
The following paper was originally published in the
Proceedings of the USENIX Annual Technical Conference (NO 98)

New Orleans, Louisiana, June 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org/

Implementation of Multiple Pagesize Support in HP-UX

Indira Subramanian, Cliff Mather, Kurt Peterson, and Balakrishna Raghunath
Hewlett-Packard Company

Implementation of Multiple Pagesize Support in HP-UX

Indira Subramanian

Cli� Mather

Kurt Peterson

Balakrishna Raghunath

Hewlett-Packard Company

Cupertino, CA 95014

indira@cup.hp.com

Abstract

To reduce performance degradation from Transla-

tion Lookaside Bu�er (TLB) misses without signi�-

cant increase in TLB size, most modern processors

implement TLBs that support multiple pagesizes. For

example, Hewlett-Packard's PA-8000 processor allows

8 hardware pagesizes, in multiples of four, ranging

from 4 Kbytes to 64 Mbytes.

In implementing multiple pagesize support in

HP-UX, we chose to create large pages at page-fault

service time. We have a buddy system allocator that

provides interfaces for allocating and freeing multiple

pagesizes. We maintain the Virtual Memory (VM)

data structures such as the pagetable entry, virtual

page frame descriptor, and physical page frame de-

scriptor based on the smallest pagesize, and represent

a large pagesize as a collection of these base page-

size structures. In our implementation, VM opera-

tions on a large pagesize such as 16KB are carried out

by looping over the 4KB-based constituent VM data

structures. Our system o�ers signi�cant application

performance improvement when using large pagesizes.

1 Introduction

Translation Lookaside Bu�er (TLB) misses can de-

grade the performance of applications with large work-

ing set sizes [2, 4, 18, 21, 23]. A TLB is a cache of re-

cently accessed virtual-to-physical page translation in-

formation. The working set of a process is the memory

actively referenced during a certain time interval [6].

A typical TLB that performs translations using small

pagesizes such as 4KB, cannot hold all the translations

for a large working set. Consequently, TLB misses

will result, and each miss must be handled by copy-

ing the translation information from a software or a

hardware translation table (pagetable) into the TLB.

A high TLB miss rate (misses per second) will result

in performance degradation. While this degradation is

common to all contemporary processors, the penalty

can be signi�cant in processor implementations that

lack hardware support for TLB miss handling.

To increase the TLB reach, that is, the amount of

memory translated by the TLB, most modern proces-

sors support multiple pagesizes. Support for a wide

range of pagesizes allows for miss reduction without

undue increase in working set sizes. For example, in

addition to the base 4KB pagesize, the PA-8000 pro-

cessor which is an implementation of the PA-RISC 2.0

architecture [10], supports 16KB, 64KB, 256KB, 1MB,

4MB, 16MB, and 64MB pagesizes. Other architec-

tures that allowmultiple pagesizes include DEC Alpha

[3], MIPS R10000 [16], and SPARC [7].

Several issues need to be considered when imple-

menting OS support for multiple pagesizes [11, 17, 21].

How should the VM data structures, which were origi-

nally designed to represent a uniform pagesize such as

4KB, be redesigned or adapted to allow coexistence of

multiple pagesizes? How will the pagesize be chosen

for a given mapping? Should a large mapping be cre-

ated at fault service time? Or, should it be created

at a later time through page promotion [18, 23]? How

should the interfaces across VM and �lesystems be

modi�ed to deal with multiple pagesizes? How should

physical memory be managed such that a properly

aligned page of any TLB-supported pagesize may be

allocated? How should candidates for page replace-

ment be selected?

To support multiple pagesizes in HP-UX, we pre-

serve the underlying 4KB-based VM data structures,

and represent a large page by a collection of these

4KB-based structures. In this approach, a large page

is e�ectively a set of contiguous 4KB sized pages. The

PA-RISC 2.0 TLB requires that the virtual and phys-

ical addresses of a large page be aligned on the page-

size boundary. We use the terms subpage, base page,

and member page interchangeably to refer to the 4KB

pages that constitute a large page. The VM subsystem

components such as the fault path, the interfaces that

support page fault handlers, and the physical memory

allocator operate on a large page by looping over the

associated base page data structures. Our implemen-

tation o�ers signi�cant performance improvement for

applications with large working set sizes.

The remainder of this paper is organized as fol-

lows. Section 2 discusses related work. In Section 3,

we describe the HP-UX VM system primarily focus-

ing on the data structures, and discuss the rationale

for our approach to representing large pagesizes. Sec-

tion 4 describes the pagetable management. Section 5

presents the physical memory allocator. Section 6 dis-

cusses how pagesize hints may be speci�ed for an ap-

plication. The VM subsystem uses this pagesize hint

as the starting point, when deciding the pagesize for

mapping an address range. In Section 7, we describe

support for large page creation at fault-service time.

Section 8 discusses page replacement in the presence

of multiple pagesizes. Section 9 presents performance

data demonstrating performance improvements from

TLB miss reduction. In Section 10, we summarize our

approach to multiple pagesize support and rea�rm its

bene�ts.

2 Related Work

Several approaches for supporting multiple page-

sizes have been reported in the literature. In this sec-

tion, we describe these approaches and relate them to

our work.

2.1 Pagesizes in Partitioned Memory

Large pagesize and adaptive prepaging are among

the techniques Kagimasa et al. employ to reduce mem-

ory management overhead in a terabyte virtual and gi-

gabyte physical memory system [9]. The goal of their

Super Terabyte System (STS) was to reduce over-

head from page fault processing, choosing candidates

for page replacement, and process swapping. Kagi-

masa et al. do not discuss performance e�ects of TLB

misses. Nonetheless, their approach for implementing

dual pagesize support is relevant to our discussion.

STS supports one small pagesize (4KB) and one

large pagesize simultaneously. The large pagesize is

one of 16KB, 64KB, 256KB, and 1MB, and is chosen

at boot time. The virtual and the physical memory

are each partitioned into a small page region and a

large page region. The size of the virtual small page

region is 2 gigabytes, while that of the physical small

page region can be set at boot time. A system avail-

able physical page area (SAPA) is maintained for each

of the two pagesizes. When setting up a mapping

for a large virtual page, in the event the SAPA for

large pages is empty, a contiguous set of small physi-

cal pages are located if possible, and used. Similarly,

when setting up a mapping for a small virtual page,

if the SAPA for small pages is empty, a small page is

carved out of a large physical page, and the remaining

small pages are placed into the local available page

area (LAPA) for the process.

The system manages the two pagesizes as follows.

The key storage (per physical page data structures) is

maintained for each 4KB page. Large pagesize is used

for allocation, page fault handling, setting referenced

and modi�ed bits, page replacement, and swapping.

However, management of secondary storage as well

as reading and writing operations involving secondary

storage utilize 4KB pagesize.

With regard to support for multiple pagesizes, the

STS design o�ers some exibility but su�ers from sev-

eral drawbacks. The 4KB-based physical page data

structures facilitate the allocation of small and large

physical pages interchangeably. This exibility en-

ables e�cient use of available physical memory in the

two pagesizes. There is one limitation however { all

the small pages carved out from a large page must

be mapped to the same process. STS has two major

drawbacks. First, only two pagesizes are supported.

