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Abstract

Modern commodity operating systems are large and com-
plex systems developed over many years by large teams of
programmers, containing hundreds of thousands of lines of
code. Consequently, it is extremely difficult to add signifi-
cant new functionality to these systems. In response to this
problem, a number of recent research projects have explored
novel operating system architectures to support untrusted ex-
tensions, including SPIN, VINO, Exokernel, and Fluke. Un-
fortunately, these architectures require substantial implemen-
tation effort and are not generally available in commodity
systems.

In contrast, by leveraging the technique of interposition,
we have designed and implemented a prototype extension
system called SLIC which requires only trivial operating sys-
tem changes. SLIC efficiently inserts trusted extension code
into commodity operating systems, enabling a large class of
trusted extensions for existing commodity operating systems
such as Solaris and Linux, while retaining full compatibil-
ity with existing application binaries. By interposing trusted
extensions on existing kernel interfaces, our solution enables
extensions which are protected from malicious applications,
are enforced upon uncooperative applications, are compos-
able with extensions from other third-party sources, and can
be developed at the user-level using state-of-the-art develop-
ment tools. We have used SLIC to implement and demon-
strate a number of useful operating system extensions, in-
cluding a patch to fix a security hole described in a CERT ad-
visory, a simple encryption file system, and a restricted exe-
cution environment for arbitrary untrusted binaries. Perfor-
mance measurements of the SLIC prototype demonstrate a
one-time installation cost of 2-8 µsec and a per-extension in-
vocation overhead commensurate with a procedure call.
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1 Introduction

Modifying modern commodity operating systems is
extremely difficult and costly. They are large, complex
systems developed over many years by large teams of
programmers and contain millions of lines of code. It
is not unusual for major releases of commodity oper-
ating systems to be riddled with flaws introduced dur-
ing development, typically requiring additional “bug
fix” releases which may in turn introduce their own
flaws. Compounding these problems, the development
and debugging environments for operating system ker-
nels are considerably behind the state of the art. Conse-
quently, it is extremely difficult in practice to add sig-
nificant new functionality to modern commodity oper-
ating systems [12, 1, 34].

Although modifying commodity operating systems
is complex and difficult, the need to do so remains.
There is a large catalog of operating system function-
ality which has not been widely deployed, in part be-
cause of the difficulty of modifying existing systems:
load sharing [51], process migration [43, 12], fast com-
munication primitives [6, 44], upcalls [9], distributed
shared memory [25], user-level pagers [49], and novel
schedulers [46, 13, 27]. In addition, security flaws
are routinely discovered and reported by organizations
such as Carnegie-Mellon’s Computer Emergency Re-
sponse Team (CERT) and the Department of Energy’s
Computer Incident Advisory Capability (CIAC). De-
spite the need for immediate repair to prevent wide ex-
ploitation of these flaws, the required patches can take
weeks to become available [42].

This work aims to significantly simplify the pro-
cess of evolving existing commodity operating sys-
tems by enabling new extensions which can manage
global resources and/or enforce security guarantees.
The ideal system which achieves this goal would pos-
sess a number of characteristics: it would require few
or no modifications to existingoperating systems or ap-
plications; it would introduce little overhead; multiple



extensions from independent, third-party sources could
be active simultaneously; extensions would be pro-
tected from malicious applications and enforced upon
uncooperative applications; and kernel extension de-
velopers would be able to make use of state-of-the-art
user-level development and debugging tools.

Accomplishing this goal would enable independent
software vendors (ISV’s) to develop and deploy inno-
vative operating system features. In particular, new op-
erating system features developed by research projects
could be transferred directly to end users without the
need to convince or wait for operating system vendors
to adopt the modifications. Furthermore, many CERT
and CIAC security advisories normally require the sys-
tem administrator to wait for a patch from the operating
system vendor; instead, the advisory could directly in-
clude a small extension to correct the flaw, reducing the
window of vulnerability dramatically.

Prior approaches to extending operating systems
can be roughly divided into three categories: (i) re-
engineering the operating system from the ground up,
in the process making it easier to extend, (ii) incremen-
tally re-engineering selected portions of the kernel, and
(iii) adding extensions to existing systems without sig-
nificant modification to either the operating system or
its applications.

Over the years, a number of systems have attempted
to reduce the cost of adding new operating system func-
tionality by re-engineering the operating system to be
extensible. Systems built using this approach include
Hydra [48], SPIN [5], VINO [36], Exokernel [14], and
Fluke [15]. While many of these systems have success-
fully demonstrated greatly reduced costs for adding
new functionality, the initial cost of replacing existing
commodity operating systems is prohibitive; for exam-
ple, Microsoft spent over $300 M developing Windows
NT [50]. Consequently, extensibility architectures de-
veloped using this approach will remain unavailable to
the average user for the foreseeable future.

A small number of projects have taken the second
approach of re-engineering certain kernel interfaces
to reduce the complexity of adding new functional-
ity at those interfaces. The vnode interface [23] is a
prime example of this approach. However, applying
this technique to make existing commodity operating
systems generally extensible would require modifying
and exposing all interfaces where additional function-
ality is desired, effectively re-engineering the majority
of the operating system. Again, for the foreseeable fu-
ture, such interfaces are unlikely to become generally
available in commodity operating systems.

We take the third approach of adding functionality
with only minor modifications to the underlying oper-
ating system and no modification to application code or

binaries. Our work differs from earlier efforts in that
our solution—kernel-level interposition of trusted ex-
tensions on kernel interfaces—is simple to implement,
is efficient, requires no specialized hardware support,
protects extensions from malicious or faulty applica-
tions, enforces extensions on uncooperative applica-
tions, and supports extension stacking. We believe that
no other system provides this powerful combination of
features for extending existing commodity operating
systems.

