
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

Retrofitting Quality of Service into a
Time-Sharing Operating System

_

John Bruno, José Brustoloni, Eran Gabber,
Banu özden and Abraham Silberschatz

Lucent Technologies – Bell Laboratories

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Retro�tting Quality of Service into a

Time-Sharing Operating System

John Bruno, Jos�e Brustoloni, Eran Gabber, Banu �Ozden and Abraham Silberschatz

Information Sciences Research Center

Lucent Technologies | Bell Laboratories

600 Mountain Avenue, Murray Hill, NJ 07974, USA

fjbruno, jcb, eran, ozden, avig@research.bell-labs.com

Abstract

Theoretical aspects of proportional share schedulers

have received considerable attention recently. We

contribute practical considerations on how to retro�t

such schedulers into mainstream time-sharing sys-

tems. In particular, we propose /reserv, a uni-

form API for hierarchical proportional resource shar-

ing. The central idea in /reserv is associating re-

source reservations with references to shared objects

(and not with the objects themselves). We discuss

in detail the implementation of /reserv and sev-

eral proportional share schedulers on FreeBSD; the

modi�ed system is called Eclipse/BSD. Our experi-

ments demonstrate that the proposed modi�cations

allow selected applications to isolate their (or their

clients') performance from CPU, disk, or network

overloads caused by other applications. This ca-

pability is increasingly important for soft real-time,

multimedia, Web, and distributed client-server ap-

plications.

1 Introduction

On a typical system, multiple applications may con-

tend for the same physical resources, such as CPU,

memory, and disk or network bandwidth. An im-

portant goal for an operating system is therefore to

schedule requests from di�erent applications so that

each application and the system as a whole perform

well.

Resource management schemes of time-sharing op-

erating systems, such as Unix [15] and Windows

NT [8], often achieve acceptably low response time

and high system throughput for time-sharing work-

loads. However, as explained in the following para-

graphs, several trends make those schemes increas-

ingly inappropriate.

First, many workloads now include real-time appli-

cations (e.g., multimedia). Unlike time-sharing ap-

plications, real-time ones must have their requests

processed within certain performance bounds (e.g.,

minimum throughput). To support real-time appli-

cations correctly under arbitrary system load, the

operating system must perform admission control

and o�er quality of service (QoS) guarantees: The

operating system admits a request only if the operat-

ing system has set aside enough resources to process

the request within the speci�ed performance bounds.

Second, even for purely time-sharing workloads, the

trend toward distributed client-server architectures

increases the importance of fairness , that is, of pre-

venting certain clients from monopolizing system re-

sources. The fairness of time-sharing systems can

be quite spotty. For example, time-sharing systems

typically cannot isolate the performance of a Web

site from that of other Web sites hosted on the same

system. If one of the sites becomes very popular,

the performance of the other sites may become un-

acceptably (and unfairly) poor.

Finally, the same trend toward client-server architec-

tures also makes it necessary to manage resources hi-

erarchically, that is, recursively allowing each client

to grant to its servers part of the client's resources.

For example, new Web and other user-level servers

often need mechanisms for processing client requests

with speci�ed QoS and/or fairness bounds. How-

ever, time-sharing operating systems usually do not

provide such mechanisms.

The mentioned shortcomings of time-sharing oper-

ating systems have motivated considerable recent

Resources

/mem /fxp0 /sd0

/share /newreserv /newqueue /q0 /q1 /q2

/share /backlog

/reserv

To create a child
internal reservation

or queue

Portion of resource

/cpu

Figure 1: Eclipse/BSD's /reserv �le system allows applications to create resource reservations.

work on new algorithms for CPU [14, 11, 13, 17, 6],

disk [20, 21, 4], and network [2, 3, 12, 23] schedul-

ing. In particular, we recently proposed MTR-

LS, a new CPU scheduling algorithm with demon-

strated throughput, delay, and fairness guaran-

tees [6]. MTR-LS is an example of a propor-

tional share scheduler. Proportional share sched-

ulers stand out for their sound theoretical founda-

tions [22, 11, 6, 2, 3, 23].

This paper considers the practical aspects of how to

integrate proportional share schedulers into main-

stream operating systems. We contribute a new ap-

plication programming interface (API) for hierarchi-

cal proportional resource sharing: the /reserv �le

system. We discuss in detail the implementation of

/reserv and several proportional share schedulers

(MTR-LS, YFQ, H-WF2Q) on FreeBSD. (FreeBSD

is a freely available derivative of 4.4 BSD Unix; other

Unix variants, Windows NT, and other time-sharing

operating systems could be similarly modi�ed.) We

call the modi�ed FreeBSD system Eclipse/BSD, as

opposed to the Eclipse/Plan 9 system used in our

previous MTR-LS work [6] (where the distinction is

obvious or unimportant, we will say simply Eclipse).