The large pagesize chosen at boot-time may not be

appropriate for a broad range of applications. Sec-

ond, virtual storage is statically partitioned into small

page and large page regions. Such static partitioning

may not be best suited for TLB miss reduction for

di�erent workloads.

2.2 Subblocked TLB

Talluri et al. recommend subblocked TLB organi-

zations as better alternatives to existing TLB orga-

nizations that have been simply extended to support

multiple pagesizes [21]. Subblocking refers to grouping

of mapping information in the TLB for several base

pages that are part of a page block. A page block is

made up of 16 4KB pages that are aligned on a 64KB

boundary. Subblocking saves TLB space by sharing

the virtual tag across all the subpages of the page

block. A complete-subblock TLB entry stores protec-

tion and other page attributes and a physical page-

number for each of the subpages in the page block. A

partial-subblock TLB entry stores a single set of page

attributes and a single physical page-number for the

entire set of subpages in the page block, and therefore

requires less TLB space.

Talluri et al. propose subblock TLB designs as an

alternative to multiple pagesizes for improving TLB

performance. They argue that invasive changes to the

OS that introduce signi�cant overhead are necessary

to take advantage of multiple pagesizes. Overheads

include increased disk and network tra�c for page-

ins and page-outs, coalescing smaller pages to cre-

ate large pagesizes, and existing VM data structures

not scaling e�ciently for handling large pagesizes. In

contrast, the complete-subblocking approach requires

no changes and the partial-subblocking approach re-

quires minimal changes to the OS for improving TLB

performance. To exploit the bene�ts from partial-

subblocked TLB, as many subpages as possible in a

virtual page block must be mapped to the correspond-

ing subpages in a physical page block. For this pur-

pose, a reservation based memory allocation is used,

and is discussed in the next section.

Our goal was to improve the TLB performance

of processors based on the PA-RISC 2.0 architecture,

which supports multiple pagesizes. Our implementa-

tion demonstrates that multiple pagesizes can be ex-

ploited e�ectively to improve TLB performance.

2.3 Page Reservation and Promotion

In the case of partial-subblocking (discussed above)

and multiple pagesize TLB, Talluri et al. employ a

reservation-based allocation of a page block [20, 21].

Reservation refers to setting aside properly aligned

4KB physical pages for possible use with speci�c vir-

tual subpages of a process. These physical subpages

are placed at the end of the freelist. When the process

references these virtual pages, the ensuing page faults

are serviced using the prereserved physical subpages.

If the process did not reference these virtual pages,

some of the reserved pages may move to the head of

the freelist. These unused reserved pages are then al-

located to service other page faults. A single-page-size

framework is employed to support two page sizes { a

64KB page is represented by 16 4KB page-based data

structures.

In addition to the reservation method described

above, for supporting two pagesizes, their system im-

plements a threshold-based promotion policy. This

policy decides when to combine the 4KB subpages to

create a 64KB superpage (large page). After a cer-

tain promotion threshold such as 50% of 4KB pages

have been faulted in, the unreferenced pages in the

page block are fetched from secondary storage into

corresponding prereserved 4KB subpages. The page

block is then promoted to 64KB pagesize. In the case

of uninitialized data, promotion involves only zero�ll-

ing the prereserved pages. If some of the prereserved

pages are no longer available, a gather operation may

be needed when performing page promotion. In this

case, a new page block is allocated, and the original

4KB physical pages are copied into the new page block

to create a large page mapping. Talluri did not imple-

ment this gather mechanism in his system[20].

Talluri's system poses several limitations. First, it

provides simultaneous support for only 2 page sizes,

4KB and 64KB. We use the single-page-size frame-

work as well in our implementation, and we demon-

strate that this method is suited for all pagesizes that

the PA-8000 processor supports. Second, it is unclear

that the reservation approach will scale well for larger

pagesizes. A promotion threshold of 50% would in-

volve many faults before the large page is created by

promoting the subpages. Furthermore, if some of the

prereserved pages were unavailable resulting in ran-

dom physical subpage allocations, promotion will re-

quire copying the source subpages. In contrast, we

allocate and map large pages when servicing a page

fault, thereby eliminating the additional faults and the

promotion overhead.

2.4 Clustered Pagetable

Through simulation, using estimates of pagetable

size and access time as metrics, Talluri et al. [22]

demonstrate that clustered pagetables work better for

superpages (large pages) than the conventional hashed

pagetables. A hashed pagetable organization [8] uses

a hash function that hashes a virtual page number

to a speci�c hash bucket in which the translation in-

formation for the virtual page is stored. A clustered

pagetable is a hashed pagetable enhanced with sub-

blocking. Subblocking refers to grouping of mapping

information for several pages, and it amortizes the per

pagetable entry (PTE) overhead over many potential

mappings. The aligned group of consecutive pages is

called a page block. Space saving is achieved by using

a single virtual tag and a single hash chain pointer for

the entire subblock. In a clustered pagetable with a

subblocking factor of 16 and a base pagesize of 4KB,

a single clustered PTE can support pagesizes up to

64KB. A clustered pagetable provides e�ective sup-

port for a subblocked TLB, which was discussed ear-

lier in Section 2.2.

Talluri et al. present approaches for storing a large

page in di�erent types of pagetables. Two solutions

that work well are the multiple pagetables method and

the replicated PTE method. The multiple pagetable

method entails one pagetable for each of the page-

sizes used in the system. To locate the mapping that

caused a TLB miss, the TLB miss handler must search

each of the pagetables, starting from the most likely

table. A more promising approach is the replicated

PTE method, in which a large page is represented by

replicating a PTE once for each subpage.

With a clustered pagetable design, representation

of pagesizes larger than page block size involves a

space/time tradeo� as in conventional tables but are

more e�cient. Assuming a subblocking factor of 16

and a base pagesize of 4KB, pages larger than a page

block (64KB) can be represented by replicating the

64KB clustered PTEs. In contrast, with a conven-

tional pagetable, sixteen times as many 4KB PTEs

must be replicated. With the multiple pagetable ap-

proach, clustered pagetables require fewer tables. For

example, one clustered table can be used for pagesizes

4KB to 64KB, and another for up to 1MB, and so on.

With conventional pagetables, we will need as many

tables as the number of pagesizes supported.

The clustered pagetable does not avoid the major

complexities involved in supporting large pagesizes.

Talluri et al. proposed using replicated clustered PTE

to represent pagesizes larger than 64KB. Therefore,

clustered pagetable implementation entails the com-

plexity along the same lines as ours, namely looping

over operations across subblock structures. Indeed it

is true that a single lock could be used for each sub-

block of PTEs in the case of a clustered pagetable.

With the conventional hashed table which is used in

HP-UX [8], the locks have to be acquired individually

for each base page PTE, and therefore, can entail high

overhead. However, our implementation performs well

despite this overhead.

We preferred using the replicated PTE method

when implementing multiple pagesize support in the

page directory (pagetable), as discussed in Section 4.

Saving space was not compelling enough a reason

for moving to clustered structures { we needed to

gather performance data from an implementation to

justify total redesign of the data structures. Regard-

ing hashed pagetable without clustering, Talluri et al.

raise several concerns. One concern is that the hash

chains will be longer because a large page will use mul-

tiple base page entries. However, in our design we size

the hash table based on the size of physical memory,

and hence, the hash chains are small and no di�erent

from the case when only base page mappings are used.

