i

The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)
New Orleans, Louisiana, June 1998

High-Performance Caching With The Lava Hit-Server

Jochen Liedtke, Vsevolod Panteleenko, Trent Jaeger, and Nayeem Islam
IBM T.J. Watson Research Center

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org

4. WWW URL http://www.usenix.org/

High-Performance Caching With The Lava Hit-Server

Jochen Liedtke Vsevolod Panteleenko Trent Jaeger Nayeem Islam

Thomas J. Watson Research Center
IBM
Hawthorne, NY 10532

{jochen,vvp, jaegert ,nayeem}Qus.ibm.com

Abstract ubiquitous high-bandwidth networks will probably lead
to applications with increasing demands on network and
With the development of new client-server computingserver performance. For a scenario with 10,000 users
models, such as thin clients and network computers, thand 100,000 thin clients, we think that requirements to
performance of servers becomes a bottleneck. In thesge server like “handle 20,000 requests in a second with
models, servers support a large number of clients. They data bandwidth of 1 GByte/s” will be realistic. Perhaps
download significant amounts of data to their clients ineven higher bandwidth will be requested. In the near fu-
the form of graphics, executables (e.g., applets), andure, we envision clusters of 1,000 up to 2,000 NCs.
video. We present an architecture for building high- Th tulated ¢ is about t d
performance server systems that can efficiently serve € postulated server periormance IS about two orders

large local clusters of NCs or other clients. The key com-gg]m%?lg't;céecz'r?v?r?(r:;giﬂa(tzlfrr;e?;vsisrvgjsrr:ﬁ? Is?vsete[;?s,
ponent in our architecture is a genecache nodule that) P 9 y

is designed to fully utilize available bus bandwidth. Our by.evolutlon IS ngt sufficient. we need a new Server ar-
experiments show that such a server system can achie\?g'.tecwre to ach!eve th? mentioned goqls. The basic re-
throughput rates of up to 36,000 transactions per Secon@uwements to th|'s'arch|tecture acastomizability, per-
We detail the design and implementation of the genericormance’ scalabilitandsecurity support
cache comonent, describe its use in the implementation As Kaashoeket al. have noted recently [10], tradi-
of a sample server system, and show how the architectutt@onal servers are designed either to run a variety of ap-
can be scaled. plications, but with abstractions that lead to poor per-
formance, or run specialized applications efficiently, but
without the flexibility to run other applications. They
define aserver operating systesmnvironment that is de-
_signed to provide abstractions for building specialized,
J}igh-performance servers. While their server operating
system enables improvements in server performance and
flexibility, we claim that further improvement in perfor-
mance is necessary and possible without reducing the va-
riety of server systems that can be developed.

1 Rationale

In the future, we envision local networks serving thou
sands up to hundreds-of-thousands of resource-po
clients, e.g., NCs. These networks might be intra-
building, intra-organization or even intra-city. Customiz-
able servers will be required that nevertheless offer ex
tremely high performance.

The low cost and variety of future clients (e.g., PDAs, We believe that in our envisioned scenarios, signifi-
laptops, pagers, printers, and specialized appliances) witant performance improvements are possible by provid-
result in a larger number of client devices per user. Eacling clients with access to local servers that optimize ca-
office employee could have tens of client devices. Thinche response. For example, an organization could use a
clients will have fast processors, but little or no disk stor-central server (or cluster of servers) and 1000 NCs, all
age so that they will download most of their data andconnected by a local area network. The NCs boot from
executables. Some typical applications for these clientshe central server, use it as a file system, as a Web proxy,
will also download very large objects, such as graphicsas a server for organization-internal HTML documents,
and video. and perhaps also for video clips. Some objects the server

The existence of cheap client hardware with high-deals with will come from the Web; however most ob-
resolution graphics and high-quality audio together withjects will be local to the organization (software, forms,

brochures, diagrams, custom data, etc.) so we expect a
large but bounded working set.

In this scenario, the important problems are actually
server latency and throughput, rather than network la-
tency (as addressed by Web caching [3]). Network band
width for the central server to communicate with the
clients is easily obtained (e.g., using multiple 100 Mbps
Ethernets), so the problem in this scenario is to improve
server performance such that it can utilize this bandwidth
effectively.

Wwe a,re aware of two prInCIpF.:lI ways for increasing aFigure 1: Server Architectures customized server has mod-
system’s performance SUbStam'a”y.beyond the bare. P€fies of two different types: hit-server(s) and miss-server(s). They are
formance growth of hardware: replication and caching.dedicated machines and are connected with a dedicated intra-server
Massive replication of servers (e.g., IBM's Olympic network. Client libraries reside on each client and are responsible for
server) is probably too expensive, makes write accesse®mmunicatingwith the hit-servervia a LAN.
complicated and slow, and needs sophisticated load bal-

ancing. _and a web proxy. Using only a single custom module
Therefore, we focus on the development of a high-anq 4 single generic cacheodule, the video-clip server

performance, cache-based architecture that is genergl gpje to serve up to 402 clients with video clips simul-

enough to support most type of server applications. S“CIPaneoust MIPEG I, 1.5Mbps, full screen presentation).

an architecture should enable the server to achieve VeYhe performance is currently limited by the sub-optimal
close to the maximum performance that the architecturgyn1a of current PCI chipsets and memory buses.

can achieve in principle for the fast path (i.e., hits on NC In Section 2, we describe the design of the server ar-

client requests in the local server’s cache). Iniidd, chitecture, focused on the generic cachednie. We de-
customizability and handling heterogeneous objects argyj; the jmplementation of the hit-server in Section 3 and
also relevant to the architecture because it must be gensiosent performance results in Section 4. In Section 5,
eral enough to support a wide variety of applications. \ e giscuss the scalability of the presented architecture.

