clients
when encountering an IPv6 DNS record. Finally, an
approach proposed in [7] suggests that the translator
recognize DNS request and response packets and
translates them transparently.
The implications that IPv6/IPv4 translation has to DNS
are beyond the scope of this paper, but need to be
addressed for translation to be completely transparent.

4.4 The Integrated Approach
Our experience with a network-based translator
revealed that for IPv6/IPv4 translation to be completely
transparent requires varying degrees of integration with
other services. As mentioned in the previous
subsection, some level of cooperation is necessary
between DNS and the translator to bind IPv4 addresses
to IPv6 addresses, and vice versa. Also, the translator
currently uses ad-hoc methods to detect when it can
safely remove bindings. Our strategy is to integrate the
translator functionality directly into an IPv6/IPv4 host
operating system. There are several benefits of the
integrated approach:
• Failure isolation. The integrated translator only

serves the host that it is running on and its failure
will not affect other hosts.

• Scalability. The integrated translator needs to scale
only with the number of network applications
running on the host, rather than the sum of network
applications running in the site served by a network
based translator.

• Safe reclamation of address bindings. The
integrated translator is aware when an application
terminates a TCP/UDP network connection and
can safely unbind the address.

Finally, and most noteworthy, the integrated approach
enables the illusion of an IPv6-only node, as packets
stemming from legacy IPv4 applications may be
translated to IPv6 before they leave the machine.

5 Related Work
In principle the function of IPv6/IPv4 address
translation is similar to an IPv4 Network Address
Translator (NAT) [2], which converts private internal
addresses to globally unique addresses that are passed
to the Internet backbone and vice versa. The IPv4 NAT
has the following limitations. First, it is stateful in order
to map between the globally unique and private internal
addresses; thus the NAT is a single point of failure.
Second, applications with IP-address content require
special translation that may be difficult (such as
updating ASCII IP strings and maintaining TCP
sequence numbers on the fly), or may be impossible
when the application data stream is encrypted or signed.
Any stateful translator shares these limitations.
Nevertheless, despite these limitations NATs seem to
be widely used.
A proposal called “Network Address Translation –
Protocol Translation” (NAT-PT) [7] presents a stateful
IPv6/IPv4 translator design. It also describes how to
incorporate IPv4 NAT style UDP/TCP port number
translation. With exception of the port number
translation this is similar to the stateful component of
our design.

A proposal called “Stateless IP/ICMP Translation"
(SIIT) [4] avoids the need for address translation,
thereby overcoming the limitations of IPv4 NAT. First,
it does not maintain state, and is therefore resilient to
network failure. Moreover, multiple stateless translators
may be used to scale with larger sites. Second, the use
of IPv4-mapped and IPv4-compatible addresses allows
it to avoid translating IP addresses embedded in the
application’s data stream. However, this approach will
only work if the IPv6 socket API treats
mapped/compatible addresses exactly as IPv4
addresses. For example, as is the case for some FTP
programs, mapped/compatible IPv6 addresses need to
be printed as IPv4 ASCII strings. The drawback of the
SIIT design is that IPv6 routers need to contain routes
to IPv4-mapped addresses. This drawback seems
acceptable when the translator serves an IPv6 site with
access to the IPv4 Internet (e.g., the scenario shown in
Figure 1). However, for the case where the translator
serves an IPv4 site with access to the IPv6 Internet
(e.g., the scenario shown in Figure 2) the use of IPv4-
mapped/compatible IPv6 address is unreasonable, as it
counteracts one of the significant benefits of IPv6:
shrinking backbone routing tables.
Finally, a proposal called “Assignment of IPv4 Global
Addresses to IPv6 Hosts” (AIIH) [5] enables dual-stack
IPv6/IPv4 nodes to temporarily acquire a global IPv4
address to communicate with other IPv4-only nodes.
This approach may be the initial stepping stone to allow
sites to configure a large set of IPv6 hosts without
having to statically assign each host a globally unique
IPv4 address.
Both the SIIT and AIIH designs focus on providing
interoperability between an IPv6 site and the IPv4
Internet, whereas stateful translation (e.g., NAT-PT)
enables an IPv4 site to communicate with the emerging
IPv6 Internet.
While several translator designs have been proposed
[4][7], ours is the first actual implementation. Our
translator implementation is based on the address
translation techniques described in Section 2.1, which
are general enough to support both stateful and stateless
translation.