Our experiments demonstrate how Eclipse/BSD's

/reserv API and schedulers improve on FreeBSD's,

providing QoS guarantees, fairness, and hierarchical

resource management.

The rest of this paper is organized as follows. Sec-

tion 2 describes the Eclipse/BSD resource man-

agement model and its retro�tting into FreeBSD.

Section 3 discusses the scheduling algorithms used

in Eclipse/BSD. Section 4 shows that Eclipse/BSD

implementation requires only a modest amount of

changes to FreeBSD. Experiments in Section 5 il-

lustrate how Eclipse/BSD scheduling improves the

isolation between Web sites hosted on the same sys-

tem. Section 6 discusses related and future work,

and Section 7 concludes.

2 Resource management model

This section describes the Eclipse/BSD hierarchical

resource management model and its implementation

on FreeBSD, including Eclipse/BSD's /reserv API.

2.1 Resource reservations

Eclipse/BSD applications obtain a desired quality

of service by initially acquiring a resource reserva-

tion for each required physical resource. Physical

resources include CPU, memory, disks, and network

interfaces, each managed by a scheduler. A resource

reservation speci�es a fraction of the resource set

aside for exclusive use by one or more processes. Ap-

plications can subdivide resource reservations hierar-

chically. Admission control guarantees that reserva-

tions do not exceed resources. Eclipse/BSD's sched-

ulers share fractions of the respective resource fairly

among all applications currently using the resource,

as explained in the rest of this subsection.

Applications specify resource reservations as di-

rectories in a new �le system mounted under

/reserv. Each independently scheduled resource

in the system corresponds to a directory under

/reserv: /reserv/cpu (CPU), /reserv/mem (phys-

ical memory), /reserv/fxp0 (network interface 0),

/reserv/sd0 (disk 0), and so on, as shown in Fig-

ure 1. Devices with multiple independently sched-

uled resources correspond to multiple directories,

whereas multiple jointly scheduled resources (e.g.,

mirrored disks) correspond to a single directory.

A resource reservation r is called an internal reserva-

tion if it can have children, or a queue otherwise. r's

parent p is always either /reserv or another reserva-

tion for the same resource. Each resource reservation

r contains a share �le that speci�es two values: mr,

the minimum absolute value of the resources that

r obtains from p, and �r, the weight with which r

shares p's resources. mr is speci�ed in units appro-

priate to the respective resource (e.g., SPECint95 for

CPU, bytes for physical memory, or Kbps for disk

or network interfaces). If p is /reserv, mr = V ,

the entirety of the resource, and �r is 100%. The

amount of resources apportioned to a reservation r,

vr, depends dynamically on what reservations ac-

tually are being used. Every request arriving at a

scheduler must specify a queue for processing that

request; the request is said to use that queue. Sched-

ulers enqueue and service in FIFO order requests

that use the same queue. A reservation r is said to

be busy while there is at least one request that uses

r or a descendent of r.

If a resource reservation r is internal, then it also

contains the �les newreserv and newqueue. By

opening either of these �les, an application creates

an internal reservation or queue that is r's child,

respectively. The open call returns the �le descrip-

tor of the newly created share �le, initialized with

mr = 0 and �r = 0. Internal reservations thus cre-

ated are consecutively numbered r0, r1, and so on,

whereas queues are numbered q0, q1, and so on.

If resource reservation r is a queue, then it also con-

tains the �le backlog. Writing into backlog clears

the number of requests served and amount of ser-

vice provided and sets the maximum number of re-

quests and amount of service that may concurrently

be waiting in the queue. Reading from backlog re-

turns the number of requests served and the amount

of service provided (in units appropriate to the re-

spective resource, e.g. CPU time or bytes).

Eclipse/BSD prevents reservations from exceeding

resources as follows. Let Sp be the set of p's chil-

dren and MSp
=
P

i2Sp
mi. Then writing into the

share �le of r 2 Sp is subject to the following ad-

mission control rule: the call fails if p is /reserv

(i.e., the entirety of the resource has a �xed value),

mp < MSp
(i.e., a parent's minimum resources must

at least equal the sum of its children's minima after

the attempted write), or �r < 0 (i.e., weights must

be non-negative).