Our key decision for constructing high-performance e review related work in Section 6 and conclude in Sec-
customizable servers is to separgtneric cache mod- g 7.

ulesandcustomizable miss-handling moduéesl to map
them to dedicated machines. Generic cacledules
are responsible for high performance while customiz-2 The Server Architecture
able miss handlers enable flexibility. Single or multi-
ple generic and customizable modules together build &he server architecture consists of two types of modules
general or specialized server (or server cluster). In thehat cooperate to manage a large RARlthe of objects
prototype, we use an off-the-shelf PC equipped with(shown in Figure 1). Ahit-serveris a highly-optimized
a 200 MHz PentiumPro processor for a generic cachgeneric module (a dedicated machine) that handles client
module. requests that hit in the object caciMiss-serverhandle
In this paper, we focus on the generic cachedmle client requests that miss in the object cache. Miss-servers
which is the centerpiece of the architecture. For it, wealso implement application-specific policies for manag-
envision main-memory caches of 4 GB up to 64 GB. Theing the hit-server cache and for distributing objects to
challenge is to construct software that efficiently main-clients. Multiple, different miss-servers can be combined
tains such a cache, that does not restrict customizabilwith a single hit-server or with multiple hit-servers (see
ity, that supports scaling of multiple modules, and that isSection 5).
nevertheless highly specialized and optimized to achieve Clients read and write objects by performiggtand
the demanded high throughput. put operations on server objects. For example, HTTP’s
The proposed architecture heavily relies on the inhergetand put are mapped to Lava'getand put by client
ent “cache friendliness” of applications. Chwope isthat libraries. The Lava operations also work on partial ob-
due to the customizability of the architecture and due tgects. This feature permits clients to download or modify
the support of active objects in the generache nodule, arbitrary, selected parts of the object (i.e., as opposed to
most applications can benefit from the cache structurereading the entire object). As well, client libraries can
However, we are still far from substantiating this hope.implement file-system like access. Furthermore, objects
Currently, we have only implemented two small proto- can have object-specifgetandput operations supplied
types, an instructional video-clip server (see Section 2.1py the object creator. For example, a custgat can

Internet

a

Object
Servers

Hit-Server

. &
S

Hit-Server —

Miss
Server

present an object in different formats based on the re- In conjunction with the mentioned video-clip miss-
guesting client. Another example is HT#®st Acom- server, the hit-server can serve up to 402 clients simul-
bined putgetoperation sends thgostdata to the active taneously with different video clips (see Section 4).
object which then calculates the response and sends it
back to the client agetdata.

In fact, putgetis the only existing operation from the 2.2 Requirement Analysis
hit-server’s point of view. Theutdata is sent to the ob-
ject which then delivers thgetdata. Purggetandput The hit-server has an object cache that it uses to process
operations are implemented Ipytgetusing empty put getand put operations from network clients. Further-
or get parameters respectively. For better intuitive undermore, it is also linked to miss-servers (e.g., web proxy,
standing, we will, however, always refer to pgetand file system servers, and databases) from which it can ob-
putoperations in the following sections. tain other objects to fulfill its clients’ requests. Each hit-

In the remainder of this section, we develop the desigrPerver communicates with its clients via network con-
of the server architecture. First, we describe an exampl&ollers that transfer data between the network and the
server which demonstrates the interplay between the agerver’s main memory over the PCI bus and the mem-
chitecture components. Next, we analyze the applicatio®y bus. On the memory bus, CPU-memory and PCI-
scenario to determine the requirements of the architecemory traffic compete with each other.
ture. The last two subsections develop the design. Our original goal (which turned out to be not com-
pletely achievable, see Section 4) was to build server sys-
tems whose server-to-client throughput rates approach
the current PCI bus bandwidth of 1 Gbps. Utilizing this

We implemented a video-clip server that delivers video'@t€ éven for moderately small objects of 1K, would
clips interactively to clients. Examples of such a systemy€quire 128,000 transactions per second. For compar-
include museum kiosks, retail services (e.g., mall, infor-iSOn: commercial servers currently achieve rates up to
mation resources), educational services (e.g., library and100 [15] transactions per second, research servers [11]
encyclopedia), and entertainment services. For instancélP to 7000 transactions per second.

upon entering a museum, information about exhibits, re- Since the memory bus is the bottleneck of a hit-server,
sources, and staff can be retrieved from computers lothe server architecture must maximize the availability of
cated at kiosks throughout the museum. the memory bus to the network controllers.

A prototype version of the video-clip server systemis In order to achieve high throughput and low latency,
built using Windows 95 PC clients running the Active- the server must also make efficient use of its object ca-
Movie application to view videos and a miss-server thatche, basically a problem of deriving cache replacement
runs on Linux 2.0 to retrieve the videos. Our instruc-and prefetching protocols that keep the “right” objects in
tional server provides small video clips (varying from the cache. We refer to applications in which such pro-
about 20 seconds and 4 MB to about 180 seconds aridcols can be defined amche-friendly In this paper,

50 MB each) to its clients. we make no claims about the design of such protocols
The Windows 95 clients use Lava’s reliable object pro-(as others do, e.g., Cao et al. [2]). However, for appli-
tocol to communicate with the hit-server. The protocol iscations where such protocols exist, the server architec-
implemented as a Windows kernel extension (a so-calleture must permit their implementation. Also, the effect

Vxd element) that communicates directly with the net-of processing cache misses on serveotighput must be
work driver using Window’s NDIS network-driver inter- minimized.

face. A special ActiveMovie source filter was built that Communication over untrusted links must be authen-
transfers ActiveMovie requests into Lavajettransac- ticated to prevent attacks. An authenticated communica-
tions. The ActiveMovie source filter requests a series oftion is one whose source, integrity, and freshness have
video blocks that correspond to a consecutive intervaldeen verified. We do not believe that privacy is required
of the video. The size of each block is 32 KBytes. for our server, at present. Certainly communication with

The according miss-server executes as a user prabject servers over the Internet needs to be authenticated.
cess on Linux. Lava’s reliable object protocol (see Secdn addition, given the number of insider attacks reported
tion 2.4) is incorporated into the Linux kernel to en- and the value of corporate data, client communication
able hit-server/miss-server communication. Application-over the LAN may also need to be authenticated. There-
specific policy is added to: (1) download video objectsfore, the server architecture must enable the ability to au-
into the miss-server from the Web using (unmodified)thenticate communication along any link. However, we
HTTP and (2) implement a custom cache-replacementust minimize the effect that message authentication has
policy that controls the hit-server. on the hit-server’s throughput rate.

2.1 An Example Server

The server systems must also be scalable through theersion’s data descriptor. (The per-object data descriptor
addition of new server modules. Scalability is limited is similar to a multi-level page table but implements a
primarily by interactions caused by objects being writ- granularity of 1 K.) This technique makes it easy to up-
ten. When an object write occurs, consistency requiredate an object whilgetsare concurrently active. After
ments of that object must be enforced. Many applica-all getson the old version are finished, the old version
tions enforce a strict consistency in which a reader seesan be garbage collected.
the latest writes. However, less restrictive policies, such Similar to the DynamicWeb cache [8], the hit-server
as the various types of release consistency, are also usétterface permits to cachgynamic Web pages or other
by distributed applications, so the server must supportlynamic objects. The application running on the miss
application-specific consistency policies. server constructs the dynamic object on demand and in-

In summary, the major requirements relate to four di-validates or updates it in the hit-server wheneveras-
mensions:Performance, flexibility, securitgnd scala- sary. Note that this requires only defaplitgetopera-
bility. tions. If the method is too expensive, e.g. for a dynamic
object that delivers random numbers, an object-specifc
. . putgetcan be used that executes directly on the hit-server.
2.3 Hit-Server Architecture The architecture enables flexible handling of objects