Another concern is that the entries corresponding to

the subpages will be in di�erent hash buckets thereby

making operations that involve all the subpage entries

less e�cient. Our implementation does involve updat-

ing all the subpage translation entries in such cases as

modifying a translation, and our system performs well

despite this ine�ciency.

2.5 Online Page Promotion

Another approach for reducing TLB misses em-

ploys online superpage (large page) promotion [18].

This work describes a technique for monitoring TLB

miss tra�c to decide when a superpage should be con-

structed. On each miss, page reference information (a

set of counters) is updated to indicate the number of

TLB misses that would not have occurred had the set

of already assigned superpages been larger. Several

online policies that perform suitable superpage promo-

tions based on the counters, the TLB miss cost, and

page copying cost are presented. The modi�cations

to the TLB miss handler for the purpose of tracing

does slow the miss handling. However, the overhead is

absorbed into the signi�cant performance gains made

through page promotions.

While the online methods have advantages, the ex-

tent of modi�cations to the hardware independent

layer may be signi�cant. The key advantage of on-

line methods is that superpages are created only when

necessary, thereby ensuring that the working set size

does not increase dramatically. In addition, the on-

line approach appears to be less invasive, since the

superpage awareness is con�ned to the hardware de-

pendent layer. However, Romer et al. do not discuss

all the details pertaining to page promotion. First,

when their system is about to promote to a superpage

whose subpages are not all resident, the nonresident

pages must be brought in. Presumably, the fault-path

could be repeatedly invoked to bring in the nonresi-

dent pages. Second, their system will need an allo-

cator for allocating multiple pagesizes. Furthermore,

demoting a superpage to subpages whenever the modi-

�ed and referenced bits are queried from the hardware

independent side, may not be desirable. For instance,

paging out an unreferenced large page may be more

e�cient.

Despite the concern that OS support for multiple

pagesizes would be invasive and complex, we con-

cluded that by preserving the underlying 4KB data

structures and using simple locking protocols, we had

a promising approach that would lead to a successful

implementation. We create large pages at fault-service

time thereby eliminating the overhead from slower

TLB miss handling as well as copying costs that the

online promotion method entails. Since our approach

will reduce the number of faults, it has the potential

to o�set some of the overhead from other large page

related operations.

3 Data Structures for Large Pages

First we present an overview of PA-RISC and HP-

UX VM architecture and data structures. Then we

discuss the alternatives we considered with regard to

representing large pagesizes and the approach we have

taken.

3.1 VM Data Structures Overview

We begin with a description of addressing and ac-

cess control in PA-RISC. Next we present the key

data structures employed by the hardware depen-

dent and the hardware independent components of the

HP-UX VM subsystem. The hardware independent

component is based on UNIX System V Release 2 and

Release 3 [1].

The PA-RISC architecture de�nes a global vir-

tual address space [14]. A global virtual address is

made up of two components: a space identi�er (space-

ID), and an o�set. The o�set in turn is partitioned

into a virtual page number, and a page o�set. The

PA-RISC 2.0 allows a 64 bit space-ID and a 64 bit

o�set, which are combined to generate up to a 96 bit

global virtual address [10]. In the 32-bit and 64-bit

HP-UX implementations, a process can access up to

4GB and 16TB respectively, using 4 space-IDs.

pregion

Virtual Address Space
(VAS)

region region

pregion

region

pregion

vfd

vfd

vfd

dbd

dbd

dbd

Figure 1: Hardware Independent VM { vas

Since the precision architecture uses global address-

ing, it employs a set of mechanisms to restrict what

parts of this global space a process can access. The

privilege level (0 through 3), access rights (read, write,

execute), and a protection ID (PID) are used to con-

trol the access of a page by a process. The most privi-

leged level of 0 is kernel mode, and the least privileged

level of 3 is the user mode. Each process is assigned a

set of PIDs, four of which are cached in control regis-

ters. To be allowed access to a page, the page's PID

must match one of the process' PIDs.

Each process is associated with a virtual address

space (vas) shown in Figure 1, which is made up of a

list of pregions. Each pregion represents a range of vir-

tual pages. As shown in Figure 1, each pregion points

to a system-wide kernel data structure called a region.

Each page in a region is associated with a virtual frame

descriptor (vfd) that speci�es the page frame number

(pfn) and a disk block descriptor (dbd) that speci�es

the location of a page on disk. The vfd, dbd pair

constitute the hardware independent pagetable entry.

The vfds and the dbds are maintained in chunks of

32 pairs. The chunks are organized as a B-tree [5] for

e�cient access.

pfdat array

free_head

p_hash | p_free

p_hash | p_free

p_free

p_free

p_hash

p_free

index

hash(vnode_ptr, dbd_data)

Figure 2: Hardware Independent VM { pfdat

Another central kernel data structure on the

hardware-independent side called pfdat shown in Fig-

ure 2, is used to manage physical memory that can

be allocated to processes on demand. Each physical

page frame (pfn), which is 4KB in size is represented

by a pfdat structure. The pfdat entries of physical

pages that are available for subsequent allocation are

placed on a doubly linked list referred to as the freel-

ist. Page frames associated with space allocated on

secondary storage are placed on the hashed pagecache

list. These pages are caches of data on secondary stor-

age. The pfdat structure does not hold a pointer to

the region structure associated with the virtual page

frame that is mapped to the pfn.

On the hardware-dependent side, a system-wide

hashed page directory (pagetable) [8] referred to as

the pdir is used to hold the virtual-to-physical address

translation information. The pdir shown in Figure 3

contains one entry (pde) for every 4KB page of phys-

ical memory in the system, plus entries for mapping

virtual I/O pages. The pdir layer performs operations

physical address

OffsetVirtual Page NumberSpace ID

hash

pdir

pde

pde

pde

physpage

Figure 3: Hardware Dependent VM - pdir

to establish and manage the virtual-to-physical map-

pings for pages. Additionally, to manage address alias-

ing, it maintains a table of physical-to-virtual map-

pings. The hardware dependent layer (HDL) functions

provide the interface for requesting such operations as

adding and deleting translations.

The PA-RISC 2.0 architecture allows for either a

separate or a combined data and instruction TLB. The

PA-8x00 implementations use a combined TLB. Each

TLB entry contains the virtual page number (tag),

physical page number, an encoded 4-bit pagesize, ac-

cess control information, and single-bit ags such as

dirty, break, and uncacheable. A range of pagesizes

from 4KB to 64MB (in multiples of four) are sup-

ported. If a TLB entry holds the matching virtual

page number, based on the pagesize �eld, the corre-

sponding 38 to 52-bit physical page number is con-

catenated with the 12 (4KB) to 26-bit (64MB) o�set,

to generate a 64-bit physical address. In the event

of a TLB miss, a software miss handler fetches the

translation from the pdir and inserts it into the TLB.