Eclipse/BSD shares resources fairly according to the

weights of the busy reservations. If reservation r is

not busy, then its apportionment is vr = 0. Other-

wise, let p be the parent of r, Bp be the set of p's

busy children, and �Bp
=
P

i2Bp
�i. If p is /reserv,

then:

vr = V (1)

where V is the entirety of the resource, else:

vr =
�r

�Bp

vp (2)

2.2 Reservation domains and root reser-
vations

This subsection de�nes what resource reservations

each process is allowed to create or use.

In Eclipse/BSD, a process P 's reservation domain is

the list of P 's internal root reservations, one for for

each resource1. Queue q0 of process P 's root reser-

vation r is called P 's default queue for the respective

resource. A process P can list any directory under

/reserv and open and read any share or backlog

�le, but can write on share or backlog �les or open

newreserv or newqueue �les (i.e., create children)

only in reservations that are equal to or descend from

one of P 's root reservations.

The reservation domain of a process pid is repre-

sented by a new read-only �le, /proc/pid/rdom,

added to FreeBSD's proc �le system (where rdom

stands for \reservation domain"). For example,

/proc/103/rdom could contain:

/reserv/cpu/r2 /reserv/mem/r1

/reserv/fxp0/r0 /reserv/sd0/r3

meaning that process 103 has root CPU reser-

vation r2, root memory reservation r1, root net-

work reservation r0, and root disk reservation r3.

1Note that our current concept of reservation domain is

somewhat di�erent from that in our previous work [6].

If process 104 is in the same reservation domain,

/proc/104/rdom would have the same contents.

The reservation domain of the current process is also

named /proc/curproc/rdom.

The reservation domain of processes spawned

by a process pid is given by the new �le

/proc/pid/crdom (where crdom stands for \child

reservation domain"). When a child is forked, its

rdom and crdom �les are initialized to the contents

of the parent's crdom �le. File /proc/pid/crdom

is writable by any process with the same e�ective

user id as that of process pid, or by the super-

user. Writing into crdom �les is checked for con-

sistency and may fail: For each root reservation

r in /proc/pid/rdom, /proc/pid/crdom must con-

tain an internal reservation r
0 that is equal to or

descends from r.

2.3 Request tagging

In Eclipse/BSD, every request arriving at a sched-

uler must be tagged with the queue used for that

request, as explained in this section.

Resource reservations often cannot simply be asso-

ciated with shared objects because di�erent clients'

requests may specify the same object but di�erent

queues. For example, two processes may be in dif-

ferent reservation domains and each need to use a

di�erent disk queue to access a shared �le, or a dif-

ferent network output link queue to send packets

over a shared socket. It would be di�cult to com-

pound reservations used on the same object correctly

if reservations were associated with the object, since

then one client could bene�t from another client's

reservations.

Therefore, Eclipse/BSD queues are associated with

references to shared objects, rather than the shared

objects themselves (e.g., process, memory object,

vnode, or socket). This is accomplished by modi-

fying FreeBSD data structures as follows:

� The CPU scheduler manages activations instead

of processes. An activation points to a process

and to the CPU queue in which that process

should run.

� The memory region structure points to the re-

gion's memory object and memory queue.

� The �le descriptor structure points to the �le

(and thereby to the vnode or socket) and to the

device queue used for I/O on that �le descriptor.

CPU, memory, and device queue pointers are always

initialized to the process's default queue for the re-

spective resource. Queue pointers can subsequently

be modi�ed only to descendents of the process's root

reservation for the respective resource. Initialization

and modi�cation of queue pointers occur as follows:

� The initial activation created when a process P

is spawned has CPU queue pointer according to

the crdom �le of P 's parent. P can subsequently

create children of its CPU root reservation, e.g.

to process each client's requests. P can switch

directly from one CPU queue to another by us-

ing a new system call, activation switch. Al-

ternatively, P can spawn new processes that run

on CPU queues according to P 's crdom �le.

� The memory queue pointer of a region R is

initialized when R is allocated, and can sub-

sequently be modi�ed using a new system call,

mreserv, with region address, length, and name

of the new memory queue as arguments.

� The device queue pointer of a �le descriptor

fd is initialized: for vnodes, at open time; for

connected sockets, at connect or accept time;

for unconnected sockets, at sendto or sendmsg

time if fd's device queue pointer has not yet

been initialized. A new command to the fcntl

system call, F QUEUE GET, returns the name

of the queue to which fd currently points. The

queue pointer can subsequently be modi�ed us-

ing the new command F QUEUE SET to the

fcntl system call, with the name of the new

device queue as argument.