The hit-server provides efficient mechanisms for pro-through object-specifiputget operations. An object-
cessing client requests that hit in the object cache. Upo#gpecific operation supersedes the default. Object-specific
a client request, the hit-server locates the requested ofputgetmethods are run on the hit-server to enable effi-
ject and either downloads it to the client (omei), cre- ~ cient implementation of custom operations. An object-
ates a new version (onput), or forwards the request to Specific put operation is invoked after the new data is
the miss-server (on a miss). received, but prior taipdating the objectache. E.g.,
The hit-server is free of policy. Its general mech- it can be used to implement object-specific consistency
anisms are intended to support any policy that theProtocols that are executed when an update is made. An
miss-servers can implement, so developers can crea®bject-specifigetoperation is invoked prior to delivery
application-specific server systems. For example, wheto the client. An object-specifigetcan be used to deliver
cache replacement is signaled by the hit-server, the misgnodified object data to a client (e.g., for displaying the
server is free to select the objects to be replaced. Abject effectively on the client).
miss-server library provides general miss-server primi- [n order to prevent corruption of the hit-server and
tives and a set of functions that use these primitives tglenial-of-service to clients, the hit-server must control
implement predefined policies. However, the developetthese object-specifiputgetoperations. We assign each
can choose to build a miss-server from any combinatiorPbject-specifiputgetoperation to its own address space
of predefined and custom policies or even build a newto protect the hit-server and other object-specific oper-
miss server from scratch. ations from modification. Resource requests, such as
The hit-server processes cligygt/putrequests to ac- access to a client descriptor, are intercepted and au-
cess a large RAM cache of objects and processes mis#orized against the object-specific operations access
serveradd/removerequests to modify the cache. Re- fights [9, 13]. For example, object-specific operations
quests that result in cache misses are forwarded to tha'e permitted to read the requesting client’s description
miss-server. and the requested object descriptor. If multiple objects
The defauligetoperation first checks whether the ob- share the samgutgetoperation, they are all mapped into
jectis available. Then, the clientis authorized against théhe same address space. Address spaces are a relatively
object’s ACL. Next, the object’s status data and consis/ightweight resource, see Section 3.2. Custputget
tency matrix may indicate that the object’s miss-serveroperations can be multithreaded to execute multiple re-
be signaled, so it can implement the object’s consistencfiuests concurrently.
policy (see Section 5 for details). Finally, after verifying ~ The hit-server also processes miss-server operations,
that a download is necessary by checking version numadd andremove by which miss-servers can add or re-
bers, the hit-server sends the requested object data to tfeove objects (specified by name and version) from the
client. object cache, respectively. Aadd enables the miss-
Theputoperation is similar except that eqghtgener- ~ Server to set the initial values for the object’s attributes.
ates a new version of the object: First, the entire object is
copied (lazily); then, those object parts are modified thaty 4 Reliable Network Communication
are addressed by thput data. The mentioned copy op-
eration is based on copy-on-write techniques; basicallyAlthough we envision the use of switched networks,
the newly received packets are simply linked into the newpacket losses are possible. They can occur in switches or

even within the hit-server’s Ethernet chips, even thoughterintuitive since the protocol seems to invite congestion
the hit-server always has enougtceive buffers avail- rather than to avoid it. However, assume that two clients
able. The point of congestion is not main memory itselfsimultaneously send a 1 MByte object each to the same
but the memory/PCI bus. As described in more detailhit-server card. Due to congestion, always 1/2 of the data
in Section 3.1, the maximum memory-bus bandwidth forsent will be lost: On the first rounaiach client sends
DMA is approximately 600 Mbps. As soon as the sumthe entire object; on the second rouedch client sends
of all cards’ incoming and outgoing Ethernet traffic ex- the lost 1/2 M, on the third the 1/4M lost in the second
ceeds this value, the receiver FIFOs (4K each) in the round, etc. In totaleach client sends 2 MByte with full
Ethernet chips can run over. (The problem is real: thespeed to effectively transfer 1 MByte, i.e., gets 50% of
current hardware uses 7 full-duplex Ethernet cards enthe available bandwidth. In the same time, the hit-server
abling peaks of 1400 Mbps.) receives2 x 1 MByte at the highest possible rate. The
The first obvious choice for a reliable transport proto-point is that only such packets are lost that could not
col is TCP. Although some of its features are netes- have been transmitted under ideal flow control, and that
sary for our application (e.g., checksums, handling duthe “unnecessary” transmissions consume only resources
plicates and out-of-order packets), adaptive flow controthat otherwise would be unuséd.

and retransmission of lost packets are required. Itis well Since this paper concentrates on the hit-server design,
known that TCP is often costly in terms of processorwe will neither go into details of the protocol nor proof
cycles [18] and that a VMTP-like [4] protocol is better jts properties nor discuss further “good” topologies here.
suited for transactions. For the context of this paper, it is relevant that the pro-
An even more important problem of TCP is that tocol is reliable, performs well under peak load, is cheap
its congestion-avoidance policies (which are primarilyfor low loss rates, is robust against random losses and
based on end-to-end flow control) are tailored to currenhighly fluctuating loss rates, and can be “asymmetri-
WANSs and are not effective for our envisioned scenar-cally” implemented such that it requires more processor
ios: On a highly loaded LAN, we experience dramati- cycles on the client side and less on the hit-server side.
cally changing loss rates, e.g. 0% loss for 5ms, then
40% for 2ms, etc. TCP would very quickly reduce its
window size to a single packet. This would resultin poor)
bandwidth utilizatiorand not avoid packet losseince, 3 Hit-Server Implementation
in peak situations, the loss rate depends more on the
synchronization between the clients than on the sender's this section, we describe the techniques used for im-
transmission rate. Given that under peak load the roundslementing the generic hit-server. Miss-servers enable
trip time exceeds 1 ms (the client’'s and server’s hardwargystomizability and extensibility; the hit-server is re-
FIFOs are even good for a 0.9 ms delay), it is very diffi- sponsible for performance. Consequently, its design is
cult to devise a flow-control protocol that can handle thepasically driven by performance requirements. In a first
described agility efficiently. step, achievable performance goals are derived from the
Instead, we use a late-retransmission protocol. Basicharacteristics of the available hardware. Then, in an
cally, any sender transmits the whole object in a burstideal-case micro analysis, we try to determine the load
as fast as the network hardware permits. Afterwards, then optimal implementation would impose on processor,
receiver tells the sender which parts of the object it hasache, memory bus, PCI bus and Ethernets. This analysis
received; finally, the sender retransmits the missing, i.e.gives us a more realistic upper bound of the achievable
lost, parts (if any). This procedure is repeated until allthroughput, and it reveals the bottlenecks of the system.
data is transferred. Finally, guided by these results, we describe the actual
The mentioned protocol does not work for any topol- construction of the hit-server core software.
ogy. However, it behaves nicely on a star topology as
in our scenario where nearly_ all communication gither 2There are some pathological situations. If, e.g., 100 clients simul-
goes to or comes from the hit-server. With a switchedaneously start sending an object of 100 packets, each round effectively
network, the protocol ensures that the hit-server receivegansfers only 1 packet per client. Then we needed 1 ack per trans-
data at its maximum rate and all clients get close to Opjerred packet, similar to 1-packet windows in TCP. (Nicely, we needed

