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Abstract
In a network using links with diverse properties, a packet
flow that is fine tuned for some links (by selecting a proper
packet size, transmission rate, encryption method, etc.)
may be inappropriate for other links. Ability to change the
flow properties over segments of the network allows flows
with different characteristics to coexist; making it possi-
ble to adapt to diverse link properties. Application-specific
adaptation mechanisms (such as proxies) do not force adap-
tations on every packet flowing over the link and are there-
fore insufficient for this purpose. We propose the concept of
transformer tunnels that force adaptations on all the pack-
ets flowing through them. Transformer tunnels can coex-
ist with proxies because the adaptations provided by both
are independent of each other. Transformer tunnels pro-
vide adaptations by means of transformation functions. By
attaching various transformation functions to such tunnels,
we can efficiently fine tune the flow properties. We also pro-
vide an API for developing transformation functions. We
have implemented transformer tunnels and have used them
in our wireless network. In this paper, we present the effects
on mobile hosts that use this mechanism to transform flows
over the last-hop link for reducing losses during handoffs,
and for improving the link utilization.

1 Introduction

The availability of various networking technologies leads
to a flow of packets over links with diverse properties. Mo-
bile hosts increase this diversity by using wireless technolo-
gies such as WaveLAN [35], CDPD [2], Metricom Rico-
chet [25], Satellites, cellular modems, and so on. Some-
times such wireless networks are used as the backbone tech-
nology as well [17]. In such networks, some links are
cheap, fast, reliable, and secure; whereas some links are ex-
pensive, slow, lossy, and insecure. Thus, packet flow that is
fine tuned for some links (by selecting a proper packet size,
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transmission rate, encryptionmethod, etc.) may be inappro-
priate for other links. For example, sending large packets
over reliable links improves throughput, whereas sending
large packets over lossy links increases the probability of
retransmissions. Further, a user can have access to multi-
ple devices such as PDAs, laptops, cellular phones and can
connect using different networking technologies at differ-
ent times and different places (as in overlay networks [7]).
Such dynamic changes makes the fine tuningof the flow dif-
ficult.

A mobile user invariably encounters a heterogeneous
network consisting of segments with diverse properties
(bandwidth, asymmetry, reliability, etc.). We need the abil-
ity to modify the packet flow over various segments of
a route for adapting to such properties. For such adap-
tations, we propose the concept of transformer tunnels.
Transformer tunnels transform the packet flow to provide
application-transparent, route-specific adaptations. Route-
specific adaptations, unlike adaptations that are forced on
all hosts using a link, allow different hosts using the link to
simultaneously request different adaptations. The adapta-
tions depend on the transformation functions attached to the
tunnel. We have implemented the transformer tunnels and
have used them over our wireless network to provide adap-
tations for wireless links. In this paper, we show how mo-
bile hosts can use transformer tunnels to change packet flow
over the last-hop link. We also provide an API for adding
new transformation functions to the system. Using this API,
we have implemented some transformation functions such
as encrypting data to provide security, sending packets in
bursts to allow energy efficient operations, combining small
packets and compressing data over slow links to improve
link throughput, and so on.

The paper is organized as follows. Section 2 explains
the concept of transformer tunnels, and how mobile hosts
use such tunnels to achieve adaptation over the last-hop
link. Section 3 details the tunneling mechanism. Section 4
describes the transformation functions that we built and
tested. It also describes some other functions that can be
built within the same framework. Section 5 describes the



experiments we performed to evaluate the transformer tun-
nels. Section 6 describes the related work. The paper con-
cludes with our plans to extend this work on transformer
tunnels.

2 Transformer Tunnels
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Figure 1: Transformer tunnel

Packet flow over a network segment is modified by placing
a transformer tunnel between two end nodes of the segment.
Figure 1 shows how packets undergo transformations at the
end points of the tunnel. Packets entering the tunnel are
modified — either by changing the content, or by changing
the way they are transmitted — to fine tune the flow accord-
ing to the segment properties. Original packets are restored
at the other end of the tunnel. Adaptation is thus achieved
without affecting rest of the network.

