
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Increasing Effective Link Bandwidth
by Suppressing Replicated Data

Jonathan Santos and David Wetherall
Massachusetts Institute of Technology



Increasing E�ective Link Bandwidth

by Suppressing Replicated Data �

Jonathan Santos
y

David Wetherall
z

Software Devices and Systems Group

Laboratory for Computer Science

Massachusetts Institute of Technology

http://www.sds.lcs.mit.edu/

Abstract

In the Internet today, transfer rates are often limited
by the bandwidth of a bottleneck link rather than the

computing power available at the ends of the links.
To address this problem, we have utilized inexpen-
sive commodity hardware to design a novel link layer

caching and compression scheme that reduces band-
width consumption. Our scheme is motivated by the

prevalence of repeated transfers of the same infor-
mation, as may occur due to HTTP, FTP, and DNS

tra�c. Unlike existing link compression schemes, it
is able to detect and use the long-range correlation of
repeated transfers. It also complements application-

level systems that reduce bandwidth usage, e.g., Web
caches, by providing additional protection at a lower

level, as well as an alternative in situations where
application-level cache deployment is not practical

or economic.

We make three contributions in this paper. First, to

motivate our scheme we show by packet trace anal-
ysis that there is signi�cant replication of data at

the packet level, mainly due to Web tra�c. Sec-
ond, we present an innovative link compression
protocol well-suited to tra�c with such long-range

correlation. Third, we demonstrate by experimen-
tation that the availability of inexpensive memory

and general-purpose processors in PCs makes our
protocol practical and useful at rates exceeding T3

(45 Mbps).

�This work was supported by DARPA, monitored by the

O�ce of Naval Research under contract No. N66001-96-C-

8522.
yEmail: jrsantos@mit.edu
zEmail: djw@lcs.mit.edu

1 Introduction

In the Internet today, transfer rates are often lim-
ited by the bandwidth of a bottleneck link rather
than the computing power available at the ends of
the links. For example, access links (modem, ISDN,
T1, T3) restrict bandwidth due to cost, while wire-
less links restrict bandwidth due to properties of
the media. A traditional solution to this problem
is the use of data compression, either at the link
or application level. Existing compression schemes,
however, tend to miss the redundancy of multiple
instances of the same information being transferred
between di�erent clients and servers. This is prob-
lematic because such transfers have become preva-
lent with the growth of information services such as
the Web.

Danzig's 1993 study of Internet tra�c [3] noted that
half of the FTP transfers could be eliminated with a
caching architecture that suppressed multiple trans-
fers of the same information across the same link.
Since that time, protocols and tra�c patterns have
changed with the growth of the Web { it is now
HTTP, not FTP, that is dominant. However, the
level of redundancy is still perceived to be high, de-
spite the application-level caching mechanisms that
have emerged to curtail it.

In this paper, we revisit the problem of improv-
ing e�ective link bandwidth in the context of traf-
�c with replicated data, as may occur due to TCP
retransmissions, application-level multicast, DNS
queries, repeatedWeb and FTP transfers, and so on.
We have designed an innovative link compression
scheme that uses a network-based cache to detect
and remove redundancy at the packet level. Our



scheme takes advantage of the availability of inex-
pensive memory and general-purpose processors to
provide an economical means of purchasing addi-
tional bandwidth. That is, given the one-time costs
of $5000 per PC and the monthly costs of $2500 per
T1 (1.5 Mbps), it is cheaper to purchase the two
PCs used by the scheme than the bandwidth they
are expected to save.

Our scheme has several interesting properties:

� It is independent of the format of packet data
contents and so provides bene�ts even when
application objects have been previously com-
pressed, e.g., for Web images already in JPEG
or GIF format.

� It utilizes a source of correlation that is not
available at individual clients and servers and is
not found by existing link compression schemes.

� It provides the bandwidth reduction bene�ts of
caching in a transparent manner, e.g., there is
no risk of stale information or loss of endpoint
control.

� It constructs names at the link level using �n-
gerprints and so does not depend on higher level
protocol names or details. For example, the
same information identi�ed by di�erent URLs
will be compressed by our scheme, but not by
Web caches.

Our scheme overlaps application-level caching sys-
tems { most notably Web caches { in that both re-
duce the impact of repeated transfers of the same in-
formation. However, our scheme is intended to com-
plement Web caches rather than to compete with
them, since it addresses a slightly di�erent goal and
works at a di�erent level. For example, Web caches
do not take advantage of replication across multiple
caching systems, protocols and application objects.