3.2 Representing Large Pagesizes

We considered two approaches for representing

large pagesizes in HP-UX. One approach was to em-

ploy variable pagesize based structures, that is, to have

each of the data structures represent variable page-

sizes. Even with this method, we were not looking to

redesign the VM system from scratch, and we wanted

to reduce the extent of changes such as the pregion

and the region algorithms. One implication of this re-

quirement was that when using this method, each pre-

gion/region represent a uniform pagesize. Another ap-

proach was to preserve the VM data structures based

on 4KB pagesize, and represent a large pagesize as

a collection of these base pagesize structures. Tal-

luri et al. refer to this method as the replicate-PTE

method [22] and the single-page-size framework [20] in

the context of pagetables and the hardware indepen-

dent VM module respectively. We will refer to it col-

lectively as the replication method. After considering

the bene�ts and the drawbacks of the two alternatives,

we chose the replication approach.

While variable pagesized VM structures use less

space and are updated e�ciently, this method su�ers

from several drawbacks. First, changes are pervasive

in that most of the VM system assumes systemwide

single pagesize, and therefore, must be modi�ed to

use variable pagesized data structures. Second, since

each pregion/region must represent a uniform page-

size, typically the number of pregions/regions that

need to be traversed will increase. For example, when

servicing a fault, if the large pagesize speci�ed for a re-

gion cannot be allocated, the pregion/region must be

suitably split so that a smaller pagesize can be used.

The alternative of waiting for a large page to become

available may lead to an unacceptably long page-fault

latency. Also, since a large page must be aligned on

the pagesize boundary, multiple pregions/regions may

be needed for a virtual address range, to meet the

alignment restrictions. Third, swap management will

need to handle di�erent sizes on swap space, and must

minimize fragmentation, much like the physical mem-

ory allocator. Fourth, a large page protected by a

single lock will lead to contention, when I/O opera-

tions are performed to non-overlapping portions of a

memory region such as shared memory.

We chose the replication method for our implemen-

tation. This method is attractive for several reasons.

Changes needed for multiple pagesize support are not

pervasive { modifying attributes of part of a large page

does not need splitting operations from pregion and

region layers. Chances for contention are low, since

many operations need to lock a speci�c 4KB pfdat

even when the pfdat represents a member 4KB page

of a large page. For example, examining a translation

requires holding only one subpage pfdat lock. On the

other hand, modifying a translation requires that locks

on all subpage pfdat structures be held. Indeed, the

replication method also su�ers from some drawbacks.

First, it does not take advantage of large pagesizes to

reduce space used by the VM data structures. Second,

locking, access, and update of data structures are in-

e�cient { need to loop over the base pages of a large

page. However, this looping overhead is no worse than

when all the mapping are 4KB pagesize. We chose the

replication method, because its bene�ts outweigh its

shortcomings.

4 Hashed pdir Management

A large page is represented by multiple pde (page

directory entry) structures, one each for a 4KB sub-

page. Each pde includes pagesize information. When

a TLB miss occurs on a large page, the miss handler

has no knowledge of the pagesize of the page on which

the miss occurred. The miss handler locates the pde

corresponding to the faulting address, and inserts it

into the TLB. The replication method entails no ad-

ditional complexity in the TLB miss handler, and the

miss penalty remains unchanged in general, from the

4KB mapping case.

There is one caveat to the claim above that the

TLB miss handler does not entail additional complex-

ity { the handler for shared memory multiprocessors

(MP) had to be modi�ed to avoid disabling interrupts

for too long. When a property of a translation for

a large page is to be changed, the pdir management

module must invalidate all the associated pdes, purge

the TLBs, update the pdes, and then revalidate the

pdes. If a TLB miss occurs on another processor in

the meantime, it would be spin waiting in the TLB

miss handler with interrupts disabled, until the sub-

page pde becomes valid again. To avoid holding o�

interrupts for too long, the MP TLB handler has been

modi�ed to enable interrupts, handle any pending in-

terrupts, and then try accessing the pde again. This

process is continued until the pde becomes valid.

Operations pertaining to a large page translation

could involve access to a speci�c subpage or all the

subpages. For example, the TLB miss handler will up-

date information such as the referenced and the modi-

�ed bits for the subpage pde on which the miss or the

trap occurred. However, these bits indicate the status

of the entire large page (if any) associated with this

subpage. Therefore, the HDL functions must return

the values accordingly, in response to queries from the

hardware independent layer. To add a translation for a

large page, pdes are allocated and added for each sub-

page. All operations that update a translation must

update the pde for each subpage, and consequently,

are more expensive. This overhead has not been a

problem on the several benchmarks that we used for

our performance measurements.

5 The Physical Memory Allocator

Support for multiple pagesizes places several new

requirements on the physical memory allocator. First,

the allocator must be able to allocate any of the pa-

gesizes supported by the architecture. The page allo-

cated must be aligned at a starting physical address

that is a multiple of the pagesize. Second, the alloca-

tor must maintain the free and cached pages in such a

way that fragmentation is minimized, and large pages

can be found easily. The allocator must be e�cient

{ its performance should not be much worse than the

original 4KB page frame allocator.

We have implemented a binary buddy system allo-

cator [13]. The allocator maintains the available mem-

ory pool as two subpools, the uncached subpool and

the cached subpool. Pages in the cached subpool are

linked to the pagecache list as discussed in Section 3.1.

Each subpool has one freelist per pagesize. Only the

�rst pfdat of a large page is linked to the appropriate

freelist. The allocator maintains a pagesize �eld in

the pfdat structure. Given a member pfdat of a large

page, it is possible to �nd the �rst pfdat of the large

page. The total count of pages allocated is maintained

for each pagesize. Count of free pages in each of the

cached and the uncached subpools is also maintained

for each pagesize. These counters are updated as ap-

propriate when pages are allocated, freed, or demoted.

Demotion refers to breaking a large page mapping such

as 64KB into smaller pagesize mappings such as 16KB.

For instance, a process may request that the protec-

tion attributes of a memory range be modi�ed, and

this range may be a part of a large page. In this case,

the VM subsystem must demote the large page, and

then update the protection attributes for the demoted

pages that lie in the requested range.

The buddy system reduces fragmentation, and in-

creases the chance of �nding a large page. In response

to an allocation request, the allocator �rst searches

the list for the pagesize requested, and if that list is

empty, it searches the lists for bigger pagesizes. The

uncached subpool is searched before the cached sub-

pool, with the goal of preserving the cached pages as

much as possible to facilitate reuse. In response to a

request to free a page, the allocator attempts to locate

the pfdat structure for the buddy page. If the buddy

is on the same list, the allocator can coalesce.

The allocator employs di�erent coalescing policies

for the cached and the uncached subpools. The al-

locator coalesces the uncached pages as soon as they

are freed. Coalescing can bubble up to the larger pa-

gesize freelists. In contrast, the allocator uses a lazy

approach to coalescing pages in the cached subpool.

The freelist for each pagesize in the cached subpool

is allowed to grow to a certain fraction of the total

count allocated in that pagesize, before coalescing is

performed. This fraction at this time is 25%. Ex-

perience with more workloads will be needed to de-

termine suitable values for this watermark. The lazy

approach reduces the amount of time spent in coalesc-

ing, given that the cached pages may be reused again.

The current implementation does not coalesce across

the cached and uncached subpools. Once again, this

choice was made to allow for reuse of cached pages.