. only 0.1 acks per transferred packet, if 1000-packet objects were sent.)
timal bandwidth. At a first glance, this mlght be coun- Therefore, as soon as a client notices that the effective ratio of acks to

effectively transferred packets becomes too high, it takes random rests
1In reality, the situation is complicated by DMA bursts, bus arbitra- while transmitting the packets. Since all active clients act in a similar

tion policies and the existence of multi-level PCI buses. However, allway, the congestion and the loss rate decreases so that the ack ratios

this is hardware and most of its parameters and algorithms cannot beecome better. For short objects, additional transmission rounds are

influenced by software. A detailed description is beyond the scope oheeded: the packets are retransmitted a second or third tirheutit

this paper. waiting for an ack.

3.1 Analysis The purpose of this analysis is twofold: (1) estimate an
upper bound of the achievable performance; (2) iden-

Our current Eit-server machine is an off-the-shelf PC’tify the system’s potential bottlenecks. Of course, the
equipped with a 200-MHz Pentium Pro uniprocessor, AMhus determined idealistic performance is in practice not

Intel 440FX chipset, and 256-K of LZache memory. completely achievable. Nevertheless, it gives us a rea-

gor ourfexpgnments, the h|t-se:\ijer was equipped W't}onable order-of-magnitude goal and helps us to concen-
56M of main memory. External devices are connecteq, oo o the relevant optimizationsin the design. Further-

tothe processor and the memory by a 32-bit PCl b“_s’,wminore, this methodology helps us checking whether the
a cycle time of 30 ns (33 MHz). The PCl-bus SpeCIfICa’theory, i.e., our understanding of the system, iagnor-

tion [17] permits burst DMA transfer's with a rate of 1 dance with the reality of the system. If later performance
word per PCI-bus cycle, correspondlng t0 132 Iv'BytE/Sexperimen'[s roughly corroborate with the idealistic pre-
or 1056'Mb.ps. However, the 44X chipset, at .Ieast dictions, we have a certain confidence about theory and
in combination with the Ethernet controller chips we implementation. If experiments largely diverge with our

use, takes on average 1.5 cycles to tra}nsfer a word. Sﬁ’ieory, we either have the wrong model or made mistakes
the maximum achievable transfer rate is 88 MByte/s or, implementing it
704 Mbps. '

Even if an ideal implementation of the hit-server core
The SMC EtherPower 10/100 PCI network cards Wewould spend no time for bookkeeping and OS overhead,

use support 109 Mt_’p”s Ethernets. T.hey are based on mfending and receiving packetsdbgh the Ethernet con-
DEC 21140 (*Tulip) controller chip. Since the ma- ey are unavoidable. So we first analyze the optimal

chine has only 4 PCI slots on its motherboard, we had,,qs for sending a packet. Figures 3 and 4 illustrate the
to use an additional PCI bridge (DEC, 21152) for CON"interaction between processor and Ethernet controller.
necting 7 Ethernet cards. In our experimental setup (Fig-

ure 2), 6 Ethernets are used as client networks, 4 of them
are connected with the motherboard through the addi- Pentium Pro
tional bridge. The seventh Ethernet connects the hit- L2 cache

server with the miss-servers.

video clip WEB
miss server miss server

1x
100 Mbps Ethernet L J
I | Ethernet Controller |

hit server

Figure 3:Sending an Ethernet packethering bufferholds
descriptors pointing (thin arrow) to the packets that the Ethernet con-
—|—|—|—' I | | | |—|—|—|— troller should transmit. For each packet, the processor first writes the

6 x descriptor and the packet header; then the Ethernet controller reads the
100 Mbps Ethernet —T — T descriptor and the whole packet. Memory reads and writes are denoted
by thick arrows.

...Clients ...
Figure 2: Single-Hit-Server Architecture. Pentium Pro Main Memory
L2 cache
For increased numbers of miss-servers and hit-servers L j Memory Bus
in a server cluster, the inter-server network hardware can I
be upgraded: multiple Ethernets for point-to-point con-

PCI Bus
1

nections, an ATM switch or a Myrinet. Since the inter-
server network connects only 2 to perhaps 15 nodes, the
related costs are economically feasible.

A\

Ethernet Ethernet Ethernet Ethernet Ethernet
Controller Controller Controller Controller Controller

Pre-Implementation Performance Analysis

. . Figure 4: Accessing Main MemoryProcessor read/writes
From the performance point of view, the most relevant,se only the memory bus while transferring data to or from Ethernet

operations are delivering objects to clients and receivingontrollers involves PCI bus and memory bus.
requests. We start with an idealistic and optimigtie-
implementation analysief these both basic functions. Both components communicate via the main memory:

the processor accesses the main memorgutn the Send Packet (1056 bytes)
memory bus and the Ethernet controller through the PC}
lines words 7
busandt.he mem(?ry bus. . processorl by Memory by| PCl |Ethernet
For this analysis, we assume that the packets consist of ws] |cpu [ws] PcI| [us] | [us]
32 B header information and 1024 B object data. Transf1) device interrupt 190 [- 030 2 | 048 -
g ; H . 2) inspect controller 0.40 1 0.29 - - -
mitting a packet requires the following steps: 3) seloct packet 0.10 e T - -
. |4) prepare packet 0.57 1 0.29 - - -
1. The system has to receive a device interrupt that indiy 5; Sotip ranomission| 072 | 1 os7 5 | oss | -
cates that the controller is ready to accept another packefe) transmit packet - _ 1200 264 | 1209 | 847
(Alternatively, the _system has Fo poll the controllers, e o 3.69 1353 1245 | 1200
needs to read their status registers.) To generate the in——
terrupt, the controller sends one word through the PC||utiization 21% 100% 92% | 89%
bus. Furthermore, it writes its current status word, an- . . 1056 x 8 bits _
other PCI-bus write operation. max achievable rate: 13535 - - 624 Mbps

2. To ensure that no errors are pending, the system has to

read the controller status (see step 1) from memory. Noter,6 1 pre-jmplementation Micro Analysis for a Hit-
th‘_it this is always an L2-c_ache miss, since the controllerSeryer.processor costs are derived from instruction estimates (disre-
writes to memory and not into the L2-cache. garding memory costs) and from micro benchmarks of the underlying

3. The system has to select a new packet. Under ideal agi-kernel. Memory and PCl-bus costs are calculated from the derived
sumptions, no L2-cache miss occurs for this. The mainumber of transfers and the average throughput costs of these transfer
memory is not accessed measured by micro benchmarks. Ethernet costs are derived from the

’ specified throughput of 100 Mbps.

