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ABSTRACT

Our Netra NFS group at Sun set out to solve the challenging problem of providing remote
Network File System (NFS) service with high performance and availability. An NFS server must
guarantee the permanence of changes to the file system before acknowledging an NFS request.
Thus, the server’s underlying local file system must perform update operations synchronously to
stable storage with potentially high latency. Our solution to this problem involves using the
Solaris Unix File System (UFS), derived from the Berkeley Fast File System (FFS), in
conjunction with nonvolatile RAM (NVRAM) as fast stable storage. We evaluated the system
using the LADDIS benchmark and as a result, developed a cacheing technique for block-
mapping information that gav e us a 23% increase in measured server throughput in our standard
RAID-5 server configuration. With recent increases in disk capacity and RAID technology, file-
system sizes have reached a point not imagined by the FFS designers, requiring an approach to
checking file-system consistency that does not grow proportionately with file-system size. We
examined several log-based solutions to providing fast crash recovery, but none could use the
NVRAM effectively and meet our performance requirements. As an alternative, we dev eloped
an approach that uses UFS but maintains file-system working-set information, so that the
consistency checker needs to examine only the active portions of a file system. This approach
met our performance goals and also reduced file-system consistency-checking times to between
3% and 25% of those in the original UFS implementation.

1 Introduction

The goal of the Netra NFS project at Sun was to
produce a dedicated NFS file server with performance
and availability that would satisfy the increasing
requirements of client−server networks.

Since the work was to be performed in the context
of the Solaris Operating System, the natural file system
to use was the native UFS file system. UFS was
derived from the Berkeley UNIX Fast File System
developed during the 1980s [McKusick84]. At that
time, disks and file systems were small and slow rela-
tive to those found in today’s computing systems, and
conglomerations of drives were not in general use.
Thus, UFS was not designed to handle gracefully file
systems that can be hundreds of gigabytes.

One of the features of UFS is that a large volume
of data is maintained in a set of caches in main memory,
and is flushed back to disk in the background. This fea-
ture improves file-system performance significantly,
though at the expense of possible loss of recently writ-
ten data when the system crashes. In addition, it is nec-
essary to perform a file-system consistency-checking
operation on reboot after a crash in order to ensure reli-
able operation after the next mount of the file system.
Without this consistency check, files and data could be

lost or corrupted. The program that does this task,
fsck(1M) [McKusick94], is required to find and correct
inconsistencies; it does so by reading all the control
information contained in the file system and correcting
that information when it discovers errors. The amount
of information is proportional to the size of the file sys-
tem. Thus, as file systems have grown huge, the time to
perform the consistency check has become unaccept-
ably large.

A widely used solution to this problem has been
the application of traditional database-logging tech-
niques to allow fast recovery. The log contains informa-
tion about the most recent transactions on the file-sys-
tem control data, and so the log replay can restore the
file system to a consistent state after a crash. This
approach is much faster thanfsck because only those
files referenced in the log need to be processed.

Logging solutions are less desirable in the context
of an NFS file server, howev er. To reduce disk writes,
typical implementations batch many transactions into a
single log write. This batching is especially effective
when there are many operations that are asynchronous,
since the originator of an asynchronous operation does
not require that the transaction be completed before it
continues. As noted, this behavior is typical for a local



UFS file system. However, when a UFS file system is
accessed remotely through NFS, the NFS protocol defi-
nition requires that the transactions for most operations
be complete before acknowledgement is returned to the
client. With few or no asynchronous operations, the
expected batching does not occur, and the log can
become a significant bottleneck because each transac-
tion generates a separate write to the log.

As an alternative approach, we considered creat-
ing a faster file-system checking program. At any giv en
time, there is a limited set of files and auxiliary control
information active on a file system. If it were possible
to keep track of the active portions of the file system,
the scope of the file-system check could be reduced dra-
matically to only the ‘‘working set’’ of the file system.
The ‘‘fast fsck’’ provided with Netra NFS records the
working set by adding a small amount of state informa-
tion to the file system and performing ‘‘lightweight log-
ging’’ of certain transactions in the file system, such as
directory operations. The file system accomplishes this
lightweight logging efficiently by adding transaction
state information to a reserved portion of disk blocks
containing file inodes. The mini-log can be thought of
as a log that is distributed throughout the file system.
The net result is a file-system checking program that
takes a fraction of the time used by the original UFS
fsckprogram.

2 Pre vious Work

The current Solaris UFS file system follows its
predecessor, the Berkeley Fast File System (FFS)
[McKusick84], in its approach to providing file-system
robustness. It uses synchronous writes of metadata in a
sequence such that thefsck(1M) program can restore
the file system to a consistent state after a system crash.
Without ancillary information,fsckmust assume that all
file-system metadata may be inconsistent, and must
therefore scan all of the metadata to find any inconsis-
tencies present. This scan takes unacceptable time in
enormous file systems.

The most commonly used solutions to the problem
of providing fast recovery are borrowed from database
design — namely transaction logging (e.g., [Hag-
mann87, Chutani92]) or shadow paging (e.g.,
[Seltzer93, Hitz94]) of file-system metadata and, in
some cases, of actual file data. The Veritas File System
(VxFS), although not described in the literature, is
prevalent in commercial UNIX systems; it uses transac-
tion logging for file-system data and metadata. An
interesting approach to avoiding the necessity of syn-
chronous writes, calledsoft updates, is presented in

[Ganger94]. This approach shows performance gains of
a factor of between 2 and 15 on metadata-intensive
benchmarks, and reduces the consistency-checking time
from 5 to 7 minutes to 3 to 5 seconds, but only in a
local file system environment where file I/O is asyn-
chronous. In an NFS context [Sandberg85, NFS94],
almost all remote file operations are synchronous with
respect to the client. Thus, it is doubtful that soft
updates would provide as great a performance benefit in
an NFS environment, although the fast-reboot benefit
would still be obtained.