6 Conclusion
We have described the design and implementation of an
IPv6/IPv4 network address and protocol translator, and
briefly compared pros and cons of stateless vs. stateful
translation. To this date there are three proposals
[4][5][7] submitted to the IETF NGTRANS working
group to support the interoperability between IPv6 and
IPv4-only nodes. Our work subsumes both the stateless
SIIT design described in [4] and the stateful design
described in [7]. Despite the limitations of translation
(e.g., loss of information) we believe that a translator

can adequately fulfill the role of a short-term transition
aid from IPv4 to IPv6, since it supports the majority of
Internet traffic (HTTP, FTP, sendmail).
Based on our experience we conclude that an IPv6/IPv4
network address and protocol translator is
complementary to the AIIH [5] approach in
transitioning from IPv4 to IPv6. In particular, we
believe that it will be a valuable tool to developers
porting applications from IPv4 to IPv6. For instance, a
server application ported to IPv6 can be tested without
having to port the client as well.
For more information about the IPv6/IPv4 translator, its
performance, and source availability, please visit our
web page at:
www.cs.washington.edu/research/networking/napt

References
[1] S. Deering and R. Hinden. Internet Protocol,

Version 6. RFC 1883, December 1995.
[2] P. Srisuresh and K. Egevang. The IP Network

Address Translator (NAT). RFC 1631, May 1994.
[3] R. Gilligan and E. Nordmark. Transition

Mechanisms for IPv6 Hosts and Routers. RFC
1933, April 1996.

[4] E. Nordmark. Stateless IP/ICMP Translator (SIIT).
Work In Progress.

[5] J. Bound. Assignment of IPv4 Global Addresses to
IPv6 Hosts (AIIH). Work In Progress.

[6] R. E. Gilligan, S. Thomson, J. Bound, and W. R.
Stevens. Basic Socket Interface Extensions for
IPv6. Work In Progress.

[7] G. Tsirtsis and P. Srisuresh. Network Address
Translation - Protocol Translation (NAT-PT). IETF
Internet Draft, March 1998. Work In Progress.

[8] J. Mogul and S. Deering. Path MTU Discovery,
RFC 1191, November 1990.

[9] J. McCann, S. Deering, and J. Mogul. Path MTU
Discovery for IP version 6, RFC 1981, Aug. 1996.

[10] J. Postel. Internet Control Message Protocol. RFC
792, Sep. 1981.

[11] J. Postel. Internet Protocol. RFC 791, Sept. 1981.
[12] B. Fink, 6Bone Overview and Links.

http://www.6bone.net
[13] B. N. Bershad, S. Savage, P. Pardyak, E.G. Sirer,

M. E. Fiuczynski, D. Becker, S. Eggers, and C.
Chambers. Extensibility, Safety and Performance
in the SPIN Operating System. Proceedings of the
Fifteenth ACM Symposium on Operating Systems
Principles, Dec. 1995.

[14] Y. Rekhter, B. Moskowitz, D. Karrenberg, and G.
de Groot. Address Allocation for Private Internets.
RFC 1597, March 1994.

[15] H. Custer. Inside Windows NT. Microsoft Press.
1993.

[16] R. P. Draves, A. Mankin, and B. D. Zill.
Implementing IPv6 for Windows NT. Proceedings
of the 2nd USENIX NT Symposium, Aug. 1998.

A. Protocol Translation Details
This appendix describes the protocol translation for
both IP and ICMP headers in detail. The translation
description is based on the text from [4] with minor
corrections based on our implementation experience.

A.1 Translating IPv4 to IPv6 Headers
If the Don’t Fragment flag is true and the IPv4 packet is
not a fragment (i.e., the More Fragments flag is false
and the Fragment Offset is zero) then the IPv6 header
fields are set as follows:
• Version: 6
• Traffic-Class: 0 (all zero bits)
• Flow ID: 0 (all zero bits)
• Payload Length: Total Length value from IPv4

header, minus the Internet Header Length (multiplied
by 4) value from the IPv4 header

• Next Header: Protocol field copied from IPv4 header.
If the value of the Protocol field is 1 (ICMPv4), then
substitute it with 58 (ICMPv6)

• Hop Limit: Time To Live value from IPv4 header
decreased by one

• Source and Destination Addresses: Depends on
address translation mechanism

If there is need to add a Fragment header (i.e., the Don’t
Fragment flag is false or the More Fragments flag is
true or the Fragment Offset is non-zero) the IPv6 header
fields are set as above with the following exceptions:
• Payload Length: Total Length minus the Internet

Header Length (multiplied by 4) from the IPv4
header, plus 8 for the Fragment header

• Next Header: 44 (Fragment Header)
The Fragment header fields are set as follows:
• Next Header: Protocol field copied from IPv4 header.

If the value of the Protocol field is 1 (ICMPv4), then
substitute it with 58 (ICMPv6).

• Reserved: 0 (all zero bits)
• Fragment Offset: Fragment Offset copied from the

IPv4 header.
• M flag: More Fragments flag copied from the IPv4

header.
• Identification: The low-order 16 bits copied from the

Identification field in the IPv4 header. The high-
order 16 bits set to zero.