In this paper, we present: a trace-driven tra�c anal-
ysis that motivates our scheme; the design of our
system; and an experimental characterization of a
prototype implementation. Our tra�c analysis in
Section 2 uses several traces of at least one million
packets each that we recorded between our site (the
MIT Laboratory for Computer Science, including
the Web consortium) and the rest of the Internet.
In Section 3, we describe the system architecture
and compression protocol, along with a prototype
implementation running under Linux. In Section

4, we evaluate the performance of this prototype.
We then contrast our system with related work and
conclude in Sections 5 and 6, respectively.

2 Analysis of Replicated Tra�c

To understand the potential of a system for sup-
pressing replicated data transfers at the packet level,
we began our design by analyzing network tra�c.
We de�ne a packet to be replicated when the con-
tents of its payload match exactly the contents of
a previously observed payload. Since packet head-
ers are expected to be constantly changing and a
function of the source and destination hosts rather
than the data being transported, we do not consider
them in our search for replicated data.

Note that it is not clear that overlapping Web trans-
fers will translate into replication that satis�es our
de�nition and that may be detected and removed
at the packet level. First, data sent multiple times
must be parceled into packet payloads in the same
manner, despite potentially di�erent protocol head-
ers, path maximum transmission units (MTUs), and
protocol implementations. Second, the timescale
of replication (which may be hours for Web docu-
ments) must be observable with a limited amount of
storage. We therefore characterize the replication as
de�ned above by answering the following questions:

� How much data is replicated?

� What kind of data is most likely to be repli-
cated?

� What is the temporal distribution of replicated
data?

2.1 Obtaining the Packet Traces

As input to our analysis, we collected a series of full
packet traces of all tra�c exchanged between our
site and the rest of the Internet. New traces (rather
than publicly available archives) were necessary be-
cause we require the entire packet contents in or-
der to detect repeated data. The choice of our site
was expedient, but it makes an interesting test case
because it is a diverse environment hosting many



All Inbound Inbound HTTP All Outbound Outbound HTTP
Total Vol. % Total Vol. % Total Vol. % Total Vol. %

Set (MB) Repl. (MB) Repl. (MB) Repl. (MB) Repl.
A 277 12 26 19 554 18 267 24
B 189 2 13 8 563 21 384 28
C 105 2 3 10 294 21 239 24
D 237 11 22 7 606 19 420 25
E 217 4 28 8 594 23 427 29

Total 1025 7 91 11 2610 20 1736 26

Table 1: Total volume and replicated percentage (by volume) of inbound and outbound tra�c

clients and servers. It includes the Web Consor-
tium, MIT Laboratory for Computer Science and
the MIT AI Laboratory.

Each trace was captured using tcpdump as a pas-
sive monitor listening to Ethernet tra�c traveling
on the segment between the Lab and the Internet.
Five sets of 1-2 million packets each were gathered
at di�erent times of day, corresponding to approx-
imately 2.6 GB of raw data in total. No packet
capture loss was detected.

2.2 Analysis Procedure

We statically analyzed each trace by searching
through the packets sequentially for replicated data.
To expose the application data, we progressively
stripped protocol headers up to the TCP/UDP
level. For example, TCP payloads were identi�ed
by removing �rst the Ethernet, then IP and �-
nally TCP headers. Our analysis therefore slightly
underestimates the amount of replicated data due
to changing headers at higher protocol layers that
could not easily be taken into account; one exam-
ple of tra�c that falls into this category is DNS
responses.

2.3 Replication by Tra�c Type

Our initial analyses classi�ed replication by tra�c
direction (incoming and outgoing) and type (TCP,
UDP, other IP, and other Ethernet). It quickly be-
came evident that most replication occurred in out-
going TCP data on ports 80 and 8001, i.e., Web
tra�c responding to queries from other sites. To
highlight this, we separately classi�ed TCP port 80

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

data length (bytes)

cu
m

ul
at

iv
e 

vo
lu

m
e 

of
 r

ep
lic

at
ed

 d
at

a 
(%

)

Set A

Set B

Set C

Set D

Set E

Figure 1: Cumulative volume of replicated data by
packet length

and 8001 tra�c as HTTP tra�c.

Table 1 summarize the amount of replicated data
that was found in each packet trace, for inbound
and outbound tra�c, respectively. The left-hand
columns show the results for all types of tra�c in
each trace, while the right-hand columns summarize
the replication in only the HTTP tra�c for each
trace.

These results support our intuition that there are
signi�cant amounts of replicated data present in the
traces. Further, most of the tra�c, as well as a
greater percentage of replication, exists in the out-
bound tra�c. Therefore, for the remainder of this
paper, we will focus on the outbound tra�c over the
link.