4. The system has to prepare the new packet for transmis-

sion. This includes at least writing the client's Ethernet/IP

ad_dress into the packet header: one cache line has to hyyst be constructed carefully not to delay packet trans-

written back. mission. The following paragraphs discuss the methods
5. The transmission has to be set up. For this purpose, thge ysed to achieve these goals.

descriptor in the ring buffer has to be written. It needs

at least the physical memory address of the new packet:

one memory access. Furthermore, the Ethernet controlleEarly Evaluation

needs to be triggered for starting the transmission (one

PCI word). Afterwards, the controller will read the ac- Early evaluation is a technique for reducing the latency

cording descriptor from the ring buffer, i.e. from memory: and improving the throughput of operations. If an op-

4 words through the PCI bus. eration is requested several times on the same object, it
6. Finally, the controller will transfer the packet from mem- needs to be executed only once. If an operation can be

ory to its own bus: 256+8 words through the PClbus. executed either at a place or at a time when free resources

. . are available, its costs are hidden.
In Table 1, the costs of these six steps are estimated an . o .
. s s Object precompilationensures that only negligible
given for the critical components: processor, memory

bus, PCI bus and Ethemet buses. Due to buffering an@:(jmputatlons or data transformations are required by

inelining. these components can to a larae dearee wor e hit-server for delivering a cached object to a client.
pip 9 P 9 9 hen loading the object into the hit-server cache, the

in parallel. However, main-memory reads through themiss:-server partitions it into network packets, gener-

PCI bus always require corresponding memory-bus Cates the appropriate header information and computes a

tvity. client-independent digest for each packet. On sending
]) a packet, only the destination address, sequence number
3.2 Implementation Techniques and sometimes a message-authentication code have to be

From the previous analysis, we know that everyu®sa ge_?erated. . . deli d
1K packet has to be sent to achieve maximum hardwar% 0 k:neet Otl:r securltyc/i rbeqwre:nents, ar'1f3./ clivere
utilization. However, we had to design the system for an ata has to be secured by a client-specific message-

even higher demand: with optimal PCI-bus DMA hard- authentication code which is also unique in time to pre-

ware (1 word per 30ns cycle), a packet had to be transvent replay attacks. By using a client-specific secret key,

mitted every 8us3 Obviously, the hit-server software the aut.hent'lcatlon code is calculated from the precom-
piled client-independent digest and a nonce.
3From the above discussion, we know that traitting a 1024 B Many research experiments show that avoiding unnec-

packet and a 32B header requids+ 1)ciept + (1 + 4)steps + faa
(256 + 8).reps = 271 word transfers. So in the ideal situation, 1 essary data copies improves performance,(e.g., Fbufs [6],

word per 30 ns through the PCI bus and no delay by the memory bus.,unet [19]). Since we use precompiled packets in th? O_b'
217 x 30ns= 8.13us. ject cache, we can always use unbuffered transmission

for delivery. Withputoperations, the arriving 1 K pack- fit completely even into the L1 cache. The hit-server’s
ets are linked, not copied, into the new version of thememory bus is not burdened with handling instruction

object (see also Section 2.3). misses. For data, the situation is different:

Per-Object Address Spaces 1. Client descriptorsbasically the client’s secret key and
some status information, are not expected to cause fre-

The defaultputgetoperation is implemented by the hit- quentL2-cache misses, since they need only 2 cache lines

server in a single address space. Since we would like per client. 400 simultaneously active clients need 10% of
to enforce security requirements on active objects, they the L2 cache.

execute their specialized operations in per-object addresszl Hash and name tablserve to identify a requested object.

spaces. Since they are large, most accesses will cause L2-cache

Remember that the object granularity faut updates misses. Finding a 100-byte name then requires to read
is 1K while hardware pages are 4K. Therefore, once 1 line of the hash table and 4 lines of the name table,
a 4K region of an object with a non-defapltitgetop- provided there is no name-hash conflict.

eration is no longer physically contiguous, the corre-
zpondlng pageumusthbe remofve(T fromhj[he ObJeCLS ad- to the large number of objects, we generally assume that
ress Sp_ace- pon the page a_u tont 'S pgge, the cor- the object-descriptor data is never found in the L2-cache
responding 1K chupks are physically co.p|ed into a.fresh upon agetrequest. Applications with many hot-spot ob-
4K page frame which is then mapped into the object’s jects will perform slightly better. Memory accesses are

Object descriptorwill frequently miss the L2 cache. Due

address space. Object-specfittgetsoften do not read minimized by keeping object descriptors small:

the entire object data by itself but simply specify to

the hit-server core what parts should be transmitted. In (2) Theobject rootholds pointers to the object-specific

these cases, the above mentioned lazy-copying technique operation, the object-page descriptor list and the

avoids copying ofeceivedputdata packets even for non- object’s ACL. 2 cache lines are accessed per re-

default objects. quest, one from the ACL and one to find the packet
The p-kernel can be configured to support up to descriptors.

65,000 address spaces. The space costs per address space (b) Any object-page descriptarontains the pointer to

are low for small objects, about 22 bytes for an object 4 packets forming the page and the corresponding

of 16 K. Nevertheless, the maximum number of address 4 precalculated digest values. Together with links

spaces is only 6.5% of the maximum number of objects. and a length field (objects can be smaller than a

Currently, we do not yet know whether this is in prac- page) this fits into one cache line.