Prior attempts to extend the operating system with-
out significant modification suffered from significant
limitations. Interposition Agents [20] leverages the
Mach [1] system call redirection facility to transpar-
ently insert user-level extensions at the system call in-
terface. However, because extensions run unprotected
in the application’s address space and require appli-
cation cooperation, extensions cannot enforce security
guarantees or manage shared resources for competing
applications. Software Fault Isolation (SFI) [45] can
be used to protect extensions from applications even
when loaded in the same address space. Unfortunately,
SFI requires a number of compiler optimizations to
achieve low overhead and therefore cannot be applied
efficiently to existing application binaries. Protected
Shared Libraries [4] has the same capability as SFI
without the need for compiler optimizations, but does
not enforce extensions on applications.

To overcome the limitations of these systems, we
have developed SLIC, a prototype system for effi-
ciently inserting trusted extension code into existing
operating systems with minor or no modifications to
operating system source code. Conceptually, SLIC dy-
namically “hijacks” various kernel interfaces (such as
the system call, signal, or virtual memory paging in-
terfaces) and transparently reroutes events which cross
that interface to extensions located either in the kernel
(for performance) or at the user-level (for ease of de-
velopment). Extensions both use and implement the
intercepted kernel interface, enabling new functional-
ity to be added to the system while the underlying ker-
nel and existing application binaries remain oblivious
to those extensions. SLIC dynamically interposes ex-
tensions on kernel interfaces by modifying jump tables
or by binary patching kernel routines. The prototype
currently runs on Solaris 2.5.1.

We have used the SLIC prototype to implement a
number of extensions which would have been signif-
icantly more difficult to accomplish by other means.
One extension patches a security flaw publicized by
CERT [40]. A second extension encrypts file, while a
third provides a restricted process execution environ-
ment.

The rest of this paper is organized as follows. Sec-



tion 2 provides background on interposition. In sec-
tion 3, we describe the design, implementation, and
performance of SLIC, our prototype interposition sys-
tem. Three sample extensions and their performance
are presented in section 4. In section 5 we discuss our
experience with interposition as an extension tool, and
the lessons we have learned about building system in-
terfaces to support interposition effectively. Section
6 discusses related work while sections 7 and 8 close
with future work and conclusions.

2 Interposition Background

Interposition is the process of capturing events cross-
ing an interface boundary and forwarding those events
to an interface extension. The extension performs some
processing on the event and then either passes the event
on to its original destination or forces the event to re-
turn. Figure 1 illustrates interposition on an interface
by first one extension and then a second.

Interposition has a number of useful properties: it
is transparent, incremental, and composable. Interpo-
sition is transparent because inserted extension code
both uses and implements the original interface, en-
abling user applications and the kernel to remain obliv-
ious to extension code.

Interposition is incremental since extensions need
only capture the events that they are interested in. Ex-
tensions are not required to handle all events cross-
ing the interposed interface boundary, enabling them
to leverage the functionality of the existing interface;
for example, an extension loggingfork() system calls
can use the underlying operating system’s write()

system call to store the log. Hence, extension writers
only have to implement the desired extension function-
ality, not the functionality of the entire interface.

Because interposition maintains the original inter-
face above and below the extension, it can be applied
recursively, enabling multiple, independent extensions
to compose their functionality. The right-hand side of
Figure 1 shows the additionof a second extension to the
extension stack. In the diagram, extensions A and B are
oblivious of each other’s presence, just as the applica-
tion and kernel are oblivious to the presence of either
extension.

The transparency, incrementality, and composability
of interposition make it uniquely suitable for extend-
ing existing interfaces. Specifically, the transparency
of interposition implies that interfaces not designed for
extensibility can be extended. Incrementality simpli-
fies extension development by ensuring that extensions
need only provide the desired functionality without re-
implementing substantial portions of the kernel. Com-
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Figure 1: Interposing extensions on an interface. Solid lines
indicate interfaces between components. Dotted lines illus-
trate the interposition of an extension on an interface. Events
on the original interface are intercepted and routed through
extension code. In this diagram, the original API on the left
is maintained at each level on the right, making the inter-
posed extension transparent to the applications, the kernel,
and other extensions.

posability means that multiple extensions provided by
independent, third-party vendors can be applied to a
single interface.

Using kernel-level interposition, extensions have a
broad range of capabilities. Extensions can provide se-
curity guarantees (e.g., patching security flaws or pro-
viding access control lists), virtualize resources (pro-
viding cluster-wide process identifiers), modify data
(transparently compressing or encrypting files), re-
route events (sending events across the network for dis-
tributed systems extensions), or inspect events and data
(tracing or logging).

However, interposition does have two important
limitations. First, interposition requires a well-defined
interface on which to capture events. Systems with
poorly decomposed functionality may have few such
interfaces. Second, new functionality can only be im-
plemented in terms of existing functionality; for ex-
ample, a cache-coherent file system can only be con-
structed through interposition if underlying layers ex-
pose a cache management mechanism in the file system
interface [21].

Despite these limitations, the power and flexibility
of interposition has led to its widespread use through-
out modern computing systems. Forms of interposition
can be found in virtual machines [19], object-oriented
programming language systems [22], distributed file
systems such as NFS [31], distributed shared memory
systems such as TreadMarks [3], the ‘pipe’ construct
of UNIX shells [30], World Wide Web proxy caches
[7], MS-DOS terminate-and-stay-resident (TSR) util-
ities [32] and Macintosh toolbox extensions [11].



3 Design and Implementation

To investigate the suitabilityof interposition for adding
new functionality to existing operating systems, we
have designed and implemented SLIC, an interposition
system for commodity Unix operating systems. SLIC

leverages the transparency, incrementality, and com-
posabilitycharacteristics of interpositionto provide ex-
tensions with the following features:

Security: Extensions are protected from malicious or
faulty applications and are enforced on uncoop-
ertive applications. This feature enables exten-
sions which manage shared resources and/or en-
force security guarantees. (Note that SLIC as-
sumes that extensions are trusted. Other research
efforts have addressed issues involved with un-
trusted extensions [45, 5, 18, 26, 29, 33].)