Vahalia and colleagues [Vahalia95] dealt with the
same problem that we faced. In fact, the first two sec-
tions of their paper give an excellent summary of what
is required to provide good NFS server performance.
Their approach uses metadata logging at the UFS level
as aredo-only log that records only the new value of
each modified object and can roll completed transac-
tions only in the forward direction. They solve the prob-
lem of NFS requests requiring synchronous commit-
ment to stable storage by batching writes to the log,
which is set up as a separate disk device. The goal is to
keep the log device busy at all times when under heavy
load, so that log requests are batched while the disk is
busy doing one write and these batched requests are
sent immediately to the disk when the write finishes.

Hitz and associates [Hitz94] provide another point
of reference that is perhaps closer to our approach.
They included RAID-4 parity striping and NVRAM in
their design. Their implementation uses shadow paging
and makes use of a snapshot facility in combination
with NVRAM logging of requests at the NFS level.
Recovery consists of backing up to the most recent con-
sistency snapshot and replaying the NFS log from that
point. The only apparent drawback to this approach is
that creating a snapshot involves modifying the entire
block-map file and performing the housekeeping neces-
sary to flush dirty data to the disk; the authors estimate
that this task takes on the order of 1 second. Presum-
ably, the recovery time when a system crashes at satura-
tion could be at least as long as the time since the previ-
ous snapshot. We would not expect the NFS log to be
replayed and processed faster after the reboot than
when the original requests were seen, given that the
server was in a saturated mode.

3 Netra NFS Design Features

The Netra NFS project started with the primary
aim of producing an NFS server with very high perfor-
mance, reliability and availability with the following
design goals:



• High throughput with low latency, as measured
by LADDIS [Whittle93]

• Tolerance of single disk failures without loss of
file-system data

• Fast reboot after a power outage or system fail-
ure

• Fast disk and file-system initialization
• Minimal on-disk format changes
• Simplified browser-based administration

We giv e details of the features we implemented to
satisfy these goals in the following sections: in section
3.1, we describe our NVRAM solution to provide low
latency; in section 3.2, our use of Solstice Disk Suite to
provide RAID-5 fault-tolerance; in section 3.3, our
development of a cacheing technique to improve write
performance; and in section 3.4, a modification to the
UFS allocator to force locality of allocation for perfor-
mance and to aid in fast recovery.

3.1 NVRAM Acceleration

It was clear from the beginning of the project that
we required some form of NVRAM-based stable stor-
age to satisfy the goals of high throughput and low
response time [Moran90, Hitz94]. Originally, the entire
memory of the machine was made nonvolatile by using
an integrated uninterruptible power supply (UPS) that
had sufficient backup power to shut down the system
cleanly. Because we wanted to guarantee truly stable
memory, we decided to use the Prestoserve [Presto93]
accelerator to cache data. This approach provided us
with a clean, debugged solution for fast stable storage.
In recent versions, the UPS was been replaced by
NVRAM boards.

3.2 Solstice Disk Suite

To satisfy the goal of tolerance for single disk fail-
ures, the Netra NFS server also includes RAID-5 and
mirrored solutions based on the Solstice Disk Suite
(SDS) product. In SDS, the update of a single arbitrary
disk block within an industrial-strength RAID-5 device
incurs 6 I/O operations: (1) read old data, (2) read old
parity, (3) write new data to prewrite log, (4) write new
parity to prewrite log, (5) write new data, and (6) write
new parity. The prewrite log operations are necessary to
preserve the atomicity of the new data and of the parity
write operations, and to avoid the loss of data due to a
system crash involving a disk failure. In the standard
SDS implementation, the prewrite area is a reserved
portion of the RAID-5 aggregate. To reduce the num-
ber of I/O operations needed, we decided to configure a
second Prestoserve cache in addition to the one layered
above the RAID metadevice, called Presto Upper. The

second cache, Presto Lower, is configured below the
RAID driver and completely covers the prewrite area of
the RAID device. This cache eliminates two disk opera-
tions per random data-block write.

3.3 Bmap Cache

Our performance analysis of server systems under
SPECsfs1.1 (SPECnfs_A93) LADDIS load revealed
that write operations accounted for 35 to 50 percent of
the time spent waiting for completion of NFS requests.
We made traces while running LADDIS that showed
that an average NFS write operation took 2.58 disk
operations when NVRAM was not configured. We
found that when a file grows beyond a certain size, the
UFS file system has to write at least two disjoint pieces
of metadata information: the inode and an indirect map-
ping block. Thus, when the write of the data is
included, some NFS writes require three disk opera-
tions. We decided to look for a way to reduce the num-
ber of writes required. (The more recent SPECsfs2.0
version of LADDIS does not have this emphasis on
writes to relatively large files; hence, improvements in
this area are less critical now. Howev er, in the context
of SPECsfs1.1, our technique yields significant perfor-
mance gains.)

