USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

The FreeBSD Ports Collection

Satoshi Asami
The FreeBSD Project

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org



The FreeBSD Ports Collection

Satoshi Asami, The FreeBSD Project

asami@freebsd.org

http://www.freebsd.org/ports/

Overview

FreeBSD is an open source operating system based on
4.4BSD-Lite2, a version of UNIX from the University
of California at Berkeley. It is maintained by a group
of volunteers from around the world. In addition to pro-
viding a complete operating system, the FreeBSD project
supports an extensive collection of sanctioned third-party
software called the Ports Collection, many of which were
contributed by the users. In addition to the source form,
most of the ports are provided as binary packages too.

Port Skeletons and Distfiles

The Ports Collection consists of a single make macro file,
bsd.port.mk, and some skeleton files for each port
that describe how to compile and install the software. If
there were changes made to the original software to com-
pile it on FreeBSD, patches to reproduce those changes
are included too.

One of the items specified in the port’s Makefile is
the name and URL where the source files (“distfiles”) of
the original software are located. When the user attempts
to compile a port, they are fetched over the Internet if they
do not exist on the system. The distfiles are checksum-
verified to ensure consistency, as well as guarding against
possible Trojan horse attacks.

Since the distfiles can be fetched on demand, this al-
lows the Ports Collection itself to stay small. For instance,
with over 2,200 ports as of April 1999, all the skeleton
files total only about 70MB. In contrast, the entire set of
distfiles, most of which are compressed archive files, are
over 1.4GB. It takes over 8GB to extract and compile them
all at once.

Packages

In addition to providing an easy way to compile programs,
bsd.port . mk provides a set of commands to create bi-
nary packages of installed ports. These packages, which
are compressed archive files with some additional infor-
mation, can be installed on a FreeBSD system using the
pkg_add command. They contain a listing of the en-
tire set of installed files, so they can also be deleted com-
pletely, using the pkg_delete command. Each release

of FreeBSD ships with a complete set of packages. Cur-
rently, there are about 1.2GB of packages.

The Ports Collection framework always supported a
simple top-down build of packages. In other words, when
the user types “make package” at the root directory
of the ports hierarchy, bsd.port .mk will arrange for
the build process to go into every single subdirectory and
build packages for each of them, one by one. This method,
akin to the way many large software trees are built, has
exhibited many problems as the Ports Collection grew.

Dependencies

Many software depend on others to build or run. These are
called dependencies. If port A requires port B, then port A
is called the dependent port and port B is the dependency.
The Ports Collection has a mechanism of handling depen-
dencies automatically. When a dependent port is built, the
environment is checked to see if the dependency is already
installed, and if not, the dependency is built and installed
first. The dependency check is recursive, so if a depen-
dency requires another port, it will also be checked and
built. This chain can continue to an arbitrary depth.

The dependency information is also recorded in pack-
ages. When a package is installed, pkg_add checks if
all the dependencies are installed as well, and if not, they
will be installed automatically. Again, package depen-
dency checking is recursive, and installing one package
could potentially pull in dozens of other packages.

One of the interesting applications of the dependency
mechanism is to create meta-packages, i.e., empty pack-
ages that make it easy for users to install several packages
at once.

Problems

There were many issues that that had to be addressed as
the Ports Collection grew from less than 200 ports in Jan-
uary 1995 to over 2,200 ports in April 1999. In addition to
providing a brief summary of the history of the Ports Col-
lection, this talk addresses the problems, such as shared
library conflicts, dependency detection, etc., and how we
resolved them. I will also describe the process we use to
build the 2,000 packages in a few hours before releases.