Ease of Development: During development and test-
ing, extension writers are able to use state-of-the-
art programming tools such as symbolic debug-
gers and performance analysis utilities.

Efficiency: Once development is complete, exten-
sions impose minimal overhead on the system.
Per-extension overhead is a few times the cost of
a procedure call. Processes that don’t use an ex-
tension experience a minimal performance slow-
down.

3.1 SLIC Architecture

SLIC is comprised of multiple dispatchers and exten-
sions as well as various support routines. Dispatch-
ers are responsible for intercepting system events on
a particular interface and for routing those events to
interested extensions. Extensions receive events from
one or more dispatchers and implement new operat-
ing system functionality. Support routines provide ex-
tensions with a simple, consistent interface to useful
functionality such as memory allocation and synchro-
nization primitives. Each dispatcher may provide addi-
tional support routines as appropriate for the interface;
for example, our system call dispatcher provides rou-
tines to determine the children of a given process.

3.1.1 Dispatchers

Each SLIC dispatcher captures events on a single sys-
tem interface. Dispatchers use two techniques to in-
tercept interface events. For those interfaces which
are invoked via jump tables, such as the system call,
vnode, and virtual memory interfaces of Solaris, the
dispatchers saves the original functionaddress from the
jump table and replaces it with the address of its own

Figure 2: SLIC dispatchers and extensions. The dotted lines
represent the interposed interface. Events crossing this in-
terface are captured by a dispatcher and forwarded to one or
more extensions.

interception routine. For procedural interfaces which
are called directly from various locations in the kernel,
such as the signal interface, dispatchers must use bi-
nary patching to intercept events. The first few instruc-
tions of the relevant procedure are saved and replaced
with instructions to jump to the dispatcher whenever
the procedure is called. When the original routine
needs to be invoked, the saved instructions are exe-
cuted and control is returned to the original routine at
the instruction following the binary patch. Using these
techniques, SLIC dispatchers can capture interface in-
vocations at the cost of a procedure call.

Once an event has been captured by a dispatcher,
that event is passed to interested extensions for pro-
cessing. Figure 2 depicts the relationship between dis-
patchers and extensions. The dispatcher maintains an
ordered list of extensions through which intercepted
events flow down and return values flow back up. Dis-
patchers do not make any policy decisions regarding
the ordering of extensions—extensions are ordered by
the system administrator.

Figure 3 shows a simplified portion of the system
call dispatcher interface. Extensions express inter-
est in certain events using a small number of pred-
icates defined by the dispatcher. For example, our
system call dispatcher filters system call events based
on process identifier and system call type; an exten-
sion that only wishes to trace the open() system call
from process 4191 can specify this easily by invok-
ing Slic TraceProc for process 4191 and calling
Slic RegisterHandler() to register a handler only
for the open() system call. Our signal dispatcher pro-
vides similar functionality, enabling filtering on pro-



struct Slic SyscallInfo f
int syscallNum;

int args[];

g;

struct Slic ReturnInfo f
bool forceReturn;

int returnValue;

int errno;

g;

Slic RegisterExtension(int dispatcherId);

Slic RegisterHandler(int syscallNum,

void (handler)(Slic SyscallInfo *sysInfo,

Slic ReturnInfo *retInfo));

Slic TraceProc(int pid, bool traceAllChildren);

Slic UntraceProc(int pid, bool untraceAllChildren);

Slic IssueSyscall(Slic SyscallInfo *syscallInfo,

Slic ReturnInfo *returnInfo);

Figure 3: A simplified version of the interface exported by
the system call dispatcher to extensions.

cess identifier and signal type.
Upon receiving an event, an extension has a num-

ber of options available: the extension can pass the
unmodified event down the stack by simply calling
Slic IssueSyscall(), the extension can modify
the event parameters in struct Slic SyscallInfo

and then pass it along, or by setting fields in the
Slic ReturnInfo structure, the extension can force
the event to return back up the extension stack with
an arbitrary return value or error condition (e.g., when
a system call would exploit a known security hole).
When an event is forced to return, extensions further
down the call chain (including the original kernel rou-
tines) never see the event. The return value flows
back up the chain in reverse order, allowing interested
extensions to inspect or modify the returned value.
Additionally, while processing one event, extensions
may arbitrarily initiate other events on the same in-
terface using Slic IssueSyscall() with a differ-
ent Slic SyscallInfo structure, capturing the return
values as needed. For example, an extension logging
fork() system calls can initiate a write() system call
to store the log on disk. Additional events generated by
extensions are passed by the dispatcher to the next ex-
tension in the chain. To later extensions in the chain,
including the kernel, these extension-initiated events
are indistinguishable from application-initiated events
and are executed with the privileges (and limitations)
of the user process.

3.1.2 Extensions

The SLIC architecture enables extensions to be struc-
tured in two ways, supporting a tradeoff between ease

Figure 4: User-level extension environment. Extension A
is being developed at the user level while extensions B and C
are loaded in the kernel.

of extension development and performance. Exten-
sions can be loaded at the user level or in the kernel, as
shown in Figure 4, or as a combination of these types.
The “Bounce” extension receives events from the dis-
patcher and hands them off to the user level extension;
it also acts as an in-kernel proxy for the extension in
order to access the dispatcher’s utility functions from
the user level. By providing extensions with the same
interface whether at the user level or in the kernel, ex-
tensions can be easily developed and tested at the user
level and then inserted into the kernel for performance.
In all cases, the extensions are protected from and en-
forced upon uncoopertive applications.

Extensions loaded at the user level are each encap-
sulated in a separate user-level process. This architec-
ture enables extension development to proceed just like
standard user applications, with access to user-level
libraries (e.g., communication libraries) and state-of-
the-art development tools (e.g., symbolic debuggers
and performance analysis utilities). User-level exten-
sions are protected from malicious or faulty applica-
tions by virtue of running in a separate address space
and are enforced on applications by the dispatcher
which remains in the kernel. The disadvantage of
this approach is that invoking the extension from the
dispatcher requires costly context switches and kernel
boundary crossings. This organization is similar to
that employed by micro-kernels such as Mach [1] and
/proc based systems such as Ufo [2] but differs in that
it supports extension stacking.