0 100 200 300 400 500 600
4

6

8

10

12

14

16

18

20

22

24

window size (MB)

re
pl

ic
at

ed
 v

ol
um

e 
(%

)

Set A

Set BSet C

Set D

Set E

Figure 2: Percent of outbound tra�c versus window
size

2.4 Replication by Packet Size

A further criterion that is important to our scheme
is packet size. Replication in large packets will re-
sult in a more e�ective system than replication in
small packets when �xed-length packet overheads
and packet processing costs are taken into account.

To assess this e�ect, we classi�ed the replicated data
according to the length of the data payload. Figure
1 depicts the cumulative volume of replicated data
according to packet length. The sharp increases
round 500 and 1500 bytes correspond to the default
TCP segment size is 536 bytes and the maximum
Ethernet payload 1.5 Kb. It is apparent that 97%
of the volume of replicated data occurs in packets
with a length greater than 500 bytes. This sug-
gests that small per packet space costs required for
compression will not result in a signi�cant system
overhead.

2.5 Distribution of Replication

Finally, the timescale of replication events deter-
mines the size of the packet cache needed to observe
and remove such redundancy. To quantify this ef-
fect, we determined the interval, in bytes of data,
from each match to the previous copy of the match.
These intervals were then grouped to compute the
percentage of the replicated tra�c that could be

identi�ed as a function of window size.

Figure 2 shows this result for all outbound tra�c.
The positive result that we infer is that the majority
of replicated data can be observed with a cache of
200 MB, i.e., reasonable results can be expected if
we cache the data in the amount of RAM that is
presently available in PCs.

3 Design and Implementation

We now describe the design and implementation of a
compression architecture that suppresses replicated
data based on the analysis from Section 2. The over-
all goal of our scheme is simply to transmit repeated
data as a short dictionary token, using caches of re-
cently seen data at both ends of the link to maintain
the dictionary and encode and decode these tokens.

The correct operation of this scheme as a distributed
system is complicated by the fact that messages may
be lost by the channel. Our design must resolve the
following issues:

� How are dictionary tokens generated?

� How are dictionaries at either end of the link
maintained in a (nearly) synchronized state?

� How are (inevitable) di�erences in dictionary
state handled?

Our approach is based on the insight that the �n-
gerprint of a data segment is an inexpensive name
for the data itself, both in terms of space and time.
We are aware of the use of �ngerprints for identi�-
cation and version control in various systems, e.g.,
Java RMI/OS, but to the best of our knowledge this
is the �rst time that �ngerprints have been applied
for this purpose at the network layer.

We selected the MD5 hash [12] for our implemen-
tation because it is 128 bits and may be calculated
in one rapid traversal of the data; on a PentiumII
(233MHz) the computational rate of �ngerprinting
exceeds 200 Mbps. Further, given that the hash
is large enough and collisions rare enough, it is ef-
fectively a unique name for the data. For exam-
ple, though our architecture handles collisions, none
were detected in our trace data analysis.



input
output

compressed

uncompressed

Compressor Decompressor
Channel

classify cache compress decompress cacheclassify

Figure 3: Components of the Architecture

To handle message loss in a lightweight fashion, we
have opted to process messages independently, such
that each message is the unit of error generation
and recovery. That is, our scheme is connectionless
(aside from the dictionary state) and does not re-
quire that a reliable transport protocol be run across
the link in order to recover from errors.

3.1 Architecture

The main components of our architecture are shown
in Figure 3, which shows a unidirectional compres-
sion system to simplify our description. The system
consists of a compressor, a channel, and a decom-
pressor. The compressor is a repeater (perhaps part
of a router) that accepts input tra�c, processes it
to compress replicated data, and transmits the re-
sulting packets over the channel. Conversely, the
decompressor accepts tra�c from the channel, pro-
cesses it to remove compression, and transmits it
as output tra�c. The channel itself may be any
bidirectional link; we use the reverse direction to
carry protocol control messages. Bidirectional com-
pression is achieved by using two instances of the
protocol, one for each direction.

Both the compressor and decompressor are com-
posed of several modules for classifying, caching,
and compressing packets. Our architecture allows
di�erent policies to be selected for the implementa-
tion of each of these stages, subject to the constraint
that compressor and decompressor implement iden-
tical processing in order to ensure that their dictio-
naries are closely synchronized. In particular, the
dictionary caches must be of equal size. We describe
each module in turn.

3.1.1 Classifying Packets

Not all packets need be entered into the dictionary
cache. Our analysis in section 3 showed that most
of the replicated data in our traces was composed of
outgoing Web tra�c and large packets. An imple-
mentation may take advantage of such bias by selec-
tively considering certain types of tra�c for cache
inclusion. The classi�cation step in our architecture
serves this role, and must be performed in the same
manner at the compressor and decompressor.