tice sufficient to preallocate and preconstruct an address

space for any object that uses non-defgdt and put 4. Object datais never read by defaulfet operations. So

operations. Otherwise, the hit-server would have tomul- ~ no L2-cache misses occur in this case. itivg an ob-

tiplex address spaces for active objects. jectusing gutoperation requires message-authentication

codes of the received data to be verified. This costs
1024/32 = 32 cache misses per 1K packet. (Checking
Minimizing Memory Conflicts the authentication code is omitted if the packet comes
)))) from a miss-server, since miss-servers are trusted and the
In the hit-server case, copying data in main memory inter-server interconnection is a closed network.)
is not only “in principle avoidable” but belongs to the
class of the most expensive operations. Section 3.1 illus- 5 Packet headerbave to be constructed per packet trans-
trated that the memory bus is the time-critical bottleneck. ~ Mission. For our hardware, packet header and the buffer
Therefore, processor accesses to main memory have to Qescrlptor requw_ed for_the Ethernet controller together fit
be minimizedSince L1 and L2 caches use a write-back into one cache line. Slnce_ the Ethernet controller alwgys
, . . transfers data from/to main memory, one L2-cache-line
strategy, the processor’s reads and writes are uncritical @S | rite and one read is required per transmission.
long as they hit in the hardware cache and do not touch
the memory bus. 6. Request datés placed in main memory by the receiving
Fortunately, early evaluation techniques, in particular ~ Ethemet controller. Obviously, a request packet has to
object precompilation, prevents unnecessary memory-to- be read by the hit-server. _For requesting an object with a
. . . 100-byte name, 4 cache lines have to be transferred.
cache copies. Since we use a precalculated digest, there
is no need for the defaudtetoperation to read the object
data. Therefore in total, a defauggeton ann K object re-
The code segments of thekernel and the hit-server quires at least1 + [9n/4] cache-line transfers between
core are small enough so that their frequently used parts2 cache and main memory.

4 Performance ing all client and network bottlenecks and increasing load
until server was saturated. Similar to our experiment,
In two throughput experimentgget requests for objects the measurements for Cheetah, Harvest, MIIS, and Afpa
of 10K and 1K size are generated at the highest possiblare based on a LAN with no competing traffiget re-
rate. A single physical client sends requests for randomlyuests are always served from the systems’ respective
chosen virtual clients. (The Ethernet driver and the hit-main-memory caches. All systems implement the HTTP
server software are constructed such that, provided th&nctionality; for Lava however, the client library trans-
utilized bandwidth does not eged that of one card, there lates HTTP requests to object-protocol requests on the
is no measurable difference between the packets comingient side.
through a single or through multiple cards.) To ensure an
infinite burst, the request generator does not wait for a re-
guest to be completed. Avoiding the request-generation s -
problems mentioned in [1], this method is good for gen-
erating up to 161,000 requests per second. To be sure to 5% 1
saturate the hit-server in a realistic way, we send requests
with random gaps such that the hit-server gets slightly
more requests on average than it completes. For the ex-
periments, all objects were resident in the hit-server so
that no miss-server communication was required.

For 10K objects, we achieve a throughput of
594 Mbps with the current hardware, 7,000 transactions . |
per second. For 1K objects, the bandwidth is 304 Mbps,
approximately 36,000 transactions per second. Note that o -
all delivered data is authenticated. Corroborating these
results, our video-clip server can serve up to 402 clients 25 -
with different MPEG | video clips (1.5 Mbps) simultane-

OUS|y. 200 |

The crucial questionis of course whether our approach
performs significantly better than conventional server ar-
chitectures. Therefore, we compare Lava with some
other research systems and commercial Web seimers
our envisioned LAN scenarimany NCs in a local clus-
ter). The reader should note that the results cannot sim- .
ply be extrapolated to other application fields, e.g., wide- —— ||
area networks. In particular, the systems are not func- MSUS - Aba Hanest [Olie Cheetah Lawa
tionally equivalent: e.g., the commercial Web servers
support TCP clients but cannot be customized like therigure 5:Server Throughputyet data throughputin Mbps for
Lava architecture. get operations. (Headers, checksums, etc. are not considered to be net

Figure 5illustrates that for our LAN-based application data.) Blat_:k bars denote the throughput for 1K objects, shaded bars

) . . . for 10K objects. All systems are measured on a local area network and
Lava’s hit-server offers an order-of-magnitude INCréas€ye|iver data from their respective main-memory object cache.
over conventional systems. We report net data through-
put, i.e., do not count headers etc.

The numbers for Harvest [3] and Cheetah are taken Based onthe get-throughputexperiment, we simulated
from [11] and converted to Mbps. Both systems run on aa system where a hit-server is used as a boot server for
200 MHz Pentium Pro machine like the Lava hit-server.1000 NCs. For bootinggach NC had to download an in-
Harvest runs on top of the BSD operating system, Cheedividual set of objects, together 10 Mbyte per NC. We as-
tah on top of MIT’s Xok system. 10-Lite [16] runs on sumed that all 1000 NCs are turned on within the same 5-
a 233 MHz Alpha station with two 100 Mbps network minute interval, equally distributed over time. We further
adapters. For comparison with industry-standard servergssumed that each NC, once ibigoted, starts working
we include numbers for Microsoft’s Internet Information and then every secorgkts a 20K object. When a user
Server 4.0 running on a 166 MHz Pentium with Win- turns on her/his NC, how long would (s)he have to wait
dows NT 4.0. Afpa [15] is an NT-based server runninguntil the 10 M of boot data are downloaded? We found
on a Pentium 166 processor. Both the MIIS and Afpaan average boot latency of 1.7 s with a standard deviation
peformance have been measured in our lab by eliminatef 0.9 s (see Figure 6).

500 —

450 —

400 —

150 —

100 —

50 —

5.1 Adding Server Modules

There are three methods for adding server modules: (a)
add miss-servers either to decrease miss latency or to
handle heterogeneous objects, (b) add hit-servers to in-
crease the cache size and hit rate, and (c) add hit-servers
to improve the total bandwidth and handle more clients.
(a) Scalability is aided by an explicit separation of
miss-server and hit-server hardware: miss-server CPU
and 10 consumption does not degrade hit-server through-
clients put. Miss handling only influences the throughput of the
hit-server when the miss-server stores an object into the
Figure 6: Average Boot Latencyall clients boot within the ~ hit-server cache.
same 57minute interval. Boot data is client-specific but of equal size (b) For certain cases, the bandwidth of a single hit-
for all clients (5M, 10M, or 15M). server might be sufficient but its main-memory cache
might be too small for the application’s working set. In
Miss handling does not substantially degrade the hit{articular, this can happen if the hit-server's motherboard
server's throughput, since most of the work (loadingsupports less memory than the processor can address.
the object) has to be done by the miss-server. Onlyrhen, multiple hit-servers can be used to increase the ob-
during transferring an object from the miss-server intoject cache. Each hit-server holds the entire cache direc-
the hit-server, the hit-server’s delivery rate decreases bjory but the cached objects are partioned among all hit-
18%, basically because the miss-server communicatiof€rvers. Client requests are multicasted to all hit-servers.
consumes 100 Mbps from the total transfer bandwidth!f the request hits, the according hit-server executes it;
(Transferring a 1M object takes approximately 0.1s.)the other ones classify the request as a hit but ignore it
Table 2 shows miss costs relative to hits for a single-disisince they do not have the object. If a request misses,