Fragmentation is an issue despite the use of a buddy

system allocator. Pervasive or transient heavy work-

loads can lead to fragmentation of the available mem-

ory pool. The allocator may not be able to �nd a

large page, because one or more of the subpages may

be in use. We are aware of some environments where

memory fragmentation is not likely to occur, and oth-

ers, where fragmentation could lead to low availabil-

ity of large pages. Support for reducing fragmentation

would involve paging out a certain 4KB page or copy-

ing it to a di�erent page and freeing the source page,

to create contiguous physical base pages.

6 Pagesize Hints

A pagesize hint is available to the fault-path from

the region data structure. A region's pagesize hint is

determined using one of two methods { neither of these

methods require recompilation of the application. In

the chatr method, a user speci�es pagesizes for an ex-

ecutable's text and data regions to the chatr (change

attributes) program. The chatr program places these

pagesize hints in the executable header. When the ex-

ecutable is exec'ed, the region creation routine copies

the hints from the executable header into the respec-

tive region structures. In the transparent method, the

region creation routine computes the pagesize hint for

a region based on the region size (number of 4KB

pages), and saves it in the region structure. Hints com-

puted using the transparent method are bounded by

a minimum pagesize and a maximum pagesize, which

are system tunables. The actual pagesize selected by

the fault-path could be smaller than a region's page-

size hint, for reasons discussed in Section 7.1 Further-

more, if a large page allocation fails, the fault-path

reverts to using a 4KB pagesize mapping.

Pregions that grow dynamically such as the heap,

need additional support for exploiting bene�ts from

large page mappings. Recall that in our implementa-

tion, we create large pages at fault-service time only {

we do not perform online promotion of subpages into

a large page. Since many existing applications tend to

grow their heap in small increments such as 4KB, these

pregions will be subsequently faulted in as small pages.

To overcome this problem, we track pregions/regions

that grow to a large size in small increments, and in-

crease their growth rate so that large page mappings

can be created at fault-service time. In this approach,

a process that makes a break request of size such as

4KB through a sbrk() call could receive a larger break

size such as 16KB. The scaled-up break value is de-

termined by the prior history of break requests, and

the data pagesize hint for the process. Subsequent re-

quests from the process involving a break value that

is smaller than what the kernel returned previously

require no action from the kernel.

7 The Fault-path

The fault-path uses any of the hardware sup-

ported pagesizes when servicing validation or protec-

tion faults on various parts of a process address space

including text, initialized data, uninitialized data,

heap, stack, shared memory, and shared libraries.

Faults on uninitialized data, heap, and stack segments

are serviced using zero�lled memory. Faults on text

and initialized data pages, if not found in the page-

cache, require secondary storage access by the page-in

handler of the associated �lesystem. Faults resulting

from copy-on-write or copy-on-reference sharing are

resolved by copying the source page. The fault-path

can create a large page mapping, when a process faults

on a page that was previously paged out. In this case,

the swap page-in handler may use a pagesize that is

di�erent from the one that was used prior to page-out.

In the next several sections, we describe our imple-

mentation, focusing on the representative aspects of

multiple pagesize support. First, we present the in-

frastructure used in implementing zero-�ll, �lesystem

page-in, and swap page-in. Then, we describe mul-

tiple pagesize support for �lesystem page-in, followed

by copy-on-write.

7.1 The Infrastructure

The fault-path uses three key interfaces. The page-

size selection interface determines the virtual pagesize

to be used for servicing a fault. The vfd-�ll interface

allocates a large page, and �lls the vfds with the cor-

responding pfns. The vfd-set interface updates status

information in the vfds associated with a range of sub-

pages.

The pagesize selection interface selects the pagesize

that can be used, given a faulting 4KB page virtual

address. It extracts the pagesize hint from the region

structure, and lowers it if the available physical mem-

ory is less than 4 times the pagesize. Starting from

this adjusted pagesize hint, this interface determines

the pagesize that encompasses the faulting 4KB page.

As outlined in Figure 4, a large page must meet align-

ment restrictions, and other conditions. The pagesize

selected could therefore be smaller than the region's

pagesize hint.

virtual pages

occured. To find a large

pages surrounding the
faulting page.

To use a large pagesize for servicing

4KB page on which fault

this fault, the following conditions
must be met for the faulting page and
the surrounding pages:

1. All pages must lie within the
 pregion.

 access rights must match.

3. The valid bit (in the vfd) must
 be OFF.

4. The copy-on-write bit (vfd)
 must match.

5. The dbd_type must match, i.e.,
 all the pages must come from
 the front-store or back-store.

 block address if needed.

Suppose this page violated one of the

can be used for servicing this fault.

For this example,
assume that the
pagesize hint for

2. The protection identifier and the

6. Must be able to compute the disk

256KB aligned

64KB aligned

16KB aligned

16KB aligned

16KB aligned

256KB aligned

this region is 256KB.

page, examine the 4KB

conditions above, only 16KB pagesize

Figure 4: Finding a Large Virtual Page

The primary purpose of pagesize hint adjustment

is to avoid depleting available memory by allocating

large pages too aggressively. We would rather allo-

cate a 1MB page and not a 4MB page, when 5MB of

memory is available. This policy ensures that more

medium-size large pages will get used in the system,

instead of a few very large pages. Pagesize adjustment

also increases the chance of a large page allocation re-

quest succeeding, because the allocator is more likely

to �nd a 1MB page than a 4MB page, when 5MB of

memory is available. It should be noted that since

the number of pages available are low when in near

memory-pressure conditions, that is, most of the mem-

ory is used by existing processes, the pagesize hint will

likely get adjusted to 16K.

The vfd-�ll interface makes an allocation request

for a large page with the no-wait option, and if the al-

location succeeds, �lls the 4KB based virtual frame

descriptors (vfd) with the corresponding 4KB page

frame numbers (pfn). It should be noted that when

a pagesize larger than 4KB is selected, the fault-path

does not sleep and wait for that size to be allocated.

Instead, it requests allocation with the no-wait option

{ the allocator will return failure if a page of that size

is not readily available.

for each 4KB member page:

determine large pagesize (Figure 4)

allocate large page (physical memory)

large page allocated?

zero fill?

yes

yes

yes

yes

no

no

no

no

add translation and zero fill add translation

 set dbd_type to DBD_NONE;
unlock the pfn;

region pagesize hint > 4KB?

pagesize > 4KB?

allocate 4KB page

Figure 5: Creating a Zero-�lled Large Page

The vfd-set interface is used for setting or clearing

the valid bit and the copy-on-write bit, in a range of

vfds pertaining to a large page. Other looping opera-

tions involving large pages are implemented as macros,

or as in-line code segments. The use of some of these

interfaces is demonstrated in Figure 5.

7.2 Filesystem Page-in

Each �lesystem has a page-in handler to service the

fault pertaining to the respective �lesystem's vnodes

[12]. HP-UX 11.0 supports multiple pagesizes for UFS

(UNIX File System), NFS (Network File System), and

VxFS (Veritas journaling File System). Using the

VFS (Virtual File System) VM initialization interface,

all page-in handlers communicate whether or not they

have been adapted for multiple I/O. Two of the signif-

icant tasks relevant to multiple pagesize support are

�nding a large page in the pagecache, and performing

multiple I/O operations to bring in a large page.