The classi�er further encodes the rules for identify-
ing application data units (ADUs) embedded within
the payload of packets, e.g., the stripping of head-
ers up to the TCP/UDP level. By using application
level framing concepts (ALF) [2], other extension
policies could be designed to cater for speci�c ap-
plication headers or compensate for the di�erent di-
vision of data across di�erent protocols.

3.1.2 Caching Policies

The cache module maintains the dictionary state,
naming payloads by their �ngerprint. Our architec-
ture allows any �ngerprint to be used depending on
the required tradeo� between speed, space and col-
lisions. In our implementation we use MD5, though
stronger �ngerprints such as the SHA [10] or weaker
�ngerprints such as MD4 may be used.

Two policies govern the operation of the cache:
the inclusion policy decides which payloads selected
by classi�cation should be admitted to the cache,
and the replacement policy decides which payloads
should be evicted when more space is needed. As
for classi�cation, the compressor and decompressor
must implement identical policies.



Our default policies are simple: all payloads that are
output by the classi�er are entered into the cache,
and the cache is maintained in least-recently-used
order. For inclusion, an interesting policy would be
to store replicated data only after its �ngerprint had
been encountered a certain number of times. De-
pending on the number of times a given payload is
repeated, this may signi�cantly reduce the storage
required to suppress a given volume of replicated
data. For replacement, results with Web caching
[15] suggest that taking payload length into consid-
eration may improve performance, since larger data
payloads translate to higher per-packet savings.

A further issue that a�ects inclusion is �ngerprint
collision. Collisions are expected to be extremely
rare, but nevertheless it is conceivable that they may
occur. If so, they must not result in a deterministic
error, with the same o�ending data being repeatedly
transferred to correct perceived transmission errors.

In our architecture, collision detection is performed
as part of cache lookup and insertion at the com-
pressor. Every time a �ngerprint matches, the full
payload data is compared with the existing cache
contents before it is entered. If a collision is en-
countered, the �ngerprint is marked as illegal in the
dictionary and the colliding payload is transmitted
without any compression. Any subsequent payloads
which index to the illegal �ngerprint are also trans-
mitted uncompressed. These illegal entries must
persist at the compressor until the decompressor is
reset.

3.1.3 Compression and Decompression

Finally, the compression and decompression mod-
ules exchange dictionary tokens to suppress the ac-
tual transfer of repeated data. Di�erent policies
may be used by the compressor to decide when to
compress payloads. Our default policy is to simply
send tokens whenever repeated data is available. Al-
ternative policies may be useful when the link pos-
sesses a large latency or high error rate and it is de-
sirable to further reduce the chance that the far end
of the link does not have the payload corresponding
to a token. In these cases, it would be possible to
send tokens after the payload has been sent multi-
ple times, or, in the case of TCP tra�c, send the
token when the acknowledgment of the payload is
detected in the reverse direction.

3.2 Protocol Operation

We now describe the exchange of protocol messages
between the compressor and decompressor. These
fall into three cases.

� In the normal case, a payload is transferred (be-
ing entered in the dictionary as a side-e�ect)
and after some interval another payload with
the same contents is transferred, this time as
a dictionary token. We refer to this case as
compression.

� Occasionally, however, message loss on the
channel may cause the two caches to lose syn-
chronization and a dictionary token that is
transferred must be returned to the sender to
be resolved. We refer to this case as rejection.

� Further, if either the compressor or decompres-
sor is restarted during the operation of the pro-
tocol, it is desirable to reset the other cache to a
known state. Therefore, we add reset messages
to the protocol.

3.2.1 Compression

The sequence of message exchange in the compres-
sion case is shown as a time sequence diagram (with
time proceeding down the page) in Figure 4. These
descriptions assume that the incoming packet passes
the classi�cation stage and satis�es the inclusion
policy; packets that do not are simply forwarded
over the link in the usual fashion.

When the compressor receives a packet fHdrA, Xg
to be forwarded over the link, where HdrA is the
TCP/IP header and X is the data payload, it �rst
computes H(X), the �ngerprint of X. If it �nds that
no entry indexed by H(X) exists in its cache, it
stores X in its cache, indexed by H(X). It then for-
wards the TCP/IP packet across the link. Upon
receiving a TCP/IP packet forwarded over the chan-
nel, the decompressor also computes H(X), and
stores X in its cache, indexed by H(X). The TCP/IP
packet is then output from the system.

At some point later, the compressor may receive a
packet HdrB, X, for which an entry indexed by H(X)
already exists in its cache. This indicates that it has



{HdrA, X}

H(X) not found
store H(X) -> X

{HdrA, X}

store H(X) -> X

{HdrA, X}

{HdrB, X}

H(X) found

lookup(H(X)) = X

{HdrB, X}

{HdrB, H(X)}

Compressor Decompressor time

Figure 4: Compression protocol

already received a packet containing X, which it for-
warded over the link. Therefore (assuming the com-
pression policy is satis�ed) it sends a packet to the
decompressor containing the TCP/IP header HdrB
and the �ngerprint H(X). Fingerprint packets ap-
pear in bold type in the protocol diagrams.