Adaptation over the last-hop link for mobile hosts is
achieved by placing similar tunnels over the last-hop link.
Even on the same last-hop link, different hosts can request
different adaptations. As an example, Figure 2 shows three
mobile clients, all requiring different adaptations. Client 1
requires data encryption for its sensitive data because wire-
less links can be easily snooped upon. Client 2 needs bursty
transmission so that it can conserve energy by putting its
network interface in sleep mode. At the same time, client 3
requires both the adaptations. This is achieved by establish-
ing transformer tunnels between the base station and each
of the clients. The base station then acts as a transforma-
tion agent for the clients. The transformation agent can be
placed anywhere on the network as long as it can intercept
the client’s packets. In our network, the base station is the
logical choice for transformation agents.

Use of proxies has been suggested in the literature for
similar adaptations [15, 26, 37]. Transformer tunnels are
not a replacement for proxies; rather they supplement prox-
ies. Transformer tunnels differ from proxies in three ways.
Layer of operation: Proxies usually operate at the appli-
cation layer. Transformer tunnels, on the other hand, pro-
vide a low-level application-transparent adaptation. Thus
proxies and transformer tunnels can coexist. Proxies can
perform application-specific filtering of data (for example,
dropping frames in a video stream), whereas transformer

tunnels can provide link-specific optimization of the flow
(for example, deferring packets for a mobile host till it is in
range of an infostation [16]).
Mandatory adaptation: High-level proxies operate on
streams associated with a particular application or an
application-layer protocol like HTTP; whereas transformer
tunnels force adaptations on all the packets passing through
them. This feature is required for link dependent adapta-
tions that need to control the way packets are transmitted
(for example, making a flow bursty).
End-to-end semantics: Transformations performed by
transformer tunnels are hidden from higher layers of the
protocol stack. So, if the protocols being used have a no-
tion of a connection (TCP, for example), then unlike prox-
ies, transformer tunnels do not affect the end-to-end seman-
tics of such connections.

2.1 Tunneling Mechanism

Applications configure transformer tunnels by attaching
various transformation functions to them. The tunnels ap-
ply these functions to all the packets passing through them
and send the modified packets over the network. The tun-
nels support composition of transformation functions. For
example, small compressed packets can be combined in
larger packets by another transformation function to im-
prove the link utilization. Depending on the link conditions,
a mobile host can decide what features are required and can
ask the base station to provide an appropriate transformer
tunnel. Thus, whenever the link conditions change, the tun-
nel can be reconfigured. This can be achieved by combin-
ing the transformer tunnels with our work on exposing link
conditions to higher layers of the protocol stack [32].

Depending on the transformation functions attached, a
transformer tunnel modifies incoming packets. The mod-
ified packets contain sufficient information so that they can
be restored at the other end of the tunnel. As with any other
tunnel, a transformer tunnel uses the point-to-point address
of the tunnel as the packet’s destination address. The origi-
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Figure 2: Transformer tunnels on last-hop links



nal destination address, if different, is stored in the data por-
tion of the packet. Some metadata (list of functions to apply
to restore the original packet) is also added to the packet.

Transformer tunnels provide a way to build a restricted
form of active networks [34]. In case of transformer tun-
nels, the packets cannot be transformed at intermediate
nodes. All the transformations are performed at the end
points of the tunnels. This restriction allows an efficient im-
plementation and is still powerful enough to deal with the
problems introduced by mobility.

Transformations performed by the transformer tunnels
have to be undone at the other end. For this purpose, once
the transformations are performed, the transformer tunnel
changes the protocol field in the IP header to IP XFORM.
At the other end of the tunnel, the protocol handler for
IP XFORM removes all the metadata from the packet, per-
forms the inverse transformations, restores the original pro-
tocol, and puts the packet back in the IP input queue. Some
transformations do not change the packet contents (incom-
pressible packets, delayed packets, etc.) and hence do not
add any metadata to the IP header. If none of the trans-
formations add any metadata, the packet is delivered with
the original protocol, thereby avoiding any overheads at the
other end of the tunnel.