Our solution,bmap cache, combines the disjoint
metadata into one disk block, saving one I/O operation
per write. The solution involved extending the file
inode to cache that part of the indirect block that
pointed to blocks at the end of the file. The inode and
block-mapping information could then be updated
atomically in one disk operation most of the time, rather
than in two [Peacock96]. The simplest implementation
would have been just to add thebmap cachefields to
the inode itself, and to increase the size of the inode
appropriately. Howev er, since some utilities understand
these structures and the layout of the file system, we
decide not to change the size, layout, or location of
inodes on disk. Instead, we stored thebmap cachein
an inode extension that was separate from the main
inode structure. The inode extension structure fits in a
regular inode slot and looks like an unallocated inode.
In the current implementation, file inodes are allocated
from the even inodes, and an inode extension is allo-
cated from the corresponding odd inode, in effect dou-
bling the size of the inode.

With this allocation strategy, abmap cacheis
stored on disk in the disk block that contains its inode.
When a block is written at the end of a file to extend the
file, the pointer to the new block is placed into the
cache, rather than into the actual indirect block. Updat-
ing the metadata then involves writing the inode and its



extension to the disk in the same block; that requires
only one I/O operation. When a block is allocated
beyond the end of the cache, the cache is flushed to its
actual indirect block, resulting in additional I/O, and the
cache is set up to contain the mapping for the new
block. In addition, although the indirect block is allo-
cated when there are blocks that would be mapped by
it, it is not initialized until thebmap cacheis flushed.

3.4 Hot-Spot Allocator

In UFS, the file-system partition is divided into
cylinder groups. Each cylinder group has a controlling
structure residing in a single block that contains the
resource bitmaps and is followed by an array of inodes.
The size of each cylinder group is bounded by the size
of the bitmaps that can be contained in a single block.

Part of the original purpose of cylinder groups was
to allow locality of allocation for directory subtrees and
to provide a mechanism to spread allocation across the
disk. Each cylinder group has two allocation rotors that
mark starting points to search circularly through the
free-list bitmaps to allocate the next inode or block
within the cylinder group. In addition, there is a single
cylinder-group rotor that is used as the starting point to
search for a lightly used cylinder group from which to
allocate. Even with these rotors, it is possible for allo-
cations to be distributed across the entire file system
during any giv en short time period.

We hav e modified the rotor behavior to produce a
hot-spot allocator, so-called because, at any giv en time,
there is a single hot-spot cylinder group from which all
allocations are done. Each individual allocation rotor
starts at the beginning of its cylinder group when it is
entered as the hot spot; when an allocation cannot be
satisfied without wrapping either of the rotors back to
the beginning of the cylinder group, the cylinder-group
rotor is stepped to the next cylinder group, which
becomes the new hot spot. We thus force temporal
locality of reference in terms of inode and block alloca-
tion.

There are several good reasons to have these
rotors move strictly sequentially through the file-system
cylinder groups. Much recent work [Rosenblum92,
Seltzer93, Seltzer95, Hitz94] has focused on high local-
ity for file-system writes to relieve the perceived write
bottleneck [Ousterhout89]. By forcing locality, the hot-
spot allocator increases the chance for full stripe writes
in RAID-5 disk arrays. Another advantage is that this
locality of allocation makes it easier to keep track of the
working set of the file system. We describe the relation-
ship between the hot-spot allocator and consistency
checking in section 5.2.

The hot-spot allocator also has a policy of slow
reuse, since its allocation pointer increases relentlessly.
This policy avoids certain race conditions that can cause
loss of data when blocks are reused before pointers to
them have been cleared. Although UFS is designed to
avoid this situation, there have been observed instances
(now fixed) where such races have occurred.

4 Reasons Not to Use Logging

We had already decided that NVRAM would be a
key component of the system when we turned to solv-
ing the problem of fast recovery. We considered several
log-based solutions before settling on fast consistency
checking and found that existing log-based approaches
did not give us sufficient performance, even with
NVRAM enabled.

The first solution that we tried was the Solstice
Disk Suite transaction logging for UFS. The LADDIS
performance was so bad that it was difficult even to
generate a valid LADDIS run, except at loads of less
than 100 NFS ops. That is when we first observed how
the synchronous nature of NFS requests fits poorly with
a log-based approach. Hoping that perhaps the Veritas
File System would perform faster when aided with
NVRAM, we replaced UFS with it and analyzed its per-
formance. Although it was not as bad as SDS logging, it
still fell short of our performance goals. We considered
implementing an NVRAM-based log for NFS requests,
similar to [Hitz94], but decided that such a solution
would not by itself solve the fast-recovery problem. We
would still have to restore the underlying UFS file sys-
tem to a consistent state after a reboot.

The key insight here is thatgiven enough CPU
power, pro viding NFS service is a fundamentally disk-
bound operation at saturation. Each NFS request
requires a certain number of I/O operations, so any
technique that reduces or eliminates disk operations —
such as the use of NVRAM and thebmap cache— will
result in higher NFS throughput. Log-based solutions
simply require more disk I/O, because every datum is
written twice: once in the log and once in its actual
place (except in log-based file systems, where the logis
the actual place, as in the [Hitz94] approach). Adding
NVRAM to a disk-based logging solution helps, but
only by reducing effective disk response times. Such
logs are typically written in a circular fashion — the
worst case access pattern for a write cache. We hav e
observed in our Veritas testing with NVRAM that dirty-
write hit rates in the cache are only about 7%, whereas
our chosen approach exhibits write hit rates between
60% and 70%.