The pagecache is examined after selecting the pa-

gesize as discussed in Section 7.1. Prior to multiple

pagesize support, it was necessary to look for only the

faulting 4KB page in the pagecache. If the page is

not found in the pagecache, then the page-in handler

must bring the page in from secondary storage. In

the case of a large page, it is necessary to �nd all the

subpages in the pagecache, to have a "pagecache hit".

The 4KB pages that are found must be contiguous,

and the �rst page must be aligned on the large page-

size boundary. If the large page found is bigger than

the selected pagesize, it is demoted, and then used.

The UFS, NFS, and VxFS page-in handlers have

been modi�ed to expand their I/O, taking large pa-

gesize into consideration. The original UFS and NFS

page-in handlers make the assumption that the pa-

gesize is smaller than the �lesystem blocksize, and

perform a single I/O. However, this assumption is no

longer valid with large pagesizes. Support has been

added to the UFS and NFS page-in handlers to per-

form multiple I/O operations to bring in a large page.

The original VxFS page-in handler makes no assump-

tions about the relative sizes of pages and �lesystem

blocks; it already handles multiple I/O when bringing

in clustered-4KB pages. Therefore, the only modi�-

cations to the VxFS page-in handler involve calls to

VFS VM interfaces, for the purpose outlined in the

next paragraph.

It is preferable to hide the notion of large pages

within the VFS VM routines. To meet this goal, exist-

ing VFS VM interfaces have been modi�ed, and also

new interfaces have been added. The page-in han-

dlers themselves deal only with I/O expansion; they

are oblivious to the pagesize being used. They make

calls to the VFS VM interfaces, which determine if the

I/O expansion meets the pagesize-related restrictions.

If the restrictions are not met, the VFS VM routines

return a result to indicate that the page-in handler

must retry for a clustered-4KB page-in.

7.3 Copy-on-write

The original implementation of the module that

performs copy-on-write operations, handled one 4KB

page only. Here the source (physical) page is located,

and the fault is resolved with or without copying the

page. In the no-copy case, the source page itself is

used to resolve the fault. Extending the no-copy case

to handle large pages is straightforward, requiring only

looping of relevant operations over the 4KB subpages.

The complexity arises in the copy case because of

certain assumptions that were made in the original

implementation. Operations such as allocating the

physical memory for the destination page, and allo-

cating kernel virtual space to map the source page for

copying, are always expected to succeed. Some of the

copy-on-write related data structure and translation

manipulations are interspersed with these resource al-

location operations. But in the case of a large page,

the allocation request with no-wait option could fail.

In addition, allocating a large page from the kernel

virtual space could also fail. Either of these failures

would necessitate that certain operations be backed

out, which is not easily done if we simply extend the

original implementation to handle large pages.

To handle the copy case for large pages, the copy-

on-write module was modi�ed to perform all resource

allocations upfront. With this implementation, in the

event of any resource allocation failures, the source

page is demoted to 4KB pages, and copy-on-write is

performed on the faulting 4KB page only. If large

page resource allocations do succeed, other operations

pertaining to the copy case are carried out by looping

over 4KB subpages.

8 Page Replacement

The pageout daemon process uses a two-hand clock

algorithm [15, 24] and a not-recently-used policy for

page replacement. The algorithmuses two clock hands

walking memory, with the �rst hand (age-hand) clear-

ing the referenced bits of pages, and after a cer-

tain delay, the second hand (steal-hand) sampling

the referenced bits. HP-UX bases its scanning on

pregions/regions rather than physical frames, for rea-

sons that include locking, and the need for the ability

to avoid paging out from high priority processes. Also,

UNIX System V Release 2 [1], on which the HP-UX

VM system is based, takes this approach. As the age-

hand scans pregions in the list, it ages 1/16 part of

each pregion at a time.

Both the age and the steal hands must recognize

large page boundaries. If the daemon encounters a

large page, it completes the scan or pageout of the

entire large page. The pageout daemon does not need

to look for and free pages of speci�c sizes, because the

fault-path never sleeps waiting for speci�c pagesizes

to be allocated. This design choice is in tune with our

goal of avoiding unnecessary complexity unless there

is demonstrable performance gain.

In choosing a candidate for pageout, "fairness" re-

garding large pages and small pages is a concern. A

large page has a better chance of being in referenced

state, when compared to a relatively smaller page. In

only one case, the pageout clearing-scan breaks a large

page into smaller pages. This demotion is performed,

if a portion of this large page has been wired down via

a memory locking interface such as mlock(2). Other-

wise, the daemonwill scan and push pages at whatever

pagesize they are. This solution involves the risk that

larger pages may be kept around at the expense of

pushing smaller pages, especially 4KB pages to disk.

Whether this situation is frequent and problematic

will become clear from the feedback from users of real

world applications. The alternate solution of breaking

a referenced large page during clearing-scan into pages

of the next smaller size may not be the best choice.

Without support for page promotion, the bene�ts of

a large page would be lost, leading to performance

degradation from TLB misses, once memory pressure

eases.

9 Performance Evaluation

We measured the performance of the benchmarks

and one commercial application (Verilog-XL from Ca-

dence Design Systems, Inc.) described in Table 1.

The benchmarks and Verilog-XL were chosen, because

their performance improves signi�cantly when using

large pagesize mappings. We focus on the reduction

in TLB miss overhead due to large pagesizes. We do

not discuss other e�ects such as reduced validation

and protection faults, and large I/O. While these ad-

ditional factors may be interesting and worthy of anal-

ysis, they are outside the scope of this paper.

All the benchmarks were run on a HP 9000 Series

800 machine with a 180 MHz PA-8000 processor. The

Verilog-XL application was run on an earlier version of

the machine with a 160 MHz PA-8000 processor. The

processor includes 96 combined data and instruction

TLB entries. The results that we report here are under

no-paging conditions, that is, the working sets always

�t within available physical memory. We made the

performance measurements on the 32-bit version of

the HP-UX 11.0 operating system. Table 2 describes

the performance metrics.

We used the chatr program discussed in Section 6,

to set the data and text pagesize hints in an executable

header. While it is possible to specify distinct page-

size hints, we used identical hints for both data and

text. Once an executable header has the hints set, the

kernel will not attempt the transparent pagesize-hint

selection for the process. To prevent large pages from

being used for other processes that may not have been

chatr'ed, we set the minimum and maximumpagesize

kernel-tunables to 4KB, thereby disabling the trans-

parent pagesize-hint selection altogether. This setup

ensures that performance bene�ts from TLB miss re-

duction come from using large pages in our bench-

marks alone.

The impact of TLB misses, and the bene�ts from

using large pagesizes for the SPEC95 benchmarks apsi,

compress, and vortex are shown in Table 3. For the

benchmark apsi, the predominant component of the

TLB misses is due to initialized data references. With

Benchmarks Description

apsi determines temperature, distribution

of pollutants; part of the CFP95

group from the SPEC95 suite [19];

compress compresses and uncompresses data in

memory; part of the CINT95 group
from the SPEC95 suite;

vortex database program; part of the
CINT95 group from the SPEC95

suite;

VMbench 3 benchmarks Nastran, ProE, and

Verilog simulate VM behavior of

commercial applications NASTRAN
(mechanical analysis, Computerized

Structural Analysis & Research Cor-

poration), Pro/ENGINEER (mechan-
ical design, Parametric Technology

Corporation), and Verilog-XL (elec-

tronic simulation, Cadence Design
Systems, Inc.);

Verilog-XL commercial engineering application
(electronic simulation) from Cadence

Design Systems, Inc;

Table 1: Applications

Metrics Description

TLB Misses Number of TLB misses in 1000's.