A simpler approach would have been to use IP encapsu-
lation. The source address in the new IP header (the outer
header used for encapsulation) is not used by the receiver
to decapsulate the packet. Moreover, if the the point-to-
point address of the tunnel is same as the destination ad-
dress, the new IP header will have the same destination ad-
dress. Therefore, to reduce the number of bits used, we
modify the original IP header. We add the original proto-
col number (2 bytes), a flag indicating whether the original
destination address is same as the point-to-point address of
the tunnel (1 byte), and if required, the original destination
address (4 bytes) to the metadata. IP encapsulation would
require 20 bytes instead of 7 bytes used by our scheme. (We
need just 3 bytes if the destination address is same as the
point-to-point address of the tunnel.) Therefore, we save at
least 49 �sec on a 2-Mbps WaveLAN.

2.1.1 Adding New Transformation Functions to the
System

Transformer tunnels do not assume a fixed set of transfor-
mation functions. The transformation functions can be ar-
bitrary as long as the mobile host and the base station agree
on them. We provide an API to add new functionalities (us-
ing the support for loadable modules provided by Linux) to
the system. Any module defining a new functionality has to
register the transformation function, and an optional private
ioctl, with the system by calling the following function.

int add tunnel func (unsigned char id,

int (*func) (struct device *dev,
struct sk buff **skb,

struct stunnel info *info),

int (*ioctl) (struct device *dev,

int cmd, void *data, int len));

id: unique id for the functionality
func: the transformation function
ioctl: private ioctl for the functionality

The transformation function (func) is called with three
parameters. The first parameter (dev) is the tunnel device.
The second parameter (skb) is the entire packet with all
the headers. (Linux uses sk buff structure to pass packets
around.) The third parameter (info) must be filled in by func
with the id of the inverse transformation that should be per-
formed at the other end to restore the packet.

The transformation function has to return either of the
two values: PACKET SENT or PACKET NOT SENT.
In general, the function will just change the packet con-
tents and let the tunnel handle the actual transmission
by returning PACKET NOT SENT. Functions that need
to control the way packets are transmitted should return
PACKET SENT.

Some modules may want to provide additional ioctls. For
example, a module that provides buffering requires an ioctl
to flush all the buffered packets. Other modules may not
need any ioctls. The corresponding parameter can be null
in such cases.

While unloading the modules, the functionality has to be
removed from the system by invoking the following func-
tion.

int remove tunnel func (unsigned char id);

id: id specified when loading the module

2.1.2 Attaching Transformation Functions to Tunnels

Applications attach transformation functions to a trans-
former tunnel using the following ioctl call for the tunnel
device.
sd = socket (AF INET, SOCK DGRAM, 0);

struct ifreq rq;

rq.ifr name = <tunnel name>;
rq.ifr data = <id for the function

to be added, priv>

ioctl (sd, SIOCATTACHFUNC, &rq);

The parameter priv is used for passing information to the
transformation function. For example, an encryption func-
tion may use this as the encryption key. A new SIOCDE-
TACHFUNC ioctl is used to detach transformation func-
tions from the tunnel.



3 Establishing and Configuring Transformer
Tunnels

A transformer tunnel is established like any other tunnel:
by specifying the local host’s IP address as one end of the
tunnel and the remote host’s IP address (point-to-point ad-
dress) as the other end. The tunnel transforms all the pack-
ets that are given to the tunnel device, stores the original
destination address and the original protocol in the body
of the packet, and replaces the destination address with the
address of the other end of the tunnel. It then performs a
routing-table lookup and prepares the packet for delivery.
Normal IP routing then reroutes the packet to the new des-
tinationaddress. In rest of the paper, discussion about trans-
former tunnels is restricted to tunnels over the last-hop link
for mobile hosts. Nevertheless, the discussion is valid for
any other transformer tunnel.

A transformer tunnel for a mobile host is established be-
tween the mobile host and its base station. All packets des-
tined for the mobile host are forced to go over the tunnel
by adding an entry to the routing table at the base station.
Once established, the tunnel has to be configured (using the
API described in section 2.1.2) to specify the required trans-
formations. The transformation functions are applied in the
order in which they are attached to the tunnel.