Logging solutions are typically designed with
disks, rather than NVRAM, as the target logging
device. As such, there is an implicit requirement to
batch logging information into a separate disk area so
that the write cost to the disk can be amortized over a
number of requests, and so that atomicity of transac-
tions can be provided. When NVRAM is considered as
an integral part of the logging design, the use of batch-
ing becomes unnecessary, because access time is inde-
pendent of location. Thus, it seemed that an elegant
approach to logging is simply to think of the Presto
cache on top of the disk metadevice as the log for writes
to the file system.

With no separate log area, it becomes helpful to
include a small amount of additional information in cer-
tain file-system data structures. This extra state infor-
mation allows us to undo partially written metadata
transactions without having to do a fullfsck. Since NFS
operations are synchronous, the only partial transac-
tions that should be found in the file system during
recovery are those that were in progress. Correct opera-
tion of the server is ensured because the NFS client
should retry the undone operation, since it has not
received a completion acknowledgment. An additional
benefit is that it also works in a degraded mode when
the NVRAM is disabled due to a fault or to a low-bat-
tery indication. Data are simply written through to the
actual disks with enough information to do fast recov-
ery, since we do not insist on atomicity in the updating
of the disjoint metadata involved in a transaction.

5 Fast Consistency Checking

The normalfsckprogram restores consistency of a
UFS file system after an unclean shutdown by com-
pletely examining and fixing the following structures:

• Free block and inode bitmaps
• Directory consistency and inode link counts
• Allocation summary information

The resource-use bitmaps are reconstructed from
the state of files at the time of reboot. A disk block is
marked as allocated if it is referenced by an inode,
which is in turn also referenced. Inodes that are refer-
enced by directory entries or by shadow inode pointers
are also marked as allocated, and their link counts are
set to the number of references. (Shadow inode pointers
are inode pointers within an inode that point to another
inode; they are currently used to implement access con-
trol lists (ACLs)). All unreferenced blocks and inodes
can then be marked free in the respective bitmaps.
Inodes must also be reachable from the root directory of
the file system to be marked as allocated. The summary

counts of allocated and free resources are generated
from the reconstructed resource bitmaps.

There are four changes to UFS that we imple-
mented to facilitate fast recovery:

• Busy block and inode Bitmaps
• Inode linktags
• Cylinder-group flushing
• Last-inode counters

Figure 1 shows the layout of a single cylinder
group showing the new elements we added and their
locations, highlighted in italics.
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Figure 1. Cylinder Group Layout.

The busy block and inode bitmaps aid in recover-
ing the free-block bitmaps, the inode linktags are used
to do incremental repair of inode link counts, and
cylinder-group flushing is used to keep low the quantity
of dirty file-system metadata. The last-inode counter in
each cylinder group is used to limit the number of inode
slots that need to be initialized when the file system is
created and looked at during a fullfsck. In sections 5.1
to 5.4, we describe each of these components.

5.1 Busy Bitmaps

The first basic concept behind recovering the
block-allocation bitmap without scanning the entire file
system is to maintain a list of all blocks that are busy —
that is, possibly in transition between the free and



allocated state — with reference to inodes that may or
may not have been committed to stable storage. The
second requirement is thus that a list be maintained of
all inodes that are busy. The condition that must hold
between these lists is that any block in the busy-block
list either belongs to a file in the busy-inode list or is
free. This condition allows the recovery algorithm to
look at only those blocks owned by the busy inodes and
to consider only those blocks that are in the busy-block
list.

The busy-block list is implemented as a bitmap
that is parallel to the free-block bitmap in each cylinder
group. In a similar fashion, there is a busy inode bitmap
parallel to the allocated-inode bitmap in each cylinder
group. If each file could be contained in a single cylin-
der group, then the consistency of each cylinder group
could be done independently with only these bitmaps.
However, each cylinder group is limited to about 16
MBytes, so large files will span multiple cylinder
groups. To handle this situation, and to enable each
cylinder group to be checked individually, we gav e each
cylinder group an additionalibusylist containing inodes
not in the cylinder group that have allocated or freed
currently busy blocks in the cylinder group. The initial
segment of theibusy list is inside the cylinder-group
block itself, with the adjacent block containing any
overflow from that list. This is shown in Figure 1.

For this busy-block and inode approach to be
workable, it is necessary to mark blocks and inodes
busy before any actual state changes occur, and the
marking must be done synchronously. Here, the hot-
spot allocation strategy is useful. When a cylinder
group is entered as the new hot spot, every free block in
the cylinder group is marked busy, so this operation
must be performed only once. Inodes are marked busy
when they hav e blocks added or removed or during
operations that modify their link counts. An inode num-
ber is added to theibusy list of a cylinder group only
when the first block from that cylinder group is allo-
cated to it, so only one synchronous write of the
cylinder-group information is required for all the alloca-
tions that the inode performs in the cylinder group.

5.2 Cylinder-Group Flushing

UNIX normally does periodic full flushing of the
file system’s modified metadata to get the file system
into a ‘‘clean’’ state. The salient feature of the clean
state is that the file-system metadata are consistent, so
no fsck is required before a clean file system is
mounted. One of our goals was to perform incremental
cache flushing of the working set — particularly of the
inode cache — because it is very difficult to get a file

system into the clean state while under heavy load, and
the clean state cannot be maintained for very long.
Indeed, we found that LADDIS benchmark runs per-
formed with the usual periodic cache flushing disabled
performed significantly better.