Additionally, I/O request data structures (including

uio for all I/O, mbuf for all network output, and buf

for disk input that misses in the bu�er cache and for

all disk output) gain a pointer to the queue they

use. Eclipse/BSD copies a �le descriptor's queue

pointer to the I/O requests generated using that �le

descriptor.

2.4 Reservation garbage collection

The previous subsections described how resource

reservations are created and used; this subsection

explains how they are destroyed.

Each resource reservation has a reference count equal

to the number of times the reservation appears in

an rdom or crdom �le or is pointed by an activa-

tion, memory region, or �le descriptor. A process's

rdom and crdom �les are created when the process

is forked and are destroyed when the process exits.

The �le descriptor of a share �le in the /reserv �le

system points to the respective resource reservation;

additionally, as described in the previous subsection,

�le descriptors for vnodes and sockets also point to

the resource reservations they use. Eclipse/BSD up-

dates reservation reference counts on process fork

and exit, activation switch, memory region allo-

cation and deallocation, mreserv, �le open or close,

socket connect or accept, sendto, sendmsg, and

fcntl F QUEUE SET.

A GC
ag determines whether a resource reservation

should be garbage-collected when the number of ref-

erences to the reservation drops to zero. When a re-

source reservation is created, its GC
ag is enabled,

but a privileged process can disable it. New com-

mands to the fcntl system call, F COLLECT SET

and F COLLECT GET, can be used on the �le de-

scriptor of a reservation's share �le to set or get the

reservation's GC
ag.

Garbage collection of a queue q may need to be

deferred. If q is being used by at least one re-

quest, q cannot be removed immediately; instead,

q's REMOVE WHEN EMPTY
ag is set. When the

last request that uses q completes and q's REMO-

VE WHEN EMPTY
ag is set, if q's reference count

is still zero, the scheduler garbage-collects q, else the

scheduler resets the
ag.

3 Schedulers

The /reserv API described in the previous section

provides an interface to proportional share sched-

ulers. Eclipse/BSD incorporates a proportional

share scheduler for each resource, as discussed in this

section.

3.1 MTR-LS

Eclipse/BSD's CPU scheduler uses the MTR-

LS (Move-To-Rear List Scheduling) algorithm [6].

When a process blocks (e.g., waiting for I/O), MTR-

LS keeps the unused portion of the process's quota

in the same position in the scheduling list, unlike the

Weighted Round Robin (WRR) algorithm, which

removes the process from the runnable list and,

when the process becomes runnable again, places it

back at the tail of the list. Consequently, MTR-LS

may delay I/O-bound processes much less than does

WRR. MTR-LS may also provide greater through-

put than does WRR, whose scheduling delays may

prevent I/O-bound processes from from fully utiliz-

ing their CPU reservations.

MTR-LS was speci�cally designed for CPU schedul-

ing, where the time necessary to process a request

cannot be predicted. To the best of our knowl-

edge, MTR-LS is the only algorithm that provides

the optimal cumulative service guarantee [6] when

the durations of service requests are unknown a pri-

ori. However, MTR-LS assumes that requests can be

preempted either at any instant or at �xed intervals.

This is true of CPU scheduling, but usually is not

true of disk or network scheduling, where requests

cannot be preempted after they start and may take

varying time to complete. Therefore, Eclipse/BSD

uses other algorithms for I/O scheduling.

3.2 YFQ

Eclipse/BSD's I/O schedulers use approximations

to the GPS (Generalized Processor Sharing) [18]

model. GPS assumes an ideal \
uid" system where

each backlogged \
ow" in the system instanta-

neously receives service in proportion to the
ow's

share and inversely proportionally to the sum of the

shares of all backlogged
ows (where a backlogged

ow is analogous to a busy queue). GPS cannot be

precisely implemented for I/O because typically (1)

I/O servers can only service one request at a time

and (2) an I/O request cannot be preempted once

service on it begins. GPS approximations estimate

the time necessary for servicing each request and in-

terleave requests from di�erent queues so that each

queue receives service proportionally to its share (al-

though not instantaneously). However, the neces-

sary time estimates may be di�cult to compute pre-

cisely because GPS's rate of service for each
ow

Sort queue

P1

file

system

raw I/O

paging

Scheduler

b

Disk

pager

P2

P3

Resource reservation
 queues

Figure 2: The sort queue allows the disk driver or disk to reorder requests and minimize disk latency and

seek overheads.

depends on what
ows are backlogged at each in-

stant [3].