To allow the mobile host to control the tunnel configura-
tion, we have provided a tunnel manager at the base station.
Whenever the mobile host requests some adaptation on the
last-hop link, the tunnel manager establishes and configures
a transformer tunnel accordingly. Moreover, whenever the
mobile host moves to a new location, it informs the tunnel
manager at the previous location. The tunnel manager then
changes the end point of the corresponding tunnel to the
new location, forwards all the pending packets, and closes
the tunnel. This is a client-server architecture where the
client (the mobile host) can remotely configure tunnels at
the server (the base station). Thus, the mobile host can add
or delete transformation functions at any time. Typically,
such a decision will be taken by the mobile host when con-
ditions change. For example, when operating on battery
power, it may request that the packets be delivered in bursts
so that the network interface can be put in sleep mode in
between the bursts. It may then request removal of this fea-
ture when operating off an automobile battery. For certain
adaptations, the mobile host may have to perform additional
functions. For example, if the mobile host requests bursty
flow, then it has to monitor the flow, and if the inactivity ex-
ceeds a certain threshold, it has to put its network interface
in sleep mode.

The tunnel manager has the following features.
Reliabilityof the adaptation requests: Whenever the tun-
nel manager receives a request, it sends back a reply in-
dicating whether the action was successful. It is the mo-
bile host’s responsibility to ensure that the request is reli-
ably sent to the base station. If it fails to receive the reply,

Initialization code
delayed packet = null;

reassemble (p) f
if (p is large) f

send delayed packet; send p;
delayed packet = null;
return PACKET SENT;

g
if (delayed packet exists) f

if (p and delayed packet can be combined) f
combine and send;
delayed packet = null;
return PACKET SENT;

g else f
send delayed packet;
delayed packet = p;
set timer; return PACKET SENT;

g
g else f

delayed packet = p;
g

g

Timer expires:
send delayed packet; delayed packet = null;

Figure 3: Reassembly algorithm

it should retransmit the request. If the reply from the tunnel
manager is lost, then retransmitting the request may recon-
figure the tunnel with the same parameters. However, re-
configuration leaves the behavior of the tunnel unchanged
and hence is harmless.

Ability to bypass the transformations: Transformer tun-
nels do not transform the reply packets sent by the tunnel
manager. (Otherwise the reply may be delayed if the tun-
nel transformation function requires so.) This is achieved
by specifying that the packets associated with the socket
that the tunnel manager uses should not be modified by the
tunnel. Other applications that need to bypass some of the
transformations can make similar requests. Such requests
are made using an ioctl call for the tunnel device.

Soft state: Mobile hosts can move away without proper
deregistration. The base stationcannot keep the tunnel open
indefinitely because it has finite resources. The mobile host
thus has to renew the request periodically. If the tunnel is
not renewed periodically, the base station removes the tun-
nel. In other words, the base station maintains soft-state in-
formation about the transformation functions required by
the mobile host. The state is regenerated by periodic re-
newals.



4 Transformation Functions

The API provided for developing transformation functions
takes away developer’s responsibility of dealing with de-
vices. New transformation functions can therefore be de-
veloped easily. Using this API, we have implemented five
transformation functions.

Reassembly: A packet flowing from a fixed host to a
mobile host typically traverses links with different MTUs
(Maximum Transfer Unit). To eliminate fragmentation,
TCP sometimes uses path-MTU–discovery mechanism and
selects the smallest MTU along the path as the TCP segment
size. (In practice, many TCP implementations select a pes-
simistic segment size of 536 bytes to avoid the overheads
of path-MTU discovery.) Some wireless devices, such as
WaveLAN, have a large MTU (1500 bytes). A narrow link
along the path means that packets much smaller than the
link MTU will be sent over the wireless link. The reassem-
bly transformation function combines such packets to im-
prove the link utilization and reduces cost if the users are
charged on a per-packet basis (as in CDPD networks) for
their network usage. The combined packet requires just one
link-layer header, thereby offsetting the extra bits sent as
metadata. Moreover, reducing the number of packets re-
sults in lowered contention over broadcast links.

The reassembly function uses a mechanism similar to
TCP delayed ACKs. Every small packet is delayed by a
small amount of time. If another small packet arrives in
this interval, both the packets are combined. Otherwise, the
packet is sent as is. This reassembly mechanism is differ-
ent from IP reassembly (performed after IP fragmentation).
A reassembly function combines small packets, along with
their IP headers, to get a larger packet. The mobile host re-
generates all the original packets when it receives such a re-
assembled packet. Thus, this mechanism can be used even
for protocols that honor message boundaries (for example,
UDP).