Even though the clean state is infrequent and fleet-
ing, we should take advantage of it. Reaching it essen-
tially means that all metadata in the file system are con-
sistent, and therefore all the busy bitmaps throughout
the file system can be cleared. Rather than clear them
by rewriting all the cylinder groups, we maintain in the
file-system superblock a generation counter that is
incremented whenever the clean state is reached. There
is a corresponding counter in each cylinder group that is
set to the value prevailing in the superblock whenever
an operation affecting the busy bitmaps is performed.
When the cylinder group and superblock counters are
found not to match, the busy-bitmap information is
known to be stale, and so is reset to a cleared state
before the operation is performed. Similarly, on recov-
ery with fsck, any cylinder group whose counter does
not match the superblock’s is considered to have stale
busy information and thus does not need to be checked.

The recovery time for the busy bitmaps is propor-
tional to the number of busy inodes, so a mechanism
that tries to flush inodes and mark cylinder groups as
clean is desirable. The busy bitmaps in combination
with the busy-inode list on each cylinder group provide
the ability to clean an individual cylinder group. We do
so simply by flushing all the inodes in both the busy-
inode bitmap and theibusy list individually. The cylin-
der group is put into acleaningstate at the start, and, if
an operation affecting the busy lists has not occurred
after flushing of all the inodes, the cylinder group can
be marked clean, which we do by setting its generation
counter to be one less than the counter in the super-
block.

The cylinder group flusher works like a two-
handed paging daemon [Leffler89]. That is, the cylin-
der groups directly in front of the hot-spot cylinder
group are flushed in a circular fashion. This approach
provides the LRU properties that we would expect in
such a clock-based pager. The flushing is conducted
from a separate kernel thread that runs periodically and
is set up to consume a fixed percentage of real time
each time that it runs. With this approach, we can set
the amount of time the flusher takes to a reasonably low
value (10% of the flushing interval), and thus affect
server performance only slightly.



5.3 Inode Linktags

A nonshadow inode’s link count is simply the
count of the number of directory entries that refer to the
inode. It would be wonderful if the busy inode lists
were sufficient to manage and recover inode link
counts. However, they are not, because the link count
on an inode before an operation is performed does not
contain sufficient information to allow us to find the ref-
erences to the inode without scanning the entire file sys-
tem directory structure. To solve this problem, we
incorporate some additional logical state, which we call
a linktag, into the inode to enable undoing of a link-
count increment or decrement when the corresponding
directory update was not written to disk before a reboot.
The linktagstructure has the following form:

struct linktag {
ino_t dl_target;
ino_t dl_direct;
off_t dl_off;
int dl_cnt;

};

where thedl_target is the inode number of the inode
whose link count has changed,dl_direct is the inode
number of the directory that has had an entry added or
removed pointing todl_target, dl_off is the offset within
the directory to a 512-byte directory block where the
directory operation should occur, anddl_cnt is the
expected number of entries pointing todl_targetwithin
that 512-byte block (the 512-byte block is chosen
because that is the size of the directory unit that UFS
manipulates atomically). The count is necessary
because a given directory block could contain multiple
entries pointing to a given inode.

We use thedl_cnt and dl_off fields to make the
creation and use of alinktag reasonably efficient. A
search confined to a single directory block is much
faster than a scan of a large directory for references to a
given file. Settingdl_cnt to the expected count after the
directory operation makes the recovery action simple.
When fast fsckprocesses alinktag entry, it finds the
actual count of references todl_target at dl_off in
dl_direct. Fast fsckthen adjusts the link count ofdl_tar-
get by adding the difference between the actual count
anddl_cnt.

Since thelinktag structure must be written to the
file system synchronously with the updated link count
in dl_target, we made use of thebmap-cachemecha-
nism of reserving inode slots within the same inode
block. In particular, the final one-eighth of each inode
block is reserved to containlinktag entries. Thelinktags
are kept as a list bound to the in-coredl_target inode
and are placed into the reserved inode slots any time the

dl_target inode is flushed to stable storage. The normal
sequencing of operations requires that link-count incre-
ments are written before the creation of the directory
entry and that decrements are written after the deletion
of a directory entry. With the addition of thelinktag
state, the inode and itslinktag must be written before
the directory entry is changed. We thus require an addi-
tional write before a directory-entry deletion that was
not done before, although this write is typically
absorbed by the Presto Upper cache. The directory
operations themselves are still done synchronously, and
the linktag can be removed from the target inode after
the directory block has been written. It is not necessary
to rewrite the inode block with thelinktag entry
removed, because itsdl_cnt reflects the true state of the
directory. It will be cleared on the next flush of the
inode to stable storage.

It is possible to have a singlelinktag entry
involved in more than one operation. For example, sup-
pose that there are two simultaneous link operations on
a giv en file to the same block of the same directory. We
handle this situation by associating a reference count
with the linktag that prevents thelinktag from being
discarded until after all the operations using it have
completed. The semantics ofdl_cntensure that the link
count will be recovered correctly, no matter in what
state the multiple operations are when a crash occurs.

There is another subtle case that involves file
renaming or linking: the link count is incremented
before thedl_off value for the new directory entry is
known. In this case,dl_off is set to an invalid offset of
DL_NOSLOT that denotes that thislinktag is a place
holder. When a free slot in the directory has been
obtained, thelinktag is updated and is written to reflect
the location of the new entry.