Eclipse/BSD's disk scheduler uses a new GPS ap-

proximation, the YFQ (Yet another Fair Queueing)

algorithm [5], which can be implemented very e�-

ciently. A resource is called busy if it has at least

one busy queue, or idle otherwise. YFQ associates

a start tag, Si, and a �nish tag, Fi, with each queue

qi. Si and Fi are initially zero. YFQ de�nes a vir-

tual work function, v(t), such that: (1) v(0) = 0; (2)

While the resource is busy, v(t) is the minimum of

the start tags of its busy queues at time t; and (3)

When the resource becomes idle, v(t) is set to the

maximum of all �nish tags of the resource.

When a new request ri that uses queue qi arrives:

(1) If qi was previously empty, YFQ makes Si =

max(v(t); Fi) followed by Fi = Si +
li

wi

, where li is

the data length of request ri; and (2) YFQ appends

ri to qi.

YFQ selects for servicing the request ri at the head

of the busy queue qi with the smallest �nish tag Fi.

ri remains at the head of qi while ri is being serviced.

When ri completes, YFQ dequeues it; if queue qi is

still non-empty, YFQ makes Si = Fi followed by

Fi = Si +
l
0

i

wi

, where l
0

i
is the data length of the

request r0
i
now at the head of qi.

Selecting one request at a time, as described above,

allows YFQ to approximate GPS quite well, pro-

viding good cumulative service, delay, and fairness

guarantees. However, such guarantees may come

at the cost of excessive disk latency and seek over-

heads, harming aggregate disk throughput. There-

fore, YFQ can be con�gured to select up to b re-

quests (a batch) at a time and place them in a sort

queue, as shown in Figure 2. The disk driver or the

disk itself may reorder requests within a batch so as

to minimize disk latency and seek overheads.

3.3 WF2Q

Eclipse/BSD's network output link scheduler uses

the hierarchical WF2Q (Worst-case Fair Weighted

Fair Queueing) algorithm [3]. This algorithm is

similar to an earlier GPS approximation, WFQ

(Weighted Fair Queueing) [9]. However, unlike

WFQ, WF2Q does not schedule a packet until it is

eligible, i.e., its transmission would have started un-

der GPS. Consequently, WF2Q has optimal worst-

case fair index bound, making it a good choice for a

hierarchical scheduler [3].

Note that neither YFQ nor WF2Q could be used for

CPU scheduling, since they assume that the time

necessary to process a request can be estimated and

they never preempt a request.

3.4 SRP

Eclipse/BSD employs SRP (Signaled Receiver Pro-

cessing) [7] for network input processing. SRP de-

multiplexes incoming packets before network and

higher-level protocol processing. Unlike FreeBSD's

single IP input queue and input protocol process-

ing at software interrupt level, SRP uses an unpro-

cessed input queue (UIQ) per socket and processes

input protocols in the context of the respective ap-

plications. If a socket's queue is full, SRP drops new

packets for that socket immediately, unlike FreeBSD,

which wastefully processes packets that will need to

be dropped. Because SRP processes protocols in the

context of the respective receiving applications, SRP

can avoid receive livelock [16], a network input over-

load condition that prevents any packets from being

processed by an application.

When SRP enqueues a packet into a socket's UIQ,

SRP signals SIGUIQ to the applications that own

that socket. The default action for SIGUIQ is to

perform input protocol processing (asynchronously

to the applications). However, applications can syn-

chronize such processing by catching SIGUIQ and

deferring protocol processing until a later input call

(e.g., recv). Synchronous protocol processing may

improve cache locality. Unlike LRP (Lazy Receive

Processing) [10], SRP does not use separate kernel

threads for asynchronous protocol processing (kernel

threads are not available in FreeBSD).

4 Implementation

This brief section shows that Eclipse implementation

does not require too many changes to the underlying

time-sharing system.

Our current Eclipse/BSD implementation adds ap-

proximately 6500 lines of code to FreeBSD version

2.2.8: 2400 lines for the reserv �le system and mod-

i�cations to the proc �le system, and 4100 lines for

the new schedulers and their integration into the ker-

nel. The kernel size in the GENERIC con�guration

is 1601351 bytes for FreeBSD and 1639297 bytes for

Eclipse/BSD (an increase of only 38 KB).

5 Experimental results

This section demonstrates experimentally that ap-

plications can use Eclipse/BSD's /reserv API and

CPU, disk, and network schedulers so as to ob-

tain minimum performance guarantees, regardless of

other load on the system.