We use the reassembly algorithm shown in Figure 3. A
reassembly tunnel maintains a single packet buffer for ev-
ery mobile host that requests this adaptation. The maximum
time for which packets are delayed is a parameter specified
by the mobile host. The mobile host has to decide the maxi-
mum delay it can tolerate. A larger delay value increases the
probability of two small packets being combined to create
a larger packet. It is possible to extend the strategy to com-
bine more than two packets if more delay is tolerable. To
simplify the implementation we combine at most two pack-
ets.

Energy savings: Wireless devices usually have power-
saving features that are built in the hardware. Software
strategies to take advantage of these features are gaining
importance [24]. We demonstrate a simple energy-saving
strategy by using the transformer tunnels.

For devices like WaveLAN, energy consumed while
waiting for a packet is about seven to eight times higher than
the energy consumed when the card is in sleep mode. Thus
the amount of time the card can be put in sleep mode deter-
mines how much energy can be saved [31]. The mobile host
may put its WaveLAN card in sleep mode only if it knows
when not to expect packets. This knowledge can be pro-
vided by making the traffic over the wireless link bursty and
by informing the mobile host about the time slots when the
bursts are sent.

In our implementation, the base station buffers all pack-
ets for the mobile host whenever the energy-savings adap-
tation is requested. The base station also sends out peri-
odic beacons that contain a list of mobile hosts who have a
packet pending. The mobile host periodically wakes up to
listen to these beacons. If it has a pending packet, it requests
that the packet be sent (“card spin-up”). In response, the
base station sends all the buffered packets for this host and
removes the energy-savings transformation function from
the tunnel. The mobile host then stays awake. Based on
some inactivity threshold, it decides to enter the energy-
savings mode again (“card spin-down”). This “spin-up–
spin-down” mechanism has already been used for CDPD
links [23]. The energy-savings transformation function al-
lows any other device to use the same mechanism with-
out modifying the corresponding device driver, but is useful
only when energy required to power up and power down the
device is low (for example, WaveLAN [31].)

The mobile host can sleep for as long as it wants if the
base station can buffer any number of packets. However,
the buffer space at the base station is limited. Therefore,
the mobile host has to wake up periodically. (Mobile-IP im-
plementation [11] requires that the mobile hosts renew their
registration every 5 seconds. So in our implementation, a
mobile host cannot sleep for more than 5 seconds.) More-
over, the beaconing interval at the base station should be
small enough to avoid buffer overflow during the interval.

Buffering: Whenever a mobile host performs a handoff,
some packets are lost. These losses can be reduced by
buffering the last few packets and forwarding them to the
mobile host’s new location [9].

A buffering tunnel acts like a write-through buffer that
buffers the last few packets sent to the mobile host. When-
ever the mobile host experiences a burst loss, which may
be due to a handoff, it asks the tunnel manager to flush the
buffer (retransmit the last few packets). We have modi-
fied the mobile-IP code at the mobile host so that it informs
the tunnel manager at the previous base station whenever
a handoff occurs. In response, the tunnel manager changes
the end point of the tunnel to point to the new base station
and forwards the buffered packets.

Encryption: Wireless links are more susceptible to snoop-
ing. Some applications may want to encrypt their data over



Transformation Function When to use Side effects

Reassembly large MTU, increases latency for isolated packets,
cost per packet large packets more likely to be

lost on noisy links
Encryption insecure links processing overheads
Compression slow links overheads for incompressible data
Buffer mobile clients requires buffers at the base station
Energy Savings power constraints increases latency for first few

packets in idle mode

Table 1: Currently implemented transformation functions

such links. A transformer tunnel with a simple encryption
function may be used here.

Depending on the security requirements, various encryp-
tion methods can be used. To demonstrate the feasibility of
such a transformation function, we have used a simple XOR
function to encrypt data [33]. A more secure method can be
used where the mobile host and the base station share a se-
cret key. This secret key can be established (by using pub-
lic key encryption) when the mobile host requests encryp-
tion over the link. If required, a sophisticated IP-encryption
mechanism [1] may be used. We do not deal with the is-
sue of key management as it is orthogonal to the mechanism
of transformer tunnels. Once the key is obtained, it can be
passed as an argument to the encryption function (by using
the API described in section 2.1.2).