To maximize performance once development and
testing are complete, extensions can be loaded directly
into the kernel where they are invoked directly from



the dispatcher with a procedure call. When events are
frequent, this organization has considerably better per-
formance than the user-level approach. In-kernel ex-
tensions are protected from malicious applications by
virtue of being loaded in the protected kernel region of
the address space; they are enforced on uncoopertive
applications by the dispatcher. There are two limita-
tions to this approach: (i) the kernel is not protected
from malicious or faulty extension code and (ii) there
is no support for user-level development tools.

Using a simple upcall/downcall interface, SLIC ex-
tensions can also use both models simultaneously.
Performance-critical sections of an extension can be lo-
cated in the kernel, while functionality that is rarely
used or which requires access to user-level libraries can
be located in a user-level server [37].

3.2 SLIC Implementation

The current implementation of SLIC provides dispatch-
ers on the system call and signal interfaces of So-
laris 2.5.1 running on SPARC 10, 20, and UltraSPARC
workstations1. To minimize kernel modifications, all
SLIC components—dispatchers, extensions, and sup-
port routines—are dynamically loaded into the kernel
as loadable device drivers.

Solaris system calls are routed through the sysent
table, which contains function pointers to the appropri-
ate system call routines. The system call dispatcher in-
tercepts system call events by replacing entries in this
table with pointers to its own dispatch function. So-
laris signal delivery proceeds through the sigaddq(),
sigaddqa(), and sigtoproc() functions. The signal
dispatcher intercepts signals by binary patching these
functions at run-time. To enable binary patching, we
changed one line of Solaris source code to make the
kernel code writable by the SLIC dispatchers, although
it should be possible to accomplish this without source
code changes by manipulating the memory manage-
ment hardware directly when SLIC is installed.

The current implementation catches events within
the kernel, rather than at the machine level. System
calls, for example, are caught at thesysent table rather
than upon execution of the trap instruction. While the
two approaches are conceptually similar, intercepting
events within the kernel leverages a significant amount
of machine-specific code which considerably simpli-
fies the prototype.

1Although the SLIC prototype is implemented on Solaris, the
principles underlying SLIC are generally applicable; we believe
SLIC could easily be ported to other UNIX operating systems.

3.2.1 Shadow Structures

SLIC dispatchers and extensions need a way to record
state that persists across event invocations. For in-
stance, the system call dispatcher needs to keep track of
which processes are marked for tracing. The appropri-
ate place to store this information is in the process table
or the thread structures, but in many operating systems,
the size and organization of these structures are com-
piled into system utilities and other kernel modules.

To minimize modifications to the operating system,
we implement shadow structures for processes and
threads to store state for SLIC dispatchers and ex-
tensions. A naı̈ve approach to implementing shadow
structures would be to modify process creation and
cleanup routines to include a call to manage the shadow
structures. Instead, SLIC uses interposition to main-
tain shadow structures without kernel modifications.
Shadow structures are created on demand, when a
dispatcher or extension attempts to access a shadow
structure. Initialization routines allocate space for the
shadow structure and initialize it with a pointer to the
underlying kernel’s structures. To remove shadow pro-
cess structures, SLIC interposes on the wait() and
waitid() system calls to detect process death. In
Unix, all processes must be waited on, even if by the
init process. By observing the return values to the
wait() and waitid() system calls, SLIC determines
which processes have exited and removes the corre-
sponding shadow structure. Similarly, thread shadow
structures can be deleted either on a thr exit() sys-
tem call or when the thread’s process exits.

3.2.2 System Call Buffers

System calls transfer two forms of data: pass-by-value
arguments and pass-by-address memory buffers. In-
specting or modifying the pass-by-value arguments in
an extension is straightforward. Inspecting or modify-
ing memory buffers located in an application’s address
space, however, requires more care.

There is a window of vulnerability between the time
when an extension inspects or modifies a user-level
data buffer and the time when the underlying operat-
ing system executes the system call. Other threads in
the application can exploit this window of vulnerabil-
ity to alter the buffer, effectively circumventing any se-
curity checks performed by an extension, thus violating
the requirement that extensions be enforced on applica-
tions. For example, an application may be able to cir-
cumvent an access control list extension of the file sys-
tem by changing the path name of the open() system
call during this window of vulnerability.

To prevent this situation, before a memory buffer can
be inspected or modified by an extension, that buffer



must be protected from modification by the applica-
tion. Copying these buffers to the kernel provides the
necessary protection but introduces a different prob-
lem. During system call execution, Unix kernels per-
form protection checks on memory buffer accesses, re-
quiring that those buffers be located in the application’s
address space. These checks, performed in the ker-
nel’s copyin() and copyout() routines, are normally
necessary to prevent malicious applications from ac-
cessing sensitive kernel data. Once a buffer has been
copied into the kernel by an extension, the kernel’s own
security checks will fail when the underlying kernel
routines attempt to copy the data, disallowing access to
the buffer.

Our solution to this problem is to again apply
interposition. SLIC maintains a per-thread list of
valid, in-kernel extension buffers and interposes on the
copyin() and copyout() routines in order to per-
mit access to these buffers when appropriate. When
an extension allocates an in-kernel buffer to a thread,
SLIC adds the address and length of the allocated re-
gion to that thread’s valid list. When the copyin() or
copyout() routines are invoked, the interposed code
checks the target address against the thread’s valid list.
If the address is a valid extension buffer, then instead
of the originalcopyin()/copyout()routines, the ker-
nel’s bcopy() routine is invoked to copy the data to
its final location. If the address is not a valid extension
buffer, then control is passed to the original copy rou-
tine which performs the normal protection checks.