(1000's) Data collected using Hewlett

Packard's cyclemeter tool.

TLB Time Estimated TLB miss overhead in

(m:s) minutes:seconds. Calculated using
the average miss handling overhead of

70 cycles for a PA-8000.

Total Time Benchmark's total execution time

(m:s) in minutes:seconds. Measured using

the time command.

User Time Time spent in user mode by the

(m:s) benchmark. Measured using the time

command.

Mem Usage Total physical memory in 4KB
(4KB) pages mapped to the benchmark's ad-

dress space, as determined at the end

of the run.

Pagesize Count of each of the pagesizes

Distribution mapped to the benchmark's address
space, as determined at the end of the

run.

Table 2: Performance Metrics

16KB pagesize, TLB misses are reduced signi�cantly.

Compared to 4KB pagesize, the memory usage in-

creased only by 5%. Beyond the 16KB chatr pagesize,

large pages do get allocated, and the memory usage

increases considerably. However, there is no further

apsi
TLB TLB Total User Mem

chatr Misses Time Time Time Usage

Pagesize 1000's m:s m:s m:s 4KB

4KB 132747 0:52 2:47 2:46 600

16KB 392 *** 2:05 2:05 630

64KB 51 *** 2:05 2:05 649

256KB 37 *** 2:05 2:05 713

1MB 36 *** 2:05 2:05 905

4MB 35 *** 2:05 2:05 905

compress

TLB TLB Total User Mem

chatr Misses Time Time Time Usage

Pagesize 1000's m:s m:s m:s 4KB

4KB 53378 0:21 2:24 2:22 8947

16KB 115 *** 2:03 2:03 8957

64KB 48 *** 2:03 2:02 8985

256KB 33 *** 2:03 2:02 9129

1MB 29 *** 2:04 2:03 9257

4MB 28 *** 2:03 2:02 9769

vortex

TLB TLB Total User Mem

chatr Misses Time Time Time Usage

Pagesize 1000's m:s m:s m:s 4KB

4KB 156828 1:01 3:25 3:24 14571

16KB 81192 0:32 2:57 2:56 15083

64KB 41401 0:16 2:41 2:40 15427

256KB 14668 0:06 2:30 2:29 15603

1MB 242 *** 2:23 2:22 15795

4MB 50 *** 2:23 2:22 16563

Table 3: Results for apsi, compress, and vortex

performance improvement, because TLB misses are no

longer a signi�cant overhead. For the benchmark com-

press, with 4KB pagesize, the predominant compo-

nent of TLB misses are due to dynamically-allocated

(dynamic) data references. TLB misses are reduced

with 16KB chatr pagesize. The increase in memory

usage is negligible. With 16KB and larger chatr page-

sizes, TLB miss overhead becomes insigni�cant. The

benchmark vortex also bene�ts from dynamic data

being mapped using large pagesizes. The TLB miss

overhead is reduced gradually as the chatr pagesize

is increased from 4KB to 1MB. The reduction in to-

tal time closely follows the reduction in the estimated

TLB miss overhead.

As shown in Table 4, all three VMbench bench-

marks bene�t from using large pagesize mappings for

dynamic data. All three benchmarks are trace driven,

and a command-line parameter speci�es the granular-

VMbench Nastran
TLB TLB Total User Mem

chatr Misses Time Time Time Usage

Pagesize 1000's m:s m:s m:s 4KB

4KB 739179 4:38 9:56 9:53 11188

16KB 299314 1:56 6:40 6:37 12142

64KB 83808 0:33 4:56 4:54 13378

256KB 969 *** 4:18 4:17 13730

1MB 112 *** 4:18 4:16 13922

4MB 101 *** 4:18 4:16 14434

VMbench ProE

TLB TLB Total User Mem

chatr Misses Time Time Time Usage

Pagesize 1000's m:s m:s m:s 4KB

4KB 230495 1:30 3:06 3:05 20557

16KB 129450 0:50 2:16 2:15 21543

64KB 65804 0:26 1:46 1:45 22563

256KB 16628 0:06 1:21 1:20 22627

1MB 95 *** 1:13 1:12 22819

4MB 31 *** 1:13 1:12 23587

VMbench Verilog

TLB TLB Total User Mem

chatr Misses Time Time Time Usage

Pagesize 1000's m:s m:s m:s 4KB

4KB 408487 2:39 5:22 5:16 53127

16KB 178919 1:10 3:42 3:39 53802

64KB 46225 0:18 2:43 2:41 53810

256KB 1407 *** 2:21 2:19 53858

1MB 105 *** 2:20 2:19 54050

4MB 88 *** 2:20 2:19 54306

Table 4: Results for Nastran, ProE, and Verilog

ity of dynamic allocation (malloc size). The malloc

size of 16MB is used in the Nastran benchmark, and

hence large pagesizes can be exploited for the heap.

The benchmark ProE on the other hand, makes mal-

loc requests in small varying increments, and yet, ben-

e�ts from large pages because of heap growth-rate ad-

justment discussed in Section 6. The benchmark Ver-

ilog uses a malloc size of 16KB. Nonetheless, it bene-

�ts from larger chatr pagesizes, also because of heap

growth-rate adjustment.

Results from Cadence Design's Verilog-XL, a

real world application, are presented in Table 5.

Verilog-XL is a digital simulator that allows an en-

gineer to test the logic of a design. Verilog-XL su�ers

from TLB misses primarily due to dynamic data ref-

erences. The text and the initialized data sizes consti-

tute less than 5% of the total memory usage.

Some interesting observations can be made from

TLB TLB Total User Mem
chatr Misses Time Time Time Usage Pagesize Distribution

Pagesize 1000's m:s m:s m:s 4KB 4KB 16KB 64KB 256KB 1MB 4MB 16MB

4KB 601116 4:23 38:32 38:19 33818 33818

16KB 317135 2:19 35:59 35:47 33924 1124 8200

64KB 104463 0:46 33:33 33:21 33996 1044 14 2056

256KB 23840 0:10 32:36 32:25 34193 1113 14 8 514

1MB 6403 0:03 32:27 32:16 34362 1114 16 10 12 126

4MB 3523 0:02 32:23 32:12 34641 1113 14 8 13 3 31

16MB 2844 0:01 32:20 32:10 36666 1114 16 10 12 3 1 8

Table 5: Performance Results for Verilog-XL

Table 5. First, as the chatr pagesize is increased from

4KB to 256KB, the performance gain realized is higher

than the gain from TLB miss reduction. One possi-

ble reason for the additional gain could be reduced

number of virtual faults. Second, Verilog-XL does

not show as dramatic a performance improvement as

VMbench Verilog, the synthetic version. This lack

of correlation is due to VMbench Verilog simulating

only the memory reference behavior, and not the com-

putation performed by the real application. Third,

both Verilog-XL and VMbench Verilog realize most

of the performance gain when 256KB pagesize is used.