Compression: On slow links, the time for transmitting
packets is large and compressing packets before transmis-
sion improves performance. Header compression tech-
niques [10, 21] have been proposed to improve performance
for such links. On very slow links, compressing the data
portion leads to even more gains [28, 29]. Compressing
data is not useful on fast links, because the compression
and decompression overheads offset the savings obtained
by sending fewer bits. On slow links, however, a fast com-
pression function (where the time per byte for compression
and decompression multiplied by the bandwidth is less than
the fraction of bytes saved) leads to improved performance.

We have used a simple compression function provided
by the minilzo library [27]. If the packet is incompressible,
we send the original packet without any modifications. The
LZO compression method is fast enough to be useful even
on WaveLAN. For slower devices like CDPD, it will lead to
more gains. To increase the gains further, a more expensive
compression function can be used on slow devices.

The conditions under which these transformations are
useful are enumerated in Table 1. Many other transforma-
tion functions can be built in the same framework. We de-
scribe some of them here. These functions have not been
implemented yet in the transformer tunnels framework.

Snoop TCP: Losses on wireless links are usually due to
noise on the link. TCP interprets all losses as a symptom
of congestion and slows down the transmission. Snoop
TCP [6] deals with this problem by having faster retrans-
missions of lost packets on the wireless link. Transforma-
tion tunnels provide a simple framework for implementing
Snoop TCP.

Dealing with asymmetry: Asymmetric links (where the
uplink bandwidth is small as compared to the downlink
bandwidth) result in poor TCP performance [12, 5]. A slow
uplink results in underutilization of the fast downlink be-
cause TCP senders decide the transmission rate based on the
frequency of incoming ACKs.

A transformation function that suppresses a few TCP
ACKs reduces the load on the uplink [5]. Dropped ACKs
do not affect the reliability of the protocol because TCP
ACKs are cumulative. However, ACK filtering leads to
bursty transmission from the sender [5]. To alleviate this
problem, the base station can regenerate filtered ACKs and
can send them to the sender at a steady rate [4].

Support for proxies: Transformation functions at the link
layer are unaware of the semantics of the data. Proxies
can do better filtering based on the data-type–specific op-
erations. A module can be written that provides support
for developing proxies. If required, this module can propa-
gate packets to some filter application. Other packets can be
sent over the link without changes. Application filters can
take appropriate actions and send the filtered packets back
onto the network. Such a module would be similar to the
“low-level proxies (LLP)” [37] for application-independent
adaptation.

5 Evaluation

This section describes the experiments we performed to
evaluate the transformer tunnels. For all our experiments,
we used a wireless LAN configuration. The wireless LAN
consists of fixed hosts (or base stations) and mobile hosts.
The fixed hosts are Pentium (133 MHz) based desktop ma-
chines running the Linux operating system (version 2.1.24).
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Figure 4: Overhead at the sender
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Figure 5: Overhead at receiver

The mobile hosts are Pentium (133 MHz) based laptops and
also run Linux (version 2.1.24). The base stations as well
as the mobile hosts use 2-Mbps WaveLAN technology for
wireless communication. In addition, the base stations have
a wired interface to a 10-Mbps Ethernet. To support mobil-
ity, the machines run the mobile-IP code developed at the
State University of New York at Binghamton [11].

5.1 Overheads

The overheads introduced by the transformer tunnels de-
pend on the adaptations requested. A complex encryption
function will lead to reduced throughput. Tunnel overheads
should thus be measured when the transformation func-
tion introduces a little extra overheads of its own. For this
purpose, we have implemented the identity transformation
function that leaves all packets unmodified. The same func-
tion is used to recover the packets at the mobile host. All
packets are sent with the new protocol IP XFORM, and
the corresponding protocol handler is invoked at the mobile
host. (In practice, such unmodified packets would be sent
without the new protocol, and no processing would be re-
quired at the other end.)

Thus the overheads involved in the process are as fol-
lows.
� Sender: The tunnel changes the IP header, invokes the

identity function, adds the metadata to the IP packet,
and recomputes the IP checksum. It then sends the
packet over the wireless interface.