Note that this process introduces an extra copy for
data buffers; buffers are copied into the kernel for use
by extensions and are later copied again by the under-
lying kernel routines. Eliminating the extra copy is im-
practical since numerous kernel routines expect buffers
to be copied to stack frames which have not yet been
allocated when the extension is invoked.

3.3 Microbenchmarks

To measure the overhead imposed by SLIC on system
calls and signals, we ran three microbenchmarks on a
167MHz UltraSPARC running Solaris 2.5.1. Unless
otherwise noted, benchmark timings are averaged over
100,000 runs. The first microbenchmark performs a
getpid() system call, which in Solaris is essentially
a null system call. This microbenchmark measures the
raw overhead of the system call dispatcher, but does
not invoke the modified copy routines since there are
no buffers involved. To quantify the overhead resulting
from our interpositionon the copy routines, the second
microbenchmark performs a sigprocmask() system
call which involves a memory copy of 16 bytes. The
kill()microbenchmark measures the overhead of the

Figure 5: getpid() microbenchmark performance with a
varying number of extensions. The time on an unmodified
system is 2.82 µsec. Error bars indicate one standard devia-
tion above and below the average.

signal dispatcher. It involves a single process sending
itself a SIGUSR1 signal. We use a single process to
avoid context switches, thus maximizing the effect of
our overhead. Because of the longer run time, results
for this benchmark are averaged over 10,000 runs.

We tested our microbenchmarks with various con-
figurations of SLIC: an unmodified system, a system
with SLIC dispatchers but no extensions installed, and
a system with the SLIC dispatchers and multiple exten-
sions installed. The results of the getpid() bench-
mark with a varying number of extensions are pre-
sented in Figure 5. The incremental cost of adding
a new extension is statistically similar for all three
benchmarks. Table 1 presents the one-time overhead
cost of interposition for each of these benchmarks as
well as the time to invoke a user-level extension.

The base overhead of the SLIC dispatchers is ap-
proximately 1.5 µsec for system calls and 5 µsec for
signals. The incremental cost of loading additional ex-
tensions is approximately 0.2 µsec for both dispatch-
ers. The extensions used for these measurements are
null extensions which inspect events arguments but not
event return values. Inspecting the return values in an
extension consumes two additional stack frames and
SPARC register windows—one is consumed by the ex-
tension while awaiting the return value and a second is
consumed by the dispatcher which invoked the exten-
sion. Consequently, inspecting return values increases
the per-extension cost from 0.2 µsec in Figure 5 to 1.60
µsec. The average cost of a standard procedure call
which spills a register window on this platform is ap-
proximately 0.8 µsec.

There are two reasons why the overhead for the sig-
nal dispatcher is higher than that of the system call dis-



getpid() sigprocmask() kill()

Time (µs) σ Time (µs) σ Time (µs) σ
Unmodified system 2.82 0.05 3.75 0.20 103.52 1.56
SLIC, no extensions 3.16 0.05 4.19 0.10 108.76 1.53
SLIC, 1 null extension 4.38 0.07 5.56 0.09 109.99 1.49
SLIC, user-level extension 61.83 0.81 60.20 0.88 187.67 2.00

Table 1: Microbenchmark performance of SLIC. For each benchmark, the table shows the average elapsed run time in mi-
croseconds and the standard deviation across the runs. The getpid() and sigprocmask() tests were run with the system call
dispatcher loaded while the kill() test was run with the signal dispatcher loaded. User-level extension results are averaged
over 10,000 runs.

patcher. First, the signal interface is more complicated
than the system call interface. Whereas system call
events have a calling thread, a system call number, and
system call arguments, the signal interface has a call-
ing thread, a signal number, a target process, and an
optional target thread. The shadow structure for each
process and thread must be determined before exten-
sion processing can proceed; there are consequently
more shadow structure lookups for the signal interface
than the system call interface. The second difference is
that intercepting signal events sometimes requires call-
ing thread to pay two interposition costs. Specifically,
in Solaris, the sigaddq() and sigaddqa() routines
perform signal queueing side-effects which SLIC ex-
tensions may need to leverage; both of these routines
call sigtoproc() in order to do further signal pro-
cessing. However, some routines in the kernel invoke
sigtoproc() directly, requiring SLIC to interpose on
that as well to ensure that all signals are seen by the ex-
tensions. Those code paths in the kernel which invoke
sigaddq() or sigaddqa() consequently experience
the interposition overhead twice.

4 Extensions

To demonstrate the functionality and performance of
SLIC, we have implemented prototypes of a variety
of extensions: a security patch for a recent CERT
advisory, an encryption file system, and a restricted
execution environment. Without SLIC, responding
to the CERT advisory would have required disabling
admintoolwhile awaiting a patch, and the encryption
file system and restricted execution environment ex-
tensions would have required substantial kernel source
code modification to achieve the same functionality
and performance. Further, without SLIC, adding these
features to an existing kernel would require ad hoc
changes rather than providing a general solution that
can be leveraged for future extensions.

4.1 CERT Advisory Extension

The Computer Emergency Response Team (CERT)
regularly provides the Internet community with infor-
mation regarding system security problems. When-
ever possible, these advisories include information on
how to resolve the reported problem. However, due to
the lack of extensibility in existing systems, frequently
this advice is to completely disable the insecure fea-
ture [39, 40, 41]. However, using SLIC, many of these
advisories could be accompanied by small extensions
which would resolve the problems without requiring
changes to kernel source code. Though operating sys-
tem vendors do respond to these advisories by supply-
ing patches, those patches can take weeks to become
available [42].

To demonstrate patching a security hole in this man-
ner, we have implemented an extension to patch a se-
curity hole discovered in the Solaris admintool [40]
which allowed unprivileged users to truncate arbitrary
files. The admintool utility creates a local lock file
to control access to shared files. By creating a sym-
bolic link at the lock file location, malicious users could
cause arbitrary files to be truncated when the lock file
was created. Our 100-line extension monitors file oper-
ations, preventing symbolic links from being created at
the lock location. SLIC thus corrects the security prob-
lem while maintaining continued use of admintool.