Fourth, even with large chatr pagesizes, over 1000 4KB

mappings remain. Some of these mappings belong to

shared libraries that were not chatr'ed to use large

pagesizes.

Table 5 demonstrates the bene�ts of heap growth-

rate adjustment in a real application. This technique

facilitates the use of large pagesizes, in spite of the ap-

plication making requests to grow the heap by small

increments. Note that with heap growth-rate adjust-

ment, the wasted heap allocation can be at most the

chatr pagesize for program data. The 256KB page-

size o�ers most of the performance improvement for

Verilog-XL. This pagesize improves performance by

over 15% with only a 1% increase in memory usage.

10 Summary and Conclusion

We have implemented multiple pagesize support in

HP-UX, using the existing 4KB pagesize based hard-

ware dependent and hardware independent VM data

structures. By using this "replication" based represen-

tation, we are not taking advantage of large pagesize

based structures that are more e�cient in space, and

possibly more e�cient in time. On the other hand,

our approach entails no more overhead than when all

mappings are 4KB pagesize; our primary goal was to

reduce the TLB miss overhead. We use a buddy sys-

tem allocator for allocating and freeing multiple pa-

gesizes. Our implementation creates large pages at

fault-service time for zero-�lled memory, page-ins from

secondary storage for UFS, NFS, and VxFS, page-ins

from swap space, and copy-on-write. We have a page

replacement module that handles multiple pagesizes.

Our performance measurements show that despite

the seemingly high overhead of operating on 4KB

based data structures, our approach to multiple pa-

gesize support o�ers signi�cant performance improve-

ment for a variety of benchmarks and a real world

application.

Acknowledgments

Thanks to Orran Krieger, the shepherd for our pa-

per, for his detailed and insightful comments that

helped improve the presentation. We are grateful to

the anonymous referees, Anurag Acharya, and Joe

Barrera for their comments on the paper. We ap-

preciate the feedback on an early version of the pa-

per, from Eric Hamilton, Duncan Missimer, and Hal

Prince. Thanks to Venkatesh Radhakrishnan for his

comments on a near-�nal version. Jun Su helped us

with measuring the performance of Verilog-XL.

Bill Taylor was the project manager. Eeman Wong

wrote the functional and reliability tests. Jyothy

Reddy contributed to the initial version of the pageout

path to handle multiple pagesizes. Cli� Mather imple-

mented kernel support for pagesize hints, changes to

HDL functions, and added hooks for collecting large

page statistics. Kurt Peterson performed design re-

views and code reviews for the project, and imple-

mented the �nal version of the pageout path. Balakr-

ishna Raghunath implemented pdir support, and the

allocator. Indira Subramanian investigated alterna-

tives for multiple pagesize support, implemented the

fault-path, and wrote this paper.

References

[1] M. J. Bach. The Design of the UNIX Operating

System. Prentice-Hall, Inc., 1986.

[2] K. Bala, M. F. Kaashoek, and W. E. Weihl.

Software Prefetching and Caching for Translation

Lookaside Bu�ers. In Proceedings of the First

USENIX Symposium on Operating Systems De-

sign and Implementation, pages 243{253, Novem-

ber 1994.

[3] P. Bannon and J. Keller. Internal Architecture of

Alpha 21164 Microprocessor. In Compcon Digest

of Papers, pages 79{87, March 1995.

[4] J. B. Chen, A. Borg, and N. P. Jouppi. A Simu-

lation Based Study of TLB Performance. In Pro-

ceedings of the 19th Annual International Sym-

posium on Computer Architecture (ISCA), pages

114{123, May 1992.

[5] D. Comer. The Ubiquitous Btree. ACM Comput-

ing Surveys, pages 121{137, June 1979.

[6] P. J. Denning. The Working Set Model for Pro-

gram Behavior. Communications of the ACM,

pages 323{333, May 1968.

[7] D. Greenley et al. UltraSPARC: The Next Gen-

eration Superscalar 64-bit SPARC. In Compcon

Digest of Papers, pages 442{451, March 1995.

[8] J. Huck and J. Hays. Architectural Support for

Translation Table Management in Large Address

Space Machines. In Proceedings of the 20th An-

nual International Symposium on Computer Ar-

chitecture (ISCA), pages 39{50, May 1993.

[9] T. Kagimasa, K. Takahashi, and T. Mori. Adap-

tive Storage Management for Very Large Vir-

tual/Real Storage Systems. In Proceedings of the

18th Annual International Symposium on Com-

puter Architecture (ISCA), pages 372{379, May

1991.

[10] G. Kane. PA-RISC 2.0 Architecture. Prentice-

Hall, Inc., 1996.

[11] Y. A. Khalidi, M. Talluri, M. N. Nelson, and

D. Williams. Virtual Memory Support for Mul-

tiple Page Sizes. In Proceedings of the Fourth

Workshop on Workstation Operating Systems

(WWOS), pages 104{109, October 1993.

[12] S. R. Kleiman. Vnodes: An Architecture for Mul-

tiple File System Types in Sun UNIX. In Proceed-

ings of the Summer USENIX Technical Confer-

ence, pages 238{247, June 1986.

[13] D. E. Knuth. The Art of Computer Programming,

Volume 1: Fundamental Algorithms. Addison-

Wesley, third edition, 1997.

[14] R. B. Lee. Precision Architecture. IEEE Com-

puter, pages 78{91, January 1989.

[15] S. J. Le�er, M. K. McKusick, M. J. Karels, and

J. S. Quarterman. The Design and Implemen-

tation of the 4.3 BSD UNIX Operating System.

Addison-Wesley Publishing Company, 1989.

[16] MIPS R10000 Microprocessor User's Manual,

Version 2.0. MIPS Technologies, Inc., 1996.

[17] J. C. Mogul. Big Memories on Desktop. In Pro-

ceedings of the Fourth Workshop on Workstation

Operating Systems (WWOS), pages 110{115, Oc-

tober 1993.

[18] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and

B. N. Bershad. Reducing TLB and MemoryOver-

head Using Online Superpage Promotion. In Pro-

ceedings of the 22nd Annual International Sym-

posium on Computer Architecture (ISCA), pages

176{187, June 1995.

[19] SPEC. SPEC Newsletter, September 1995.

[20] M. Talluri. Use of Superpages and Subblocking in

the Address Translation Hierarchy. Ph.D. Thesis,

University of Wisconsin-Madison Computer Sci-

ences, August 1995.

[21] M. Talluri and M. D. Hill. Surpassing the TLB

Performance of Superpages with Less Operating

System Support. In Proceedings of the Sixth In-

ternational Conference on Architectural Support

for Programming Languages and Operating Sys-

tems (ASPLOS), pages 171{182, October 1994.

[22] M. Talluri, M. D. Hill, and Y. A. Khalidi. A

New Page Table for 64-bit Address Spaces. In

Proceedings of 15th ACM Symposium on Operat-

ing Systems Principles, pages 184{200, December

1995.

[23] M. Talluri, S. Kong, M. D. Hill, and D. Patterson.

Tradeo�s in Supporting Two Page Sizes. In Pro-

ceedings of the 19th Annual International Sym-

posium on Computer Architecture (ISCA), pages

415{424, May 1992.

[24] U. Vahalia. UNIX Internals { The New Frontiers.

Prentice-Hall, Inc., 1996.