Directories also present a more complicated situa-
tion because each one has a ‘‘..’’ entry that points to its
parent directory, and this link is reflected in the link
count. Since there is only one ‘‘..’’ entry, we deal with
this link also by setting an invalid offset value of
DL_DOTDOT into thedl_offfield.

Rename operations are complex —  especially a
move of adirectory from its current owner to another
directory already containing a directory with the same
name. We handle such operations by breaking them
down into individuallinktags for each of the links that
is created or removed. We did not implement an atomic
rename operation because thelinktag paradigm is not
strong enough to support one. The biggest problem is
that removing the old name of a renamed entity cannot
be accomplished with only thedl_cnt anddl_off model
of the linktag. It could be done if there were some



means of uniquely identifying each entry pointing to a
given target. We could add a unique 1-byte tag to each
directory entry pointing to a given target; we could then
use the tag to identify which entry should be removed
by fsckto complete the final stage of a rename.

5.4 Last Inode

One of the problems with enormous file systems is
that a many empty inodes are typically configured when
the file system is initialized. The standard UFS imple-
mentation requires that all these inodes be initialized
during mkfs(1M), then examined during any fullfsck
operation. Dealing with such a large number of inodes
dominates the time taken to create andfsck a file sys-
tem. To reduce this time, a field giving the highest-num-
bered inode in use in each cylinder group,lastino, was
added to each cylinder group. During a fullfsckopera-
tion, this field allows the inodes examined to be limited
to only those that might be used in each cylinder group.
During file-system creation, this field allows us to
bypass the initialization of all but the inode block con-
taining the root inode, saving considerable time. The
file system then initializes inode blocks as needed while
the file system is in use. In particular, we found that
making a new file system on a 40-GByte RAID-5
metadevice took 97 seconds with this feature enabled
versus 1378 seconds with the standard UFS — a
14-fold reduction.

6 Performance Results

One of our goals was to increase the overall per-
formance of NFS service provided by the Netra NFS
server, as measured by the SPECsfs1.1 LADDIS bench-
mark [Whittle93]. LADDIS provides a client-indepen-
dent characterization of a server’s response time and
throughput under a load consisting of direct remote
calls to NFS service procedures on the server under test.

We performed a set of LADDIS benchmark runs
to detail the effects on performance of enabling differ-
ent aspects of our implementation. In each run, the
server was loaded past the saturation point in steps. In
addition, we crashed the server while it was under
heavy load, and measured file-system recovery times
under different configurations. The following elements
were varied:

• RAID-5 (parity striped) versus RAID-0 (striped)
• Presto versus no Presto
• Bmap cache on versus off
• Fast fsck on versus off
• Veritas File System versus UFS

In addition, we performed a number of crash tests
under various configurations and system loads to char-
acterize the differences in recovery times.

6.1 Testing Configuration

The Netra NFS server used for benchmarking was
an Ultra-2 with 2 300-MHz UltraSPARC(TM)-II pro-
cessors with 1 GByte of DRAM and 32 MByte of
NVRAM. The storage that we used for benchmarking
was a SPARCStorage(TM) MultiPack configured with
12 4.2-GByte disks. The network controller used was
the Sun Fast Ethernet (100Base-T). LADDIS load was
generated by 2 Ultra-I machines, each configured with
64 MByte of DRAM and 167-MHz UltraSPARC pro-
cessors.

The server was installed with the Netra NFS 1.2
release, which is essentially Solaris 2.5.1 with the UFS
kernel module and utilities replaced by the Netra NFS-
specific ones. The Sun Enterprise Volume Manager
(Solstice Disk Suite) Version 2.4 provided RAID-0 and
RAID-5 support. For the Veritas tests, the VxFS 3.2.2
File System and the VxLD 1.0.1 NFS Accelerator for
Solaris were used. VxFS is normally configured with
the transaction log contained at the beginning of the file
system. An NFS load causes a lot of seeking between
the log area and the actual file data, so Veritas devel-
oped VxLD to allow the log to reside on a device sepa-
rate from the file system, thus avoiding the seek over-
head. The VxFS plus VxLD configuration is thus simi-
lar to the approach described by Vahalia [Vahalia95].

For the RAID-0 and RAID-5 UFS tests, 11 drives
were used. In the RAID-0 Veritas tests, 11 drives were
set up as the file system, and a twelfth drive was desig-
nated as the VxLD log device. We set up all metade-
vices using an 8-KByte interleave size; in all cases, a
single file system was created on the metadevice.

The Veritas setups would not strictly satisfy our
design constraints for RAID-5 operation because the
log disk is a single point of failure, and it would have to
be mirrored to avoid loss of data should a log disk fail.
This mirroring would decrease performance, but these
results provide an approximate comparison. Also, we
gave the Veritas RAID-5 setup the benefit of an extra
disk drive in the tests.

6.2 LADDIS Results

The two factors that most influence performance
are the choice of RAID-0 over RAID-5 and the pres-
ence or absence of Presto NVRAM cacheing. Figure 2
shows a set of LADDIS response-versus-throughput
curves for these four combinations, with bothbmap



cacheand fast fsckenabled. In addition, there is a plot
with Presto Lower disabled, (Presto Upper only), to
show that component’s effect on the RAID-5 results.
No benefit accrues from configuring Presto Lower in a
RAID-0 configuration. Presto increased the LADDIS
figure-of-merit number(maximum throughput, and
response time at that throughput) for RAID-5 from 303
NFS ops. at 61.7 msec to 1397 NFS ops at 13.8 msec
and for RAID-0 from 859 NFS ops. at 44.4 msec to
3046 NFS ops at 20.0 msec.
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Figure 2. Comparison of RAID and Presto combinations.