4.2 Encryption File System

In a distributed file system, maintaining file privacy is
a primary concern. In a networked environment with a
central file server, traditional Unix file protections can
be easily circumvented by monitoring network traf-
fic. To protect sensitive files, users may use encryp-
tion tools such as PGP [16]. However, stand-alone en-
cryption tools and libraries can be time consuming or
cumbersome to use and are not easily integrated with
existing applications. A more effective method of en-
suring file security is to support file encryption directly
in the file system, transparently encrypting file writes



and decrypting file reads when communicating with the
server. Rather than rewriting all file systems to support
encryption, an easier approach is to implement a single
encryption extension which interposes on all file traffic.

We have implemented a simple extension to demon-
strate the feasibility of file system encryption using
SLIC. This extension implements a trivial exclusive-or
encryption algorithm similar to that used to test VINO
[33]. The prototype extension watches for open() and
creat() system calls of files with a particular suf-
fix and then records the process identifier and the file
descriptor returned to the application. On subsequent
read() or write() system calls to these file descrip-
tors, the extension applies a byte-wise xor on the data.
Key management and encryption algorithms are or-
thogonal to our demonstration that interposition pro-
vides a simple yet powerful means of transforming file
system data.

4.3 Restricted Execution Environment

In UNIX, processes run by a user have access to all
of the resources granted to that user. There are many
cases, however, in which the user does not fully trust
the program being run. For example, programs down-
loaded from untrusted sources may actually be Tro-
jan horses designed to steal or destroy information [47,
10]. In addition, there are cases in which the user trusts
the program, but not the data being processed, as in
the case of web browser helper applications used by
web browsers to display various data formats. Input
data could potentially exploit bugs in helper applica-
tions such as ghostview to insert viruses into the sys-
tem [38].

The tracing facility of the standard Solaris /procfile
system is one method that has been used to construct a
restricted execution environment [17]. Potentially in-
secure system calls are captured and then selectively
denied or altered. The /proc approach, however, suf-
fers from two primary shortcomings. First, intercept-
ing system calls using /proc is expensive, requiring
two context switches over the base system call over-
head. This is especially problematic for system-call
intensive applications. Second, systems using /proc

cannot properly handle the system call buffer prob-
lem described in section 3.2.2. While /proc does en-
able an extension to inspect system call buffer data, a
multi-threadedapplication may maliciouslymodify the
buffer between extension validation of the buffer and
kernel use of the buffer, effectively subverting the se-
curity system. Using SLIC we have implemented a re-
stricted execution environment extension that does not
have these limitations.

This extension is a modified version of the Janus sys-

tem [17] and provides the user with a configurable se-
curity environment. For example, applications can be
given a subset of read/write/execute access to any num-
ber of directory subtrees. The ability to fork() or
to perform a variety of other system calls can be dis-
abled. Any attempts by the application to perform a re-
stricted operation results in the extension returning an
EPERM error. The extension monitors only the subset
of system calls necessary to maintain the security guar-
antees, thus minimizing overhead. When traced ap-
plications invoke restricted system calls, the extension
checks the arguments to the call and determines if the
call should be allowed or denied. The restricted envi-
ronment used for benchmarking denies 45 system calls
outright (e.g., chown()) and performs security checks,
such as checking the path or file access permissions, for
21 additional system calls (e.g., rmdir()).

4.4 Performance

To evaluate the impact of these extensions on system
performance, we ran the extensions under three bench-
marks: the Modified Andrew Benchmark [28], a TEX
compilation of a 494-page (1.32 MB) document, and
a gcc compilation of emacs-19.34 without support
for X Windows. The Modified Andrew Benchmark
consists of multiple phases which create directory sub-
trees, copy files, search file attributes via find, search
files for a text string via grep, and compile files. While
this benchmark fits entirely in the file cache of mod-
ern systems and is therefore no longer useful for mea-
suring file system performance, this benchmark is use-
ful for exposing the overhead imposed by SLIC. The
TEX and gcc benchmarks were chosen to be represen-
tative of document processing and compilation work-
loads. All measurements were run on a 167MHz Ultra-
SPARC running Solaris 2.5.1 with all benchmark data
files placed in a memory-mounted /tmp file system.
Table 2 reports some relevant statistics for each bench-
mark.

Table 3 presents the results of running the bench-
marks with each extension as well as with all exten-
sions simultaneously. Since the CERT extension does
not catch any system calls issued by the benchmarks,
as indicated by Table 2, it effectively acts as a null ex-
tension for these tests; consequently, the overhead de-
picted in Table 3 for the benchmarks running on CERT
is exclusively due to the SLIC dispatchers and infras-
tructure. There are three anomalies in the table worthy
of note: the MAB and gcc benchmarks appears to run
faster with all three extensions loaded than with just the
Encrypt extension loaded and the gcc benchmark ap-
pears to run faster with SLIC loaded than on the base-
line system. However, an inspection of the standard de-



Total System Calls Caught
Procs System Calls CERT Encrypt REE

MAB 471 40500 0 0% 2732 7% 9246 23%
TEX 3 2748 0 0% 1635 60% 703 25%
gcc 379 140656 0 0% 11031 8% 47888 34%

Table 2: Benchmark characterization. For each benchmark, this table presents the total number of processes created during
a run, the total number of system calls issued by those processes, and the number and percent of those system calls which are
caught by each extension. “MAB” is the Modified Andrew Benchmark and “REE” is the Restricted Execution Environment.