A.2 Translating IPv6 to IPv4 Headers
With exception of the IPv6 Fragment header, all other
IPv6 extension headers are ignored (i.e., there is no

attempt made to translate them). For each IPv6
extension header that is ignored the Payload Length
needs to be adjusted by the size of these headers before
the IPv4 Total Length field is calculated.
If there is no IPv6 Fragment header the IPv4 header
fields are set as follows:
• Version: 4
• Internet Header Length: 5 (no IPv4 options)
• Type of Service: 0 (all zero bits)
• Total Length: Payload length value from IPv6

header, plus the size of the IPv4 header.
• Identification: 0 (all zero bits)
• Flags: Don't Fragment flag is set to true (1), and all

other flags set to false (0)
• Fragment Offset: 0 (all zero bits)
• Time To Live: Hop Limit value from IPv6 header

decreased by one
• Protocol: Next Header copied from IPv6 header or

last extension header; and, if the value of the Next
Header field is 58 (ICMPv6), then substitute it with 1
(ICMPv4)

• Header Checksum: Computed once the IPv4 header
has been created

• Source and Destination Address: Depends on address
translation mechanism

If the IPv6 packet contains a Fragment header the
header fields are set as above with the following
exceptions:
• Total Length: Payload length value from IPv6

header, minus 8 for the Fragment header, plus the
size of the IPv4 header.

• Identification: Copied from the low-order 16-bits in
the Identification field in the Fragment header.

• Flags: The More Fragments flag is copied from the
Fragment header and the Don't Fragments flag is set
to false.

• Fragment Offset: Copied from the Fragment Offset
field in the Fragment Header.

A.3 Translating ICMPv4 to ICMPv6
Echo and Echo Reply (Type 8 and Type 0): set the
Type to 128 and 129, respectively.
Destination Unreachable (Type 3): for most Code
values set the Type to 1, unless specified otherwise
below. Translate the Code field as follows:
• Code 0, 1, 6, 7, 8, 11, and 12: set Code to 0 (no route

to destination)
• Code 2: translate to an ICMPv6 Parameter Problem

(Type 4, Code 1) and set the Pointer to 6, which is
the IPv6 Next Header field

• Code 3: set Code to 4 (port unreachable)
• Code 4: translate to an ICMPv6 Packet Too Big

message (Type 2, Code 0) and the MTU field needs
to be adjusted for the difference between the IPv4
and IPv6 header sizes

• Code 5: set Code to 2 (not a neighbor)
• Code 9, 10: set Code to 1 (communication with

destination administratively prohibited)
• Time Exceeded (Type 11): set the Type field to 3.

The Code field is unchanged
• Parameter Problem (Type 12): set the Type field to 4

and translate the Pointer values as follows: 0-to-0, 2-
to-4, 8-to-7, 9-to-6, 12-to-8, 16-to-24, and for all
other ICMPv4 Pointer values set the ICMPv6 Pointer
value to –1.

A.4 Translating ICMPv6 to ICMPv4
Echo Request and Echo Reply (Type 128 and 129): set
the Type to 0 and 8, respectively.
Destination Unreachable (Type 1): set the Type field to
3. Translate the code field as follows:
• Code 0: Set Code to 1 (host unreachable)
• Code 1: set Code to 10 (communication with

destination host administratively prohibited)
• Code 2: set Code to 5 (source route failed)
• Code 3: set Code to 1 (host unreachable)
• Code 4: set Code to 3 (port unreachable)
Packet Too Big (Type 2): translate to an ICMPv4
Destination Unreachable with code 4. The MTU field
needs to be adjusted for the difference between the IPv4
and IPv6 header sizes taking into account whether or
not the packet in error includes a Fragment header
Time Exceeded (Type 3): set the Type to 11. The Code
field is unchanged.

Parameter Problem (Type 4): If the Code is 2 then set
Type to 12, Code to 0, and Pointer to –1. If the Code is
1 translate this to an ICMPv4 protocol unreachable
(Type 3, Code 2) message. If the Code is 0 then set the
Type to 12, the Code to 0, and translate the Pointer
values as follows: 0-to-0, 4-to-2, 7-to-8, 6-to-9, 8-to-12,
24-to-16, and for all other ICMPv6 Pointer values set
the ICMPv4 Pointer value to –1.

Author Information
Marc E. Fiuczynski (mef@cs.washington.edu) is a
Ph.D. student in Computer Science and Engineering at
the University of Washington. His research interests are
internetworking, operating systems, extensible systems,
and intelligent I/O systems. He received his B.A. in
Computer Science from Rutgers College in 1992 and
his M.S. in Computer Science and Engineering from
the University of Washington in 1995. He’s worked for
several years on the SPIN extensible operating system
and hopes to complete his Ph.D. degree before the next
millennium.
Vincent K. Lam (vkl@cs.washington.edu) is an
undergraduate student in Computer Science and
Engineering at the University of Washington, and
graduates in June 1998 with a B.S. degree.
Brian N. Bershad (bershad@cs.washington.edu) is an
Associate Professor in Computer Science and
Engineering at the University of Washington. His
research interests include operating systems, distributed
systems, networking, parallel systems, and architecture.