Figures 3 through 6 show more detailed sets of
LADDIS response-versus-throughput curves for bench-
mark runs done with various combinations of features
enabled. In general, thefast fsck feature caused an
increase in disk activity and a decrease in throughput,
whereas thebmap cachedecreased the disk activity and
increased the throughput. Enabling Presto reduced the
size of these differences.

The Veritas results illustrate why we chose not to
use an existing disk-based logging solution with Presto
added. In Figure 3, from the curves obtained with
Presto disabled, we see that the VxFS/VxLD combina-
tion tracks the Solaris baseline plot closely up to 400
NFS ops., although it is not as good as thebmap-cache
plot up to 500 NFS ops.; but then is better above those
points, and actually has the highest throughput of 587
NFS ops. at 58.2 msec. The plot forfast fsckalone
shows relatively poor performance, reaching only 250
NFS ops. at 43.4 msec, and saturating at 298 NFS ops
at 94.2 msec.

Figure 4 shows the normal mode of operation with
RAID-5 and Presto enabled; here, there is a complete
reversal. The Veritas plot shows the lowest perfor-
mance, reaching only 747 NFS ops. at 49.3 msec. This
is still better better than the no-Presto case, but it is far
below the case ofbmap cacheplus fast fsck(1466 NFS
ops. at 21.6 msec). The benefit of thebmap cachecan
be seen clearly in Figure 4. The maximum throughput
increases by 23% when thebmap cacheis added to the
fast fsckconfiguration.
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Figure 3. RAID-5 LADDIS performance without Presto.
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Figure 4. RAID-5 LADDIS performance with Presto.
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Figure 5. RAID-0 LADDIS performance without Presto.
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The RAID-0 results, shown in Figures 5 and 6, are
similar, although of course the throughput scales are
larger. We included plots of VxFS with and without
VxLD to show the effect of moving the VxFS log to a
separate disk.

Most of the runs in the results shown in the graphs
were repeated multiple times; the results were stable. To
get an estimate of the sampling error, we did 10 runs of
an 11-disk RAID-0 configuration at 3000 NFS ops. The
av erage response time at that load was 10.92 msec, with
a standard deviation over the 10 runs of 1.05 msec.

6.3 Crash-Test Results

To obtain a characterization of the recovery per-
formance, we deliberately and repeatedly crashed the
NFS server under test 5 minutes into the second of two
10-minute LADDIS runs, at varying client loads. We
used the first run to measure throughput and response
time, so that we could determine the point at which sat-
uration occurred. We collected data in the 11-disk
RAID-0 configuration using standard UFS as a base-
line, bmap cachealone,bmap cacheplus fast fsckwith
some variations on its tuning parameters, and VxFS
without VxLD. All tests were run with Presto enabled.
The results are shown in Figure 7, where we note many
interesting points.
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Figure 7. Recovery time versus server load .

The baseline UFS plot is almost a straight line,
increasing as a function of load. This almost linear rise
occurs because thefscktime is proportional to the num-
ber of files and allocated blocks in the file system,
which in turn is directly proportional to the LADDIS
load. The constant portion — where the load is 0 and
the file system is empty — reflects thatfsckhas to read
all the cylinder groups and inodes at least once. This
takes 382 seconds in our 44-GByte file system. The
bmap plot shows higher recover times than baseline
UFS and this is probably becausefsck writes bmap-
cache indirect-block information out to the correct
place in the indirect block. We made the VxFS plot

without using VxLD because we encountered difficulty
with VxLD. The VxLD enhancement moves the log off
the file system proper onto a separate device, but on
reboot copies the log data back into the file system. The
VxFS recovery then proceeds as though the data had
been logged into the file system originally. This copy-
ing typically took between 45 and 50 seconds, so it
should be added to the VxFS recovery times if VxLD is
used. The VxFS recovery times are otherwise good,
with no overhead on an empty file system.

The fast fsckresult is between the baseline UFS
and VxFS numbers, as might be expected. There is a
constant overhead portion of about 42 seconds that
occurs becausefast fsckhas to read all the cylinder
groups at least once. The main reason that it does so is
to maintain consistency of allocation counts in the file-
system superblock and in the cylinder-group summary
area just after the superblock. It would be possible to
maintain a busy-cylinder-group bitmap within the
superblock and only visit those cylinder groups marked
busy. Doing that would reduce the empty or clean file-
system overhead to 0, and probably would lower the
fast fsckrecovery time below that of VxFS, although it
would complicate maintaining consistency of the sum-
mary area.
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Figure 8. Flushing-rate effect onfast fscktimes.

The rate and duty cycle of cylinder-group flushing
have an effect on the shape of the recovery-time curves
as a function of the tuning parameters, as shown in Fig-
ure 8. There are two parameters: the percent of real
time that the flushing thread is active, and the interval
between activations. The default values were set such
that the flusher runs every 30 seconds for 10% of the
interval, or for 3.0 sec. We see that, as the load
increases, the recovery time rises, because the higher
load on the server allows more inodes and cylinder
groups to become busy between flushes. Decreasing
the interval between flushes yields a significant reduc-
tion in recovery time at intermediate loads.