MAB TEX gcc

Time (s) σ S Time (s) σ S Time (s) σ S
Baseline 15.71 0.10 14.50 0.30 160.30 1.99
SLIC, no extensions 15.92 0.16 1% 15.06 0.23 4% 159.13 0.34 -1%
CERT 16.12 0.30 3% 15.09 0.39 4% 160.11 0.55 0%
Encrypt 17.69 0.85 13% 15.87 0.53 9% 168.30 0.53 5%
REE 15.93 0.33 1% 15.15 0.73 4% 160.89 1.63 0%

CERT + Encrypt + REE 17.24 0.09 10% 15.90 0.37 10% 166.98 3.43 4%

Table 3: Benchmark performance on sample extensions. “Baseline” represents a machine without any SLIC dispatchers or
extensions loaded. “SLIC, no extensions” represents dispatchers loaded, but no extensions; this row measures the effect of
the SLIC interposition overhead. The rows labeled “CERT”, “Encrypt” and “REE” present the benchmark elapsed times with
a single extension loaded. The last line shows benchmark performance with all three extensions interposing simultaneously.
For each benchmark, the table shows the average elapsed run time in seconds, the standard deviation across the runs, and the
percent slowdown (“S”).

viation in each of these cases reveals that the anoma-
lies are well within one standard deviation of the mean
and are likely to be experimental variance. Though
SLIC imposes a certain amount of overhead on appli-
cations, the last line in Table 3 illustrates that much of
the overhead experienced by the benchmarks is due to
the SLIC dispatcher infrastructure, a cost which is only
paid once; the per-extension overhead is small for these
workloads.

5 Interposition Evaluation

This section describes our experiences with imple-
menting SLIC and presents a number of general princi-
ples for developing interfaces that are conducive to in-
terposition. Although SLIC was designed for and will
work with existing operating systems, there are a num-
ber of improvements that can be made to make these
systems more interposition-friendly. We have drawn
these lessons from our implementations of the system
call and signal dispatchers for Solaris 2.5.1, as well as
preliminary analyses of the virtual memory mechanism
of Solaris, the process scheduler interface of FreeBSD
2.2.5R, and the system call interface of Linux 2.0.

The problems that we have encountered can be di-
vided into four categories: the asymmetric trust mech-

anisms of the system call interface, the implicit event
information in the interfaces we interposed on, an in-
complete decomposition of functionality in the system,
and miscellaneous implementation issues.

5.1 Asymmetric Trust Mechanisms

The solution adopted by the current prototype to cor-
rectly handle system call buffers (see section 3.2.2) in-
troduces a second copy for those data buffers which
must be securely examined by an extension. This sec-
ond copy is not fundamental to interposition but rather
arises out of idiosyncrasies of the Solaris system call
routines. In Solaris, as in most Unix systems, sys-
tem call buffers must be copied into the kernel before
they can be used. The copies are only necessary on in-
terfaces such as the system call interface which have
an asymmetry of trust—applications trust the kernel,
but the kernel does not trust applications. Extensions
which interpose on such interfaces are viewed by the
kernel as being part of the untrusted user application.
Interfaces which have a symmetry of trust do not need
to copy data buffers before using them because it is as-
sumed that no other threads in the trusted domain will
maliciously modify the buffers to subvert the system.

Consequently, the ideal interface for interposition is
one with a symmetry of trust. For the system call in-



terface, this would mean interposing on events after
the data buffer addresses had been validated and the
buffers themselves had been copied into the kernel. In
Solaris, this is impractical because the copy routine in-
vocations are scattered throughout the system call han-
dler routines. The ideal interposition-friendly interface
would perform any required security checks and copies
in separate routines before invoking system call han-
dlers. This approach would eliminate the unnecessary
second copies and would remove the need for SLIC to
interpose on the kernel’s copy routines.

5.2 Implicit Event Information

Many interfaces in today’s operating systems rely on
implicit information—information that is not passed
directly as an argument to the event but rather is stored
in global data structures. For example, when a system
call is made, the process identifier of the application
is not passed to the system call handler. Similarly, the
return value of a system call is not returned explicitly
according to normal calling conventions, but is stored
in the kernel’s process structure. The credentials deter-
mining a process’s right to open a file or send a signal
are also stored in the process structure. Accessing this
implicit information requires an understanding of com-
plicated kernel structures and kernel locking conven-
tions.

To minimize the dependency of extensions on a par-
ticular version of the operating system, SLIC dispatch-
ers provide extensions with simple utility functions to
access a variety of implicit event information, hiding
the details of kernel data structures and locking con-
ventions. Unfortunately, providing these functions in
the dispatchers increases the dependency of those dis-
patchers on the particular version of the operating sys-
tem. An interposition-friendly interface would make
implicit event information readily accessible when an
event is raised, enabling SLIC to be more easily ported
to new operating system versions.

Implicit event information also limits the functional-
ity of extensions, as in the case of implicit credentials.
If extensions cannot modify event credentials, then ex-
tensions would be restricted to the rights of the call-
ing thread. For example, an extension could not write
to files owned by root unless invoked from a root

process. A naı̈ve approach to circumvent this problem
would be to enable extensions to modify a process’s
credentials stored in global data structures for the du-
ration of the intercepted event. However, in a multi-
threading environment, other threads running concur-
rently may access the modified credentials, producing
unpredictable results. Including credentials as explicit
parameters to the event enables extensions to modify

the credentials as necessary.
The ioctl() system call poses a different prob-

lem for interposition. Originally designed as a way to
manage arbitrary devices, ioctl() system calls have
a variable number of parameters, nearly any of which
may reference arbitrary memory buffers which may in
turn contain pointers to other memory buffers. The
meaning of the arguments and the structure of each
buffer is defined by the particular device driver. Hence
an extension cannot know in advance how to handle the
arguments of any given ioctl() call. This is prob-
lematic for extensions such as system call logging or
security extensions which may need to understand the
arguments of an ioctl(). While it is possible to de-
rive some information about device/application inter-
actions by interposing on the copyin()/copyout()
routines, general interpretation of ioctl() semantics
is difficult. Events with run-time determined semantics
are not conducive to interposition.