The implementationmust therefore provide a means
for these \�ngerprint packets" to be distinguished
from ordinary IP packets. In practice, this is not
a problem, because the codepoint used for demul-
tiplexing protocols at the link level may be over-
loaded, e.g., we allocate additional types for the
Ethernet protocol type �eld. Note that it is im-
portant that this identi�cation scheme not increase
the length of the packet, since this would necessitate
a segmentation and reassembly protocol to accom-
modate maximum length datagrams.

When the decompressor receives a �ngerprint packet
fHdrB, H(X)g, it determines the data payload X
that is indexed by H(X) in its cache. It then for-
wards the correspondingTCP/IP packet fHdrB, Xg
to the network on that end.

3.2.2 Rejection

The protocol as described above is incomplete, for
it does not handle the case where a packet contain-

{HdrA, X}

H(X) not found
store H(X) -> X

{HdrA, X}

{HdrB, X}

H(X) found

{HdrB, X}

{HdrB, H(X)}

H(X) not found
{HdrB, H(X)}

lookup H(X) = X
{HdrB, X}

store H(X) -> X

Compressor Decompressor time

(packet loss)

Figure 5: Rejection handling

ing the �rst instance of a data payload is lost while
being sent across the link. We expect this case to
be rare for most channels, since bit error rates typi-
cally contribute negligibly to the overall packet loss,
and loss due to congestion may be detected at the
compressor (since it results in queue overow) and
the lost payloads not entered into the dictionary.

Nevertheless, if the protocol is left as is, the lack of
feedback means that the compressor does not know
that the decompressor never received the original
payload. This means that it will send further copies
of the payload by its �ngerprint when the packet
is retransmitted, causing ongoing loss. To correct
this error, we introduce rejection handling into the
protocol to handle events in which the decompressor
receives a �ngerprint that is not in its cache.

Figure 5 depicts rejection handling with another
time sequence diagram. After message loss, if the
decompressor receives a �ngerprint packet fHdrB,
H(X)g for which H(X) is not a valid entry in its
cache, it sends the entire �ngerprint packet (includ-
ing the header) back to the compressor as a rejection
packet. When the compressor receives this rejec-
tion, it determines the data X that is indexed by
H(X). This is highly likely to be in the cache at the
compressor since it was sent in the recent past. The
compressor then sends the complete TCP/IP packet



fHdrB, Xg to the decompressor, which processes the
packet as if it were receiving a new TCP/IP packet.
It therefore enters it into its cache for subsequent
use.

If any of the packets that are sent as part of the
rejection handling are lost, or in the unlikely event
that the compressor no longer has the payload cor-
responding to the rejected �ngerprint in its cache,
then the transmission has failed, and no further
steps are taken to recover. This residual loss will
then be handled by the reliability mechanisms of
the application in the same manner that packet loss
is handled today.

3.3 Reset Messages

During normal operation of the protocol, the com-
pressor keeps track of all illegal �ngerprints (i.e.,
those �ngerprints for which a collision occurred.) In
the event that this state is lost (e.g., the compressor
is restarted), the compressor reliably sends a cache
reset message to the decompressor to ensure that
the decompressor does not have any entries indexed
by a previously illegal �ngerprint.

Further, restarting the decompressor during opera-
tion of the protocol may result in signi�cant rejec-
tion tra�c. Therefore, we explicitly send a cache
reset message from the decompressor to the com-
pressor. This is merely a performance optimization,
and is not essential for correctness.

3.4 Implementation

We implemented the architecture described above
using a pair of Intel-based PentiumII 300MHz ma-
chines running Linux 2.0.31 with 128MB of RAM
each. The machines were directly connected to each
other via a dedicated 10 Mbps Ethernet and both
machines were also connected to the 100 Mbps Eth-
ernet network which comprises our research group's
LAN. Both compressor and decompressor modules
were written in C and ran as user-level processes.

The compressormachine was con�guredwith IP for-
warding enabled in the kernel. However, we modi-
�ed the kernel forwarding routine to send the pack-
ets to the user-level program instead of handling the
routing itself. We also allocated additional Ether-

net protocol types to distinguish the �ngerprint and
rejection packets from the uncompressed packets.

We implemented the dictionary caches using hash
table structures with a least-recently-used replace-
ment strategy. For �ngerprints, we used the MD5
hash of the payload. We also used a classi�er that
only accepted data with payloads of at least 500
bytes since Figure 1 indicates that the remaining
data comprises only 3% of the replicated volume.
Finally, we limited the amount of memory available
for the caches, excluding the overhead induced by
the hash table implementations, to 200MB each.