We ran experiments on the con�guration shown in

Figure 3, where HTTP clients on nodes A to E make

requests to the HTTP server on node S. Nodes A to

C are Pentium Pro PC's running FreeBSD. Nodes

D and E are Sun workstations running Solaris. The

operating system varies only in node S, being either

host D

switch

host A

host B

host C host S

host E

Figure 3: Node S is a Web server that hosts multiple

sites on either FreeBSD or Eclipse/BSD.

FreeBSD or Eclipse/BSD. Node S is a PC with 266

MHz Pentium Pro CPU, 64 MB RAM, and 9 GB

Seagate ST39173W fast wide SCSI disk. All nodes

are connected by a Lucent P550 Cajun Ethernet

switch (unless otherwise noted, at 10 Mbps). Node S

runs the Apache 1.3.3 HTTP server and hosts mul-

tiple Web sites. Nodes A to E run client applications

(some derived from the WebStone benchmark) that

make requests to the server. At most ten clients run

at each of the nodes A to E. Unless otherwise noted,

all measurements are the averages of three runs.

Each experiment overloaded one of the server's re-

sources, as described in the following subsections.

5.1 CPU scheduling

In the �rst experiment, an increasing number of

clients continuously made CGI requests to either of

two Web sites hosted at node S. Processing of each

of these CGI requests consists of computing half a

million random numbers (using rand()) and return-

ing a 1 KB reply. Therefore, the bottleneck resource

is the CPU. We measured the average throughput

and response time (over three minutes) under the

following scenarios: (1) The site of interest reserves

50% of the CPU and the competing site reserves

49% of the CPU; (2) The site of interest reserves

99% of the CPU; and (3) Both sites run in the same

CPU reservation and reserve 99% of the CPU. Fig-

ure 4 shows the throughput of the site of interest

when the latter has ten clients and the competing

site has a varying number of clients, and Figure 5

shows the corresponding response times. Perfor-

0

1

2

3

4

5

6

7

8

9

0 1 2 4 8 16 32

T
ra

ns
ac

tio
n

ra
te

 o
f s

ite
 o

f i
nt

er
es

t (
T

P
S

)

Number of clients of competing site

Eclipse/99%
FreeBSD

Eclipse/same resv.
Eclipse/50%

Figure 4: Appropriate CPU reservations can guar-

antee a minimum throughput for the site of interest.

mance when both sites run in the same CPU reser-

vation on Eclipse/BSD is roughly the same as per-

formance on FreeBSD. When the site of interest re-

serves 99% of the CPU, its performance is essen-

tially una�ected by other load. When the site of

interest reserves 50% of the CPU, it still gets essen-

tially all of the CPU if there is no other load, but,

as would be expected, the throughput goes down

by half and the response time doubles when there

is other load. However, throughput and response

time of the site of interest remain constant when

further load is added, while on FreeBSD through-

put decreases and response time increases without

bound. This shows that FreeBSD and Eclipse/BSD

are equally good if there is excess CPU capacity,

but Eclipse/BSD can also guarantee a certain min-

imum CPU allocation (and consequently minimum

throughput and maximum response time).

5.2 Disk scheduling

Again in the second experiment, an increasing num-

ber of clients continuously made CGI requests to

either of two Web sites hosted at node S. However,

these requests are I/O-intensive, consisting of read-

ing a 100 MB �le and returning a 10 KB reply. Be-

cause requests and replies are small and each request

involves considerable disk I/O but little processing,

0

1

2

3

4

5

6

0 1 2 4 8 16 32

A
ve

. r
es

po
ns

e
tim

e
of

 s
ite

 o
f i

nt
er

es
t (

s)

Number of clients of competing site

Eclipse/same resv.
FreeBSD

Eclipse/50%
Eclipse/99%

Figure 5: Appropriate CPU reservations can guaran-

tee a maximum response time for the site of interest.

the bottleneck resource is the disk. We reserved

50% of S's disk bandwidth to the Web site of in-

terest and measured the latter's average throughput

over three minutes. YFQ's sort queue was con�g-

ured with a batch size of 4 requests. During the

measurements, the site of interest had ten clients

and the competing site had a varying number of

clients. Figure 6 shows that in the absence of other

load, Eclipse/BSD gives to the site of interest es-

sentially all of the bottleneck resource, even though

the site has only 50% reserved. When the load on

the competing site increases, the throughput of the

site of interest decreases. However, on Eclipse/BSD,

the throughput bottoms out at roughly the reserved

amount, whereas on FreeBSD the throughput de-

creases without bound. This shows that FreeBSD

and Eclipse/BSD are equally good when there is ex-

cess disk bandwidth, but when bandwidth is scarce,

Eclipse/BSD is also able to guarantee a minimum

disk bandwidth allocation.