[sec]

T T T
500 1000 1500 2000

Linux file system used as miss-server. all hit-servers detect a miss and a dedicated hit-server
signals it to the miss-server. This one then selects a hit-

- S 1K 10K 100K iM server for loading the new object. Fortunately, no com-

e atonay oims. Zame. Sms p2me plicated consistency protocol is required for this type of
hit : miss latency 1:200 1:23 1:39 1:19 scaling. Network load, miss-server load and hit-server

hit : miss bandwidth | 1200:1 140:1 22:1 10:1 bandwidth are identical to the single hit-server case; only

the resultingcache size is increased.
Table 2: Hit/miss costs. The miss server file system runs on (c) When the number of Cl!ents becomes too large, h't'
a 166 MHz Pentium with a Caviar 33100 disk. All data reflect ideal S€rvers must be scaled to increase the total bandwidth
situations in which requests are not delayed by competing request®f the system. This is simple as long as all objects are

Congestion at the miss-server or at a hit-server’s Ethernet card WO“'?ead-only As soon as objects are write-shared between
increase the latency. For the bandwidth ratios, we assume that the hit- ;

server concurrently delivers objects of the same size on all cards. multlple hit-servers, we need consistency pl’OtOCOlS.

For local networks, the throughput experiment gives5
some evidence that the Lava architecture enables an’
order-of-magnitude larger server/NC configurations tharFor sake of customizability and extensibility, the hit-
conventional server architectures. Whether the architecserver provides a consistenegechanismfrom which

ture can be modified to work efﬁCientIy in a wide area per-objectconsistency protoco|s can be imp|emented by

2 Consistency

network is an open research problem. miss-servers. So policies can be fully customized.
Unlike a hardware bus, a LAN does not enable
5 Scalability snooping-based solutions for coherency. Instead, we en-

able the use of miss-servers as arbiters that can coordi-
For many applications, a single hit-server might supporinate conflicting accesses to objects that are shared by
up to 1000 clients. Future 66 MHz-PCI devices andmultiple hit-servers.
100 MHz memory buses might perhaps enable twice as The hit-server provides a single basic consistency
many clients. However, for achieving our original goal mechanism: per-objectonsistency-action matrices.
of more than 10,000 clients, we must scale hit-serversTwo status bits are managed per objestcesseds set
Miss-servers and hit-servers may also be scaled to reduder any operationgdirty is set when gut operation oc-
the miss latency or increase the effective cache size. curs. The hit-server never resets these bits. The miss-

server, however, can arbitrarily change them. Combi-cur bookeeping overhead since there is no need for the
nation of the four states with the two possible opera-miss-server to scan them periodically.

tions (get/put)leads to & x 4 consistency-action ma- For consistency in a multi-hit-server system with
trix. Miss-servers specify a consistency action for each\'vr"[e'Sh"’1rE3d objects, a MESI-like policy can be used:
of the 8 fields for each object (in an object descriptor’s (LLLALLT) - (Biiifece,c) (ccec/ecc,c)
consistency-matrix attribute). Four different consistency ~ forM orEobjets forSobjects forl objects

actions are available: Modified (M) and exclusive (E) objects reside only in
Ignore. The get/putoperation takes place without involving One hit-server. Clean objects are called E, dirty ones
the miss-server. are called M. Accessing an M or E object does not in-
volve miss-server activity. Shared (S) objects can reside
in multiple hit-servers:gets happen without involving
the miss-server wheregmits invoke acall consistency

) _ action. As a result of theall, the miss-server can inval-
Call. The objects miss-server is called before f@/putre- jgate the replicas of the according object in all other hit

questis served. The request blocks until the miss-servergram;sc,erverS by changing their respective consistency-action
or denies it. In its reply, the miss-server can define new set- . .
. . ' A . letely. For clas-
tings for the object'saccessed/dirtpits and the consistency- matrices or even by removing them completely. For clas

action matrix. Before replying to a call, the miss-server cans'(_:a_I MESI_’ th,e MISS-Server W'”_ afterwa}rds change the
itself read the object back or update its value. Call-associate@Tiginal object’s consistency-action matrix to the M state
actions are completely controlled by the corresponding miss@nd permit theput operation. Invalid (I) objectsall the
server, and have a higher latency than ignore-associated arffiiss-server for any access so that this one capldate
notify-associated actions. the object replica and permit the access or simply delay
it by delaying its reply.

Notify. The object’s miss-server is notified about tet/put
operation. This notification is non-blocking. The miss-server
will be informed concurrently to serving the client’s request.

Propagate. Any put operation is directly propagated to the
corresponding miss-serveput-througl). The data received
from the client is sent to the miss-server and concurrently use@g Related Work

for updating the object in the hit-server. Receive and propagate

activities are pipelined; however, the clientis not acknowledgeqnternet caching has attracted a substantiabwamh of
until the miss-server commits or aborts the operation. Priorwork_ Web proxy caches, e.g. the original CERN web ca-

to handling a clientsgetrequest, the hit-server itseligets che [14], are client-oriented, while hierarchical internet
the newest version of the object from the corresponding miss-

server @et-through). (Getrequests include no data transfer if caches I|k.e Harvest/Squid [3] aim at reducing both back-
the requestor already holds the current object version.) To minPONne traffic and end-to-end network latency. As Kroeger
imize the latency, receiving the new object data from the miss€t al-[12] and Duskeet al.[7] report, Web hit-rates on a
server and propagating it to the client overlap in time. wide-area network are only about 40% to 50%; latency
The consistency-action matrix is a generic mechanisntan be reduced by 30% to 60%.
that can be used to implement a variety of different We use caching for a completely different purpose.
cache-consistency protocols and also cache-replacemehtstead of reducing wide-area traffic and network la-
protocols. tency, we aim at improving server latency and server
For a simplewrite-through policy, (i,i,i,i/p,p,p,p)t throughput. In a way, that is similar to lyengar and Chal-
could be used: get operations on this object do notenger [8] who concentrate on how to use caches on a
involve the miss-server whereas any put operation isserver to improve the generation of dynamic Web pages.
directly propagated. For implementingrite-backto- Server operating systems have been discussed recently
gether with LRU replacement, the miss-server can us®y Kaashoek et al. [10]. Cheetah’s design exploits the
(n,i,n,i/n,n,n,i). Then the miss-server is notified (a) underlying characteristics of the Exokernel [11] to con-
when the object is accessed the first time (read or writeptruct servers that can access the hardware at low over-
and (b) when the object becomes dirty (first write). Sub-heads. Cheetah uses kernel extensions to achieve high
sequent accesses do not involve miss-server notificatioerformance. Our hit-server runs entirely at user level.
For LRU bookeeping, the miss-server will periodically In some sense, our active objects are similar to ASHes
reset all objects tainaccessethat have been accessed [20] but are geared to multimedia documents, provide an
in the meantime. New accesses are then signaled (on@&@ject-oriented structuring technique, run entirely at user
per period) to the miss server. Inactive objects do not in{evel and use supervised IPC.
The facilities we used to securely execute the custom
“We denote a consistency-action matrix (get-clean-unacc, get- methods of active objects could be used securely support
clean-acc, get-dirty-unacc, get-dirty-acc / put-clean-unacc, put-clean- o otjye|p [21]. In this sense, our techniques could be used
acc, put-dirty-unacc, put-dirty-agcwhere the first four entries specify . .
the actions for get operations, the second row for put operations. ContO build an extremely fast router. One key difference be-
sistency actions are qualified by their first letign, ¢, andp. tween activelP and our techniques is that since we use