4 Experimental Results

To evaluate the system, we performed three sets of
experiments.

� We measured the bandwidth savings that our
system provides in practice when operating on
real tra�c.

� We measured the baseline performance of the
compressor and decompressor to gauge at what
rates our system may be used.

� We compared the bandwidth savings produced
by our system with alternative compression
schemes.

4.1 Bandwidth Reduction

Our main design goal is to reduce the amount of
bandwidth consumed by replicated data. We mea-
sured bandwidth savings by inserting our system
into the network at the point where we previously
gathered traces; see section 2.1. We kept track of
the amount of data input to and output from the
system and the amount of data transmitted across
the compressed channel while the system ran for 24
hours and processed approximately 50 GB.

Figure 6 shows the resulting bandwidth reduction
for each minute of the run. It shows that the im-
plementation is e�ective in reducing the bandwidth
utilization by approximately 20% for the entire du-
ration of the experiment.



0 200 400 600 800 1000 1200 1400
0

10

20

30

40

50

60

70

80

90

100

time (m)

ba
nd

w
id

th
 r

ed
uc

tio
n 

(%
)

Figure 6: Bandwidth reduction for all outbound
tra�c

4.2 System Performance

Since we are interested in the potential of this
scheme for use in higher speed networks (with ca-
pacities exceeding 10 Mbps) we measured the overall
system performance to see how fast it would run.

Packet streams containing no detectable replication
incur the highest amount of processing required for
each packet at both the compressor and decompres-
sor. This therefore presents the worst-case load for
our system, and we used such streams to test the
performance of the system.

To measure the throughput of the system, we ran
the system over a 100 Mbps channel and sent our
test stream of packets over a TCP connection that
owed over the channel. We measured latency by
using tcpdump as a passive monitor to capture and
timestamp packets entering and leaving both the
compressor and decompressor. To observe small la-
tencies, we use a modi�ed Linux kernel that records
timestamps using the processor cycle counter at
driver interrupt time.

The results of our tests were that our implemen-
tation was capable of forwarding over 6000 packets
per second with a maximum throughput exceeding
60 Mbps. Furthermore, the latencies of the com-
pressor and decompressor were both approximately
390�s. These results are encouraging; our system
can already run at rates exceeding T3 (45 Mbps),

Set Reduction Compression Both
A 12.08 20.09 31.30
B 15.50 24.08 37.35
C 18.81 18.42 33.90
D 14.37 17.95 32.44
E 17.90 18.58 35.32
Avg 15.73 19.92 34.07

Table 2: Percentage of bandwidth saved by Reduc-
tion and Compression (gzip) on outbound tra�c

despite the fact that it is a user-level prototype that
has not been tuned, e.g., to minimize copies. Fur-
ther, preliminary comparisons with other compres-
sion schemes (such as gzip as discussed below) sug-
gest that our scheme is signi�cantly less computa-
tionally expensive. The similar and low latencies of
compressor and decompressor result in a balanced
system for given hardware and a small impact on
overall latency. They are also likely to improve
signi�cantly with an kernel-space implementation
since the overhead of context switching would be
removed.

4.3 Other Compression Methods

Since bandwidth savings are heavily data depen-
dent, we compared our bandwidth reductions with
those of other compression schemes to place them
in context and help gauge their signi�cance.

As an approximation to real systems, we ran our
trace data through a process that applied gzip com-
pression to packet payloads and recorded volume
statistics. To simulate useful schemes under real-
time and high throughput conditions, we used the
fastest library setting and processed packets individ-
ually; even so, gzip is substantially slower than our
scheme and could not keep pace with a 10 Mbps
link. Table 2 compares this compression with our
scheme for removing replicated data. We infer from
these results that our scheme provides similar bene-
�ts, somewhat smaller on average, but requiring less
computation.

To look at the e�ects of combining our reduction and
regular compression, we ran our trace data through
a process that combined the two, �rst removing
replicated data and compressing the remainder. Ta-
ble 2 also shows these results. It highlights the



fact that reduction and compression combine rather
than overlap, as each tends to tap a correlation on
di�erent timescales.

We also considered the impact of header compres-
sion, but quickly realized that it would provide
smaller savings. With the average packet size of
our trace close to 500 bytes, elimination of TCP/IP
headers from all packets would save no more than
8% of the bandwidth, and this best case is unlikely
to be obtained across a link where there is signi�-
cant tra�c mixing.

5 Related Work

We discuss two categories of related work: compres-
sion and caching.