5.3 Output link scheduling

In the third experiment, an increasing number of

clients continuously requested the same 1.5 MB doc-

ument from either of two Web sites hosted at node

S. Given that requests are much smaller than replies,

little processing is required per request, and the re-

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t o

f s
ite

 o
f i

nt
er

es
t (

M
bp

s)

Number of clients of competing site

Eclipse/50%
FreeBSD

Figure 6: The site of interest gets at least its reserved

fraction (50%) of the disk bandwidth.

quested document �ts easily in the node S's bu�er

cache, the bottleneck resource is S's network output

link. We reserved 50% of S's output link bandwidth

to the Web site of interest and measured the latter's

average throughput over three minutes. During the

measurements, the site of interest had ten clients

and the competing site had a varying number of

clients. Figure 7 shows the results, which are very

similar to those of Figure 6, where the disk is the

bottleneck. FreeBSD and Eclipse/BSD are equally

good when there is excess output link bandwidth,

but when bandwidth is scarce, Eclipse/BSD is also

able to guarantee a minimum output link bandwidth

allocation.

5.4 Input link scheduling

The �nal set of experiments addresses network re-

ception overload. In these experiments, the net-

work operated at 100 Mbps full-duplex, and mea-

surements are the averages of �ve runs.

In the fourth experiment, a client application sent

10-byte UDP packets at a �xed rate to a server appli-

cation running at node S. Both on FreeBSD and on

Eclipse/BSD, the server application received essen-

tially all of the packets when the transmission rate

was up to about 5600 packets per second (pkts/s).

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t o

f s
ite

 o
f i

nt
er

es
t (

M
bp

s)

Number of clients of competing site

Eclipse/50%
FreeBSD

Figure 7: The site of interest gets at least its reserved

fraction (50%) of the output link bandwidth.

Above that transmission rate, as shown on Fig-

ure 8, the reception rate on Eclipse/BSD reached a

plateau at around 5700 pkts/s. On FreeBSD, on the

contrary, the reception rate dropped precipitously.

This experiment shows that on Eclipse/BSD appli-

cations can make forward progress even when there

is network reception overload, while on FreeBSD

applications can enter livelock [16] in such situa-

tions. Eclipse/BSD prevents receive livelock because

of SRP.

However, SRP cannot by itself guarantee that im-

portant applications will make forward progress.

Eclipse/BSD can guarantee that by combining SRP

and CPU reservations. In the �fth and �nal experi-

ment, four di�erent client applications sent 10-byte

UDP packets at the same �xed rate to a di�erent

server application running on node S. We measured

reception rates in two scenarios: (1) All four server

applications reserved each 25% of the CPU; and (2)

One server application reserved 97% of the CPU and

the remaining server applications reserved 1% each.

While the transmission rate was below 5600 pkts/s,

essentially all packets were received. Reception rates

increased slightly to 5900 pkts/s for a transmission

rate of 28.5 Kpkts/s. Above that rate, results dif-

fer for the two scenarios, as shown in Figure 9. In

the �rst scenario, reception rate goes down to about

1200 pkts/s. In the second scenario, the reception

rate of the application with 97% of the CPU goes

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200

P
ac

ke
ts

 r
ec

ei
ve

d
by

 a
pp

lic
at

io
n

(*
 1

00
0

pk
ts

/s
)

Packets sent (* 1000 pkts/s)

Eclipse
FreeBSD

Figure 8: Eclipse/BSD avoids receive livelock.

down to about 4800 pkts/s, while the reception rate

of the applications with 1% of the CPU goes down

to about 160 pkts/s.

6 Related and future work

There are numerous recent works on proportional

share scheduling [11, 6, 2, 3, 12, 23]. This paper

complements those works by providing a uniform

API for their schedulers and considering practical

aspects of retro�tting them into mainstream operat-

ing systems. The API proposed here is also set apart

by promoting uniformity not only across scheduling

algorithms, but also across di�erent resources.

The /reserv �le system resembles many Plan 9 [19]

APIs, which also use special �le systems. We used

Plan 9 in our previous MTR-LS work [6] but de-

cided to replace it by FreeBSD because of FreeBSD's

greater popularity and support for more current

hardware.