5.3 Separation of Policy and Mechanism

To reduce the dependencies on a particular hard-
ware platform or operating system version, extensions
should interpose on system policies while leverag-
ing system mechanisms. A clean separation of pol-
icy and mechanism in the compiled kernel is there-
fore critical. However, this principle of decomposi-
tion is violated by today’s operating systems. While
experimenting with extending the scheduler interface
in FreeBSD 2.2.5R, we found that a single scheduler
routine, cpu switch(), implements both the policy of
selecting the next process to run as well as the actual
context switch mechanism. Enabling interposition on
the policy while leveraging the existing mechanism re-
quired separating the policy and mechanism into two
routines, creating a procedural interface which could
be interposed on.

A variation of this lack of separation occurs with the
Linux routines for accessing system call data buffers,
getuser() and putuser(). These routines are in-
lined at compile time, making interposition at run time
extremely difficult. Interposing on the copy routines
requires modifying the Linux source to disable inlining
of those copy routines, again creating a procedural in-
terface that can be interposed on, albeit at a small cost
in performance.

5.4 Miscellaneous Issues

Our method of using binary patching to intercept pro-
cedural invocations is simple to implement, but re-
quires that kernel code be writable. Unfortunately, So-
laris is loaded such that the kernel code is read-only,



preventing binary patching. By modifying a single line
of Solaris source, we were able to make the kernel code
writable.

Managing shadow structures for processes and
threads complicates SLIC and increases kernel mem-
ory consumption. Adding a hook to the kernel’s
process and thread structures would eliminate these
problems.

6 Related Work

There has been a considerable amount of recent work
[36, 5, 14, 15] that has explored novel kernel designs
for extensible operating systems. Of these systems,
SPIN [5] and VINO [36] are the closest in concept to
our work. Both offer extensibility through interposi-
tion on a number of kernel interfaces, but have ex-
plicitly crafted those interfaces for extensibility. SPIN
and VINO also aggressively focus on ensuring ker-
nel protection from untrusted extensions, SPIN by us-
ing a type-safe language [35, 18], and VINO through
software fault isolation [45] and in-kernel transactions
[33]. In contrast, SLIC assumes trusted extensions and
focuses on an evaluation of the technique of interposi-
tion and its suitability for legacy operating systems.

Interposition Agents [20] demonstrated the useful-
ness of constructing extensions in terms of the high-
level abstractions of an interface (such as path names),
rather than the low-level events crossing that interface
(such as open()). Interposition Agents used the sys-
tem call redirection facility of Mach which bounces
system calls to extensions linked into an application’s
address space. Consequently, extensions are neither
protected from nor enforced on applications and thus
cannot implement security extensions or share data be-
tween distrustful applications. Additionally, the mul-
tiple protection boundary crossings limit the perfor-
mance of the system. SLIC enables high-performance
interposition that is both enforced on and protected
from applications, enabling a significantly larger class
of extensions. In principle, the toolkit presented in [20]
could be ported to SLIC, further simplifying the pro-
cess of extension development.

COLA [24] enables interposition at the system call
interface, but without any modification of the operating
system kernel. It operates through interposition at the
library level and consequently suffers from the same
security drawbacks as the Mach interposition technol-
ogy described above.

Protected Shared Libraries (PSL) [4] enables exten-
sions to be securely loaded into an application’s ad-
dress space, so that user programs cannot access or
modify extension code or data. PSL does not provide

a mechanism for enforcing extensions on applications,
which SLIC does. PSL is primarily intended for adding
new interfaces to a system, although it could be com-
bined with the interposition mechanisms used in SLIC

to enable modification of existing interfaces. Finally,
the PSL protection technique relies on per-thread seg-
ment protections supported by the IBM RS/6000 archi-
tecture, while the principles in SLIC are generally ap-
plicable across a variety of operating system platforms.

Disco [8] and Fluke [15] are virtual machine mon-
itors which use strategies similar to those of SLIC for
different purposes. Disco uses interposition and binary
rewriting to ease the implementation of operating sys-
tems for new architectures, rather than adding exten-
sibility to existing operating systems, as SLIC does.
Fluke uses interposition for extensibility, relying on a
heavy decomposition of services into nested process
domains, instead of adding extensibility to an existing
kernel.

7 Future Work

While interposition enables extension stacking, the
mechanism cannot guarantee that the extensions will
be compatible with each other. Some extension com-
binations may only impair performance (e.g., for many
types of data, it is more efficient to execute a data com-
pression extension before a data encryption extension)
while others may impair correctness (e.g., an extension
which needs to inspect the magic number at the head
of executables may run incorrectly when invoked af-
ter an encryption extension). Prior experiences with
conflicts among MS-DOS terminate-and-stay-resident
(TSR) utilities and Macintosh toolkit extensions indi-
cate that a method for identifying and managing con-
flicts among incompatible extensions is sorely needed.

8 Conclusions

This paper has examined the utilityof interpositionas a
mechanism for making commodity operating systems
extensible. We have shown that interposition is suit-
able to a number of useful extensions, and we have pre-
sented a prototype system, SLIC, which enables oper-
ating system extensibility through interposition in So-
laris with minimal kernel source modifications. SLIC

demonstrates that extending an existing operating sys-
tem can be done in a manner that is protected from ap-
plications, enforced upon uncooperative applications,
and efficient, while combining the development and
testing advantages of user-level extensions with the
performance of kernel extensions.



We have also examined the problems found in
transparently extending operating system functional-
ity, such as the asymmetric trust of the system call in-
terface and implicit event information. Drawing from
experiences with these problems, we presented a num-
ber of lessons that can be used by operating systems
designers to provide interfaces which are conducive
to interposition. Foremost is the imperative to main-
tain clear procedural barriers between operating system
policy and mechanism. Additionally, to reduce the ef-
fort necessary in implementing an interposition mech-
anism, interfaces should be explicit and expose all in-
formation related to their events.

We believe that the techniques we have described
in this paper can provide a substantial benefit to users
of existing operating systems, enabling a viable third-
party industry for developing and deploying operat-
ing system extensions. The resulting competition will
stimulate innovation and increase the rate of technol-
ogy transfer from operating systems research into pro-
duction systems.

Availability

Current status and source code are available at
http://now.cs.berkeley.edu/Slic/.
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