� Receiver: The protocol handler for IP XFORM re-
moves the metadata, calls the identity function, re-
stores the old protocol in the IP header, and recom-
putes the IP checksum. It then sends the packet back
to the protocol stack.

To measure the overheads introduced by the transformer
tunnels, we measured (using the internal Pentium counters)
the processor cycles consumed by an identity transforma-
tion function. A transformer tunnel was established be-
tween a fixed host and a laptop. During the experiment, no

other user processes were running either on the fixed host
or on the laptop. The processor cycles were measured at
both ends of the tunnel. The measurements were taken for
ICMP (using ping) packets as well as UDP and TCP pack-
ets (using ttcp) from the base station to the mobile host. The
overheads were also measured for various packet sizes. The
results were same in all the cases. This is expected, be-
cause the operations performed by the tunnel and the iden-
tity function do not depend on the packet size or on the
protocol being used. Figures 4 and 5 show the distribution
of the overheads observed. At the base station, overheads
are around 3100 processor cycles (� 23 �s). Overhead for
restoring the packet at the mobile host are around 700 pro-
cessor cycles (� 5 �s). In both the graphs shown above, a
few (less than 5 in 3000) stray values have been discarded.

5.2 Buffering

Avg loss Avg retransmissions
% [St. Err] % [St. Err]

No buffering 2.32 [0.36] 14.19 [0.54]
With buffering 0.63 [0.16] 6.91 [0.72]
% reduction 73 54

Table 2: Effect of buffering tunnel on handoffs

To evaluate the buffering tunnel, we used raplayer and
raserver (from RealNetworks, Inc. [20]). For this experi-
ment, we used two base stations, an audio server (another
fixed machine), and a mobile host. Handoffs were forced
every 10 seconds. The mobile host fetched audio files (total
1.2 MB). The buffer size used was 5 packets. Table 2 shows
average percentage of packets lost (could not be played)
due to handoffs and the percentage of packets that had to
be resent by the server. The statistics were gathered from
the server’s access log files. The server was run in a mode
where it logs all the information about lost packets.



Data type Bytes saved Compression time Decompression time
(per KB) [St. Err] (ms/KB) [St. Err] (ms/KB) [St. Err]

text 375 [0.789] 0.458 [0.001] 0.087 [0.000]
text (compressed) 0 [0] 0.303 [0.001] 0 [0]
image (GIF) 0 [0] 0.289 [0.001] 0 [0]
PostScript 469 [0.241] 0.386 [0.000] 0.090 [0.001]
PostScript (compressed) 0 [0] 0.290 [0.000] 0 [0]

Table 3: Compression

5.3 Reassembly

To evaluate the reassembly tunnel, we performed the fol-
lowing experiment. A realaudio server was placed on a
fixed machine in our network. The mobile host accessed an
audio file on the server. As before, we used raplayer to fetch
this file. raplayer’s statistics window was used to mea-
sure the number of packets that were delayed (and hence
dropped). We also measured the total number of packets on
the link. raplayer saw exactly the same number of packets
because the original packets were regenerated when the re-
assembled packets reach the mobile host. The actual num-
ber of packets on the link was measured by snooping on the
link (using tcpdump).

For the data stream in our experiment, we observed that
the inter-arrival time for packets was close to 20 ms. Thus,
we configured the tunnel with the delay parameter of 25 ms
i.e. small packets (of size 256 bytes) that could be combined
were delayed by at most 25 ms. Combined packets (each
of size 512 bytes) were delivered as soon as possible. We
observed that even with the reassembly tunnel, no packets
were lost due to delay. In other words, the quality of the au-
dio player was not affected by the reassembly transforma-
tion. At the same time, the number of packets sent over the
link (and hence the bytes used by link-layer headers) were
reduced by a factor of two.

5.4 Compression

We tested the compression function over WaveLAN. We
measured the effect of compression on three data types:
text, image and PostScript. In all the cases, we measured
the number of bytes saved by compression, the compression
overheads (measured in processor cycles, shown as time)
and the decompression overheads. We also measured these
parameters after compressing the original files with gzip.
(The GIF files were not compressed as they are already in
a compressed format.) Table 3 shows the results of the ex-
periment. The numbers are averages over 10 sessions. Dur-
ing each session, 20 files were retrieved using ncftp. The re-
sults show that for compressible files (text and PostScript),
the bytes saved due to compression more than compensate
for the compression overheads. (On a 2-Mbps WaveLAN,
assuming no transmission overheads, transferring one byte
requires 3.8 �sec.)