5.1 Compression Techniques

When faced with a limited transfer rate, higher ef-
fective throughput can be obtained by compressing
the data before transmitting it across a link. Some
link protocols such as PPP make provisions for the
negotiation of such a compression scheme between
the ends of the link [13, 11]. Packets are then com-
pressed (either individually or as a stream) when
they enter the link and uncompressed at the other
end. Alternatively, higher compression ratios can
typically be obtained by compressing the data be-
fore sending it into the network. This is so for two
reasons. First, lossless compression utilities such as
gzip [5] work better with larger and unmixed in-
puts because of their statistical properties. Second,
application-speci�c lossy schemes, such as JPEG [8]
for photographic images, may be used. A further
form of compression that is appropriate for some
applications is delta-encoding, where a set of di�er-
ences is transmitted instead of the complete object;
Mogul et al. have shown that this technique may
result in signi�cant savings for Web tra�c [9].

However, none of these types of compression remove
the redundancy of transfers of the same information
between di�erent clients and servers whose paths
cross within the network. Compression of appli-
cation data can reduce the amount of information
needing to be transferred, but by de�nition can-
not remove redundancy across di�erent clients and

servers. Compression of data at the link level can in
theory remove such redundancy, but in practice does
not. This is because algorithms that build dynamic
dictionaries typically limit their search to a small
window of the data stream compared to the scale on
which we will show that there is replicated tra�c,
e.g., gzip may search approximately 32KB, while we
have detected signi�cant correlation at 1000 times
that scale.

Another type of compression that is frequently em-
ployed is packet header compression. Schemes spe-
cialized for compressing TCP/IP headers [7, 4] may
reduce their impact by an order of magnitude in
the best cases, and hence may have a signi�cant
impact on bandwidth usage when there are many
short packets. In the packet traces we observed,
however, the volume of headers was small compared
with the volume of payloads, i.e., even eliminating
all TCP/IP headers would not make as large a dif-
ference we demonstrated by suppressing data. Fur-
thermore, compared to payload compression, header
compression taps an orthogonal source of correla-
tion, and could therefore be used in addition to
other techniques.

5.2 Application-Level Caching

An alternative to compressing at the link level is
for each application to construct its own system for
caching its data-types. This is clearly not viable for
all applications, but may be worthwhile in terms
of bandwidth for popular cases such as the Web.
To examine the tradeo�s, we briey compare our
scheme with Web caching using the generic con�g-
uration of Figure 7. Here, an organization is con-
nected to the rest of the Internet by a single access
link that is the bottleneck for transfers between the
two domains. We ignore more costly options that
recon�gure the system to shift this bottleneck, e.g.,
purchasing more bandwidth, spreading load over
multiple links, or co-locating Web servers with the
ISP.

Today's Web caches [14, 1] are deployed by organi-
zations to reduce both client latency and wide area
bandwidth requirements. A caching system may
therefore be readily deployed at point A to protect
incoming bandwidth by combining client requests.
Existing caching systems, however, are more lim-
ited in their ability to protect outgoing bandwidth
by combining server responses. Our traces show



organization Rest of Internet

bottleneck link

outgoing

incoming
A

B

(clients/servers) (clients/servers)

Figure 7: Generic Web Caching Con�guration with a Bottleneck Link

that existing client caching has not eliminated re-
dundant server transfers (and it is highly unlikely
that this will soon be the case as it requires that all
Web clients be con�gured in a single caching sys-
tem well-matched to the underlying topology). Fur-
ther, it may not be possible to place a Web cache at
point B and con�gure the rest of the Internet to use
it, since point B is typically under the control of a
di�erent organization and proxy caches require the
cooperation of their clients. That is, placement of
application caches inside the network may require
a large degree of sharing and cooperation between
users compared to the link-level solutions we have
studied, which may be deployed by the network op-
erator when and as needed to buttress weak links.

Since link layer schemes are transparent to applica-
tions, they present a di�erent set of tradeo�s than
does application-level caching. The latter may uti-
lize application semantics, and so should be more
e�ective for the particular application. It may
also improve performance in other respects, in the
same manner that Web caches lower latency as well
as reduce bandwidth. However, application-level
schemes may also have side-e�ects that a trans-
parent scheme does not. For example, unlike Web
caches, our scheme will never return stale data, nor
complicate or bias server operations such as request
logging. Further, because they function across all
applications, link layer solutions are capable of re-
moving redundancy across multiple protocols, e.g.,
FTP as well as HTTP. More interestingly, our link
layer solution suppresses identical content irrespec-
tive of application names and protocol details. For
example, the same Web page contents will be sup-
pressed, even if it is named by di�erent URLs, gen-
erated dynamically, or marked as uncacheable. This
e�ect may be signi�cant: Douglis et al. found such
duplication to occur for as many as 18% of full-body
Web responses in some traces [6].