hardware based protection and fast authorized IPC, our prefetching, and disk schedulinghACM Transactions on Com-

code does not need to be interpreted to be supervised but puter Systems.4(4):311-343, November 1996.

regular binaries can be used instead. [3] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz,
: : and K. J. Worrel. A hierarchical internet object cache.1896

) ADC f[5] and Fbuffs[6] are Lechnlquels use;i tdo 'Improfve USENIX Technical Conferengeages 153-163, January 1996.

t,e performance of network protocols a_n rivers for [4] D. Cheriton. VMTP versatile message transaction protocol. RFC

high speed networks anq fpcus on rgducmg the number ~ 1045 NRL, February 1988.

of data copies. We use similar techniques but go beyondis; p. pruschel, L. Peterson, and B. Davie. Experiments with a high-

them as we concentrate more on server throughput and speed network adaptor: A software perspective SIBCOMM

network scheduling, rather than point-to-point network 94 Conference1994.

protocol throughput. [6] Peter Druscheland Larry L. Petersen. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. Proceedings of the 14th ACM
Symposium on Operating Systems Principlesges 189-202,

7 Conclusions Asheville NC (USA), Becember 1993. ACM.

[7] B. M. Duska, D. Marwood, and M. J. Feeley. The measured ac-

- : . cess characteristics of world-wide-web client proxy caches. In
We have delscr'lbed .the centerpiece of a server architec- USENIX Symposium on Internet Technologies and Systerges
ture for designing high-performance LAN servers. The 23-35, Monterey, CA, December 1997.
server is separated into generic cachedmies and cus- [g] A. lyengarand J. Challenger. Improving web server performance
tom modules. The generic module is policy-free and im- by caching dynamic data. IWSENIX Symposium on Internet
plements general and optimized mechanisms to handle gifggg';’g'esa”d Systerpages 49-60, Monterey, CA, Decem-
cache requests. The custonoduoles can enforce arbi- L _ _
t lici th t d fth hég] T. Jaeger, J. Liedtke, and N. Islam. Operating system protection
rary p? Icies on _e managemer? an usle 0 € cac for fine-grained programs. IRroceedings of the 7th USENIX
(including authentication and object consistency). For Security SymposiurBan Antonio, TX, January 1998.
cachefriendly applications, the resulting servers can per-[10] F. kaashoek, D. Engler, G. Ganger, and D. Wallach. Server oper-
form an order-of-magnitude faster than existing systems. ating systems. 11996 SIGOPS European Worksh&eptember
Since the custom modules can implement application- 1996 _
¥ he man men lici he likatid th [11] M.F. Kaashoek, D.R. Engler, G. R. Ganger, H._Brlceno, R. Hunt,
SpECIfIC' Ca(.: e. a age. ent po ces., the d that D. Mazieres, T. Pinckney, R. Grimm, J. Jannotti, and K. Macken-
an application is cachiiendly (fan be _'ncreased' . zie. Application performance and flexibility orxekernel sys-
We have learned that reducing main memory conflictsS tems. In16th ACM Symposium on Operating System Principles
between the CPU and the network conrollers is the key (SOSP)pages 52-65, St. Malo, October 1997.
to achieve high network throughput. Therefore, we pro-{12] T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the
vide a detailed examination into how the cachedule bounds of web latency reduction from caching and prefetching. In

. .. USENIX Symposiumon Internet Technologies and Syspemes
must be designed to make efficient use of all hardware 13 55 monterey, CA, December 1997.

components. [13] J. Liedtke. Clans & chiefs. 1A2. GI/ITG-Fachtagung Architek-
There remain many open questions about how to use tur von Rechensystemepages 294-305, Kiel, March 1992.

this server architecture. It is difficult to determine the Springer.

cachefriendliness of applications designed to support[14] A. Luotonen, H. Frystyk, and T. Berers-Lee. CERN httpd.

thousands of clients in a laboratory setting. In the future, _ NtP/www.w3.org/Daemon/Status.html.

we plan to investigate the breadth of applicability of this (18] R Neves. Personal communication, March 1997.

architecture to current applications and investigate ne] V.S. Pai, P. Druschel, and W. Zwaenepoel. |O-Lite: A unified I/O

. . buffering and caching system. Technical Report CS TR97-294,
classes of applications that may be enabled by our archi- Rice university, Houston, TX, 1997.

tecture. [17] PCI SIG, Hillsboro, OR. PCI Specification, Rev. 2.18ugust
1996.

Acknowledgements [18] S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-
performance local area communication with fast socket$98v

We thank Rich Neves for the Afpa and MIIS measure- USENIX Technical Conferencpages 257—-274, Anaheim, CA,

ment data and Yoonho Park for multiple discussions. We _ January1997. .
Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner

furt.hermore appremate the comments of the anonymou Vogels. U-Net: A User-Level Network Interface for Parallel and
reviewers and Mike Schwartz, our shepherd. Distributed Computing. IProceedings of the 15th ACM Sym-

posium on Operating Systems Principlesges 40-53, Copper
Mountain (USA), December 1995. ACM.

References
[20] D. Wallach, D. Engler, and F. Kaashoek. Ashs: Application-
[1] G. Banga and P. Druschel. Measuring the capacity of a web specific handlers for high-performance messagin§!GCOMM
server. INUSENIX Symposium on Internet Technologies and Sys- 96 ConferenceAugust 1996.
tems pages 61-71, Monterey, CA, December 1997. [21] David Wetherall and David Tennenhouse. The Active IP Option.
[2] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implementation In Proceedings of the 1996 SIGOPS European WorkshGM,

and performance of integrated application-contolled file caching, 1996.

[{e)
—