Running the flusher every 1.0 sec allows the
recovery time to be flat up to the saturation point at



3000 NFS ops., indicating that it is doing a good job of
keeping the file system mostly clean. Once the load is
beyond saturation, however, the flusher seems unable to
clean the file system sufficiently fast, probably because
it does not get enough disk bandwidth to clean effec-
tively. The flusher does only one disk operation at a
time, so that it slows dramatically when the disk queues
become large. The recovery time curve for using a 40%
duty cycle every second was nearly identical to the 10%
ev ery second curve, so increasing the flusher’s active
time did not give any benefit.
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Figure 9. Flushing-rate effect on throughput and
response time.

Figure 9 shows the corresponding LADDIS
throughput curves for the tuning values shown in Figure
8, with the VxFS response curve shown for comparison.
Using VxFS, for about a 60% reduction in maximum
throughput, we can achieve a 25% to 50% reduction in
recovery time betweenfast fsckand VxFS. Notice that
the fast fsck response curves are virtually identical
across the range of tuning parameters, although the
40% duty-cycle plot is above the others.

6.4 Comparison with Other Approaches

The LADDIS numbers reported by Vahalia
[Vahalia95] reach a peak of 597 NFS ops. at around 29
msec of latency on a 60-MHz Pentium platform with 11
disks. In comparison, their nonbatching logging imple-
mentation peaks at around 400 NFS ops. Vahalia’s
approach is clearly viable, and might exhibit better per-
formance using an NVRAM-based logging device,
although a Presto-based solution would likely behave
similarly to VxFS/VxLD. The authors measured
reported recovery times by crashing the system at peak
LADDIS load of around 600 NFS ops., at which time
their file system had about 3 GByte of data over 10
(logging case) or 11 (no-logging case) disks. The
recovery times were 450 sec for the standardfsckcase,
and between 3 and 14 sec for log-based recovery. The
authors mention that the standardfsck checking was
done serially, implying that their disks contained

separate file systems.

Bearing in mind that the architectures of our sys-
tem and Vahalia’s are very different in terms of CPU,
bus, memory, and controller configuration, we still
attempted to obtain an approximate comparision with
their results. We created a single file system of about 5
GByte on a RAID-0 device with 11 disk drives. The
runs used for comparison hadbmap cacheandfast fsck
enabled, and timings were done both with and without
Presto enabled. We measured an average response time
at 600 NFS ops. of 12.4 msec; saturation occurred at
about 874 NFS ops. and 38.1 msec. Our higher
throughput and lower latency is probably due to the
combined benefits of using thebmap cacheand more
powerful processors. With Presto enabled and a neces-
sarily larger file system, the response time at 600 NFS
ops. was 2.2 msec, and saturation occurred at about
3000 NFS ops at 16 msec.

On a file system populated by a 600 NFS ops.
LADDIS run and unmounted cleanly,fast fsckran in 4
sec, which would be the best case on a lightly loaded
system after a crash. Table 1 compares recovery times
under several scenarios when the server was crashed at
600 NFS ops.

File System Recovery Standard
Time (sec) Deviation

Vahalia 3—14 —
fast fsck+ Presto 15.6 4.4
VxFS + Presto 34.3 3.1
VxFS 51.9 6.5
fast fsck 54.0 10.8
UFS 219.0 8.9

Table 1. Comparison of Recovery Times

As we might expect, thefast fsckrecovery times
without Presto are longer than are those achieved with
Vahalia’s logging approach, because the information
maintained to do the recovery is less precise than a
transaction log. On the other hand, our throughput and
latency numbers appear to be better even without
Prestoserve enabled and the recovery times are compet-
itive with Presto on. It may be surprising thatfast fsck
with Presto takes less time to do recovery than does
VxFS on a small file system, but consider that the rela-
tive overhead forfast fsckto read all the cylinder groups
is lower with fewer cylinder groups.

To get a comparison with Hitz’s results, [Hitz94],
we used benchmark results from the SPEC web page at
http://www.spec.org/osg/sfs93/results/results.htmlfor
the Network Appliance Corporation F520 and F540.
These systems use a 275 MHz Alpha processor with 14
disk drives in a RAID-4 configuration. The maximum



throughputs are 2361 NFS ops at 8.3 msec for the F520
and 2230 NFS ops. at 7.7 msec for the F540. If we mul-
tiply our RAID-5 throughput number of 1397 by 13/10
to scale for the larger number of data drives, we get
1905 NFS ops. as a comparable extrapolation at 13.8
msec. It is likely that the difference between these
results is due to lower RAID-4 parity overhead afforded
by the log-structured WAFL file system, which is
designed to do writes in full stripe widths.

7 Conclusions and Additional Work

The benchmarks for crash-recovery times as well
as those for the server performance under LADDIS
loads indicate that UFS with the fast consistency
checker is a highly competitive local file system for use
in an NFS server. Since our approach was designed
with NVRAM as a key component, we were able to
achieve performance that was significantly better than
that obtained with logging approaches with NVRAM
added as an afterthought, and we maintained acceptable
crash-recovery times. Thefast fsckconsistency check-
ing was 4 to 30 times faster than the original UFSfsck,
depending on the configuration and on the load when
the system went down.

An additional avenue of exploration is to deter-
mine the effectiveness of the hot-spot allocator when a
parity-block cache is added to the RAID-5 implementa-
tion. We expect this cache to improve the single-writer
write throughput of the system, and to increase the
maximum LADDIS throughput. We are now character-
izing the system’s behavior with SPECsfs2.0.
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