Given these tradeo�s, we believe that our
scheme complements rather than competes with
application-level caching systems. Web tra�c is so
predominant that special-purpose caching mecha-
nisms must become ubiquitous in order to distribute
load and build a scalable Internet.

Our scheme provides protection at a lower level and
across changing application and tra�c patterns. It
can thus be applied to portions of the network selec-
tively, e.g., to bottleneck access and long-haul back-
bone links, and will remove the replication that re-
mains after application-level caching.

6 Conclusions and Further Work

In this paper, we have presented a innovative link
compression protocol that suppresses the transfer
of replicated payloads. We have demonstrated that,
despite existing caching mechanisms, there is a sig-
ni�cant amount of replicated tra�c that is amenable
to detection and reduction by our scheme. The
protocol itself works by maintaining (nearly) syn-
chronized packet caches at either end of a link and
sending repeated payloads that are encountered as
�ngerprints. We have further shown by experimen-
tation that the protocol is lightweight enough to be
implemented on commodity hardware at rates ex-
ceeding T3 (45 Mbps). For real packet traces the
increase in available bandwidth from our scheme can
be around 20%. This makes it an economically vi-
able option for increasing available Internet access
bandwidth.

In addition to the bandwidth savings we realized,
our scheme is signi�cant in several respects:



� Unlike other compression methods, it is inde-
pendent of the format of packet data contents,
and so provides bene�ts even when application
objects have been previously compressed.

� It utilizes a source of correlation that is nei-
ther available at individual clients and servers
nor found by existing link compression schemes,
and hence can be used in addition to other link
compression schemes.

� It provides the bandwidth reduction bene�ts of
caching in a transparent manner, e.g., unlike
Web caching there is no risk of stale informa-
tion or loss of endpoint control.

� Unlike Web caching, it does not depend on
particular protocols, client con�guration or ap-
plication names; it may thus be useful as
a general-purpose mechanism to protect links
from redundant transfers (which have many
sources) as applications and tra�c patterns
change.

Finally, we see several areas that would bene�t from
further work:

� Implementation techniques such as di�erent
cache insertion and replacement policies that
improve the range of match detection for a
given amount of storage would improve the
value of the system.

� The impact of the protocol on performance
should be characterized across a range of bit
error rates to con�rm that it does not exacer-
bate packet loss.

� Additional classi�cation techniques that in-
crease the amount of data that we are able to
detect as replicated, which would improve the
e�ectiveness of the system as a whole.

Acknowledgments

We thank our fellow members of the Software De-
vices and Systems group. In particular, we wish
to acknowledge Vanu Bose for insightful discussions
and feedback throughout the course of this research,
and John Guttag for his support and guidance.
We also thank Mark Handley and Max Poletto for
proofreading.

References

[1] A. Chankuntod et al. A Hierarchical Internet
Object Cache. In USENIX'96, 1996.

[2] D. D. Clark and D. L. Tennenhouse. Architec-
tural Considerations for a New Generation of
Protocols. In SIGCOMM '90, 1990.

[3] P. Danzig et al. A Case for Caching File Ob-
jects Inside Internetworks. In SIGCOMM '93,
1993.

[4] M. Degermark et al. Low-loss TCP/IP Header
Compression for Wireless Networks. In MOBI-

COM'96, 1996.

[5] P. Deutsch. DEFLATE Compressed Data For-
mat Speci�cation version 1.3. Request For
Comments: 1951, May 1996.

[6] F. Douglis et al. Rate of Change and otherMet-
rics: a Live Study of the World Wide Web. In
USENIX Symp. on Internetworking Technolo-

gies and Systems, 1997.

[7] V. Jacobson. Compressing TCP/IP Headers
for Low-Speed Serial Links. Request For Com-
ments: 1144, February 1990.

[8] I. JTC1/SC2/W10. Digital Compression and

Coding of Continuous-Tone Still Images. IEC
Draft International Standard 10918-1, 1992.

[9] J. Mogul et al. Potential bene�ts of delta-
encoding and data compression for HTTP. In
SIGCOMM '97, 1997.

[10] NIST. Secure Hash Standard. FIPS PUB 180-
1, May 1993.

[11] D. Rand. The PPP Compression Control Pro-
tocol. Request For Comments: 1962, June
1996.

[12] R. Rivest. The MD5 Message-Digest Algo-
rithm. Request For Comments: 1321, April
1992.

[13] W. Simpson (Ed.). The Point-to-Point Pro-
tocol. Request For Comments: 1661, August
1994.

[14] D. Wessels. The Squid Internet Object Cache.
http://squid.nlanr.net/Squid/, 1997.

[15] S. Williams et al. Removal Policies in Network
Caches for World-Wide Web Documents. In
SIGCOMM '96, 1996.