6 Related Work

The problem of adapting to a changing environment has
been studied extensively in the literature. Support from the
base station has been used for adaptation at various layers
of the protocol stack. I-TCP [3] and Snoop TCP [6] use
base stations to improve TCP performance for mobile hosts.
At the network layer, base stations have been used to im-
prove the performance during handoffs [9]. Even at the link
layer, use of base stations has been suggested for schedul-
ing packet transmissions to reduce losses [8]. These mecha-
nisms provide a fixed transformation function to solve spe-
cific problems introduced by mobility. Transformer tunnels
suggested in this paper is not an alternative for above solu-
tions. It merely provides a simple way of using such fea-
tures whenever they are appropriate.

Some other mechanisms extend system functionality by
interposingagents [22] between applications and the kernel.
The University of Arizona’s x-Kernel [19] provides sup-
port for composing protocols from simple elements. Pro-
tocol boosters [13] provide a way to insert such elements
into the kernel “on-the-fly”. Such protocol boosters are
similar to the transformation functions described in this
paper. Support for protocol boosters requires that every
packet be inspected by the booster code to decide if boost-
ing/deboostingis required (and a change in the kernel is also
required for providing the booster support). The transfor-
mation functions described in this paper are used for dealing
with specific link conditions rather than providing a generic
support for modifying protocols. We use a simple and re-
stricted mechanism to deal with transformations at the link
layer. In our framework, only the packets to be transformed
are sent to the tunnel, and only the packets that require in-
verse transformations are intercepted by the other end of the
tunnel. All this is achieved without any changes to the ker-
nel code.

There are application-layer adaptation techniques that al-
low greater flexibility. These techniques provide adapta-
tions that are specific to some applications or application-
layer protocols. In the Odyssey architecture [26], the gran-
ularity of data being sent over the network is decided based
on the available resources. The Daedalus system [15] uses
proxies to performs on-demand distillationof data. That in-
cludes converting color images to black-and-white images,
converting PostScript to Rich Text Format (RTF), dropping



video frames, and so on. Another way of adapting to link
conditions is by using “high-level proxies (HLP)” [37]. An
HLP allows developing proxies similar to the Daedalus sys-
tem.

There are several systems that provide mechanisms for
safely adding code to the system for configuring protocols.
For example, the SPIN operating system [14] allows dy-
namic configuration of protocols. The ANTS toolkit [36]
allows even more flexibility by shipping the processing
code along with the packet. Another approach is at lan-
guage level where the PLAN (Programmable Language for
Active Networks) [18] language is used for programs that
are carried in the packets of a programmable network. The
SwitchWare [30] project suggests use of “switchlets” for
dynamically linking new functionalities with network ele-
ments.

7 Conclusions and Future Work

Today’s networks are composed of links with diverse prop-
erties. In such networks, packet flow that is fine tuned (by
selecting a proper packet size, transmission rate, encryption
method, etc.) for some links may be inappropriate for other
links. In this paper, we have shown that transformer tun-
nels provide an efficient mechanism for transforming the
flow on various segments of a network, without affecting
rest of the network. We have demonstrated the effective-
ness of this technique by implementing it over our wireless
network to improve the link utilizationby compressing data
and reassembling small packets, and to reduce losses dur-
ing handoffs by buffering packets. We have also provided
an API for easy development of transformation functions.
This API has been used to implement the transformation
functions described in this paper. We have implemented
the tunnel manager as well that allows clients to control the
transformations performed by transformation agents.

In the current implementation, the transformations to be
performed depend on a packet’s destination. We are inves-
tigating an extension to this approach where more restric-
tive filters can be specified. This can be useful for rerout-
ing certain packets (such as rerouting all e-mail traffic to the
home server). Moreover, packets can be selectively sent to
a proxy server allowing easy development of client-proxy-
server applications.

We also plan to combine transformer tunnels with a
mechanism for exposing link conditions to higher layers of
the protocol stack [32]. This will allow automatic recon-
figuration of the tunnels in response to changes in the link
conditions.
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