Stride scheduling and the associated currency ab-

straction [24] can be used to group and isolate users,

processes, or threads, much like the resource reser-

vations discussed here. Another alternative is re-

source containers [1], which can isolate resources

used by each client, whether within a single pro-

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600

P
ac

ke
ts

 r
ec

ei
ve

d
by

 e
ac

h
ap

pl
ic

at
io

n
(*

 1
00

0
pk

ts
/s

)

Total packets sent (* 1000 pkts/s)

Eclipse/97%
Eclipse/25%

Eclipse/1%

Figure 9: Eclipse/BSD guarantees forward progress

according to CPU reservation.

cess or across multiple processes. Resource contain-

ers have been demonstrated primarily for priority-

based CPU scheduling, not for hierarchical propor-

tional sharing of di�erent resources, as we advocate

here. Our solutions for retro�tting reservations into

a time-sharing system (e.g., how to associate reserva-

tions with references to shared objects, tag requests,

and garbage collect reservations) may be useful also

in conjunction with those frameworks.

Nemesis [14] is an operating system that uses a

radical new architecture in order to eliminate QoS

crosstalk, i.e., the degradation of one application's

performance due to the load on another applica-

tion. The Nemesis kernel provides only scheduling,

and most other operating system services are im-

plemented as libraries that are linked with applica-

tions and run in each application's address space.

Eclipse/BSD attempts to provide similar isolation

in a conventional monolithic architecture, requiring

comparatively much less implementation e�ort.

SMART [17] is a hierarchical CPU scheduling algo-

rithm that supports both hard real-time and con-

ventional time-sharing applications, adjusts well to

overload, and can notify applications when their

deadlines cannot be met. Rialto [13] combines CPU

reservations and time constraints into a scheduling

graph that is used by a run-time scheduler to provide

strong CPU guarantees. While SMART and Rialto

target especially hard real-time CPU scheduling, the

work presented here addresses mostly soft real-time

scheduling of di�erent resources and the integration

of such scheduling into conventional systems.

7 Conclusions

We described how Eclipse/BSD applications can ob-

tain resource reservations and thereby guarantee

a desired quality of service for themselves or for

their clients. Eclipse/BSD's API, /reserv, provides

a simple, uniform interface to hierarchical propor-

tional sharing of system resources. We discussed

the di�erent schedulers used in Eclipse/BSD and

demonstrated experimentally that they can isolate

the performance of selected applications from CPU,

disk, or network overloads caused by other appli-

cations. Eclipse/BSD was implemented by mak-

ing straightforward modi�cations to FreeBSD and

greatly improves the system's ability to provide QoS

guarantees, fairness, and hierarchical resource man-

agement. We believe that other common time-

sharing systems would bene�t from similar modi-

�cations.

Acknowledgments

We thank Mary McShea, Amit Singh, and Josep

Blanquer for their help in the implementation and

experiments, and the anonymous referees for their

valuable comments.

References

[1] G. Banga, P. Druschel and J. Mogul. \Resource

Containers: A New Facility for Resource Man-

agement in Server Systems", in Proc. OSDI'99,

USENIX, Feb. 1999.

[2] J. Bennet and H. Zhang. \WF2Q: Worst-Case

Fair Weighted Fair Queueing", in Proc. INFO-

COM'96, IEEE, Mar. 1996, pp. 120-128.

[3] J. Bennet and H. Zhang. \Hierarchical Packet

Fair Queueing Algorithms", in Proc. SIG-

COMM'96, ACM, Aug. 1996.

[4] P. Barham. \A Fresh Approach to File Sys-

tem Quality of Service", in Proc. NOSSDAV'97,

IEEE, May 1997, pp. 119-128.

[5] J. Bruno, J. Brustoloni, E. Gabber, B. �Ozden

and A. Silberschatz. \Disk Scheduling with

Quality of Service Guarantees", to appear in

Proc. ICMCS'99, IEEE, June 1999.

[6] J. Bruno, E. Gabber, B. �Ozden and A. Silber-

schatz. \The Eclipse Operating System: Pro-

viding Quality of Service via Reservation Do-

mains", in Proc. Annual Tech. Conf., USENIX,

June 1998, pp. 235-246.

[7] J. Brustoloni, E. Gabber and A. Silberschatz.

\Signaled Receiver Processing", submitted for

publication.

[8] H. Custer. \Inside Windows NT", Microsoft

Press, 1993.

[9] A. Demers, S. Keshav and S. Shenker. \Design

and Analysis of a Fair Queueing Algorithm",

in Proc. SIGCOMM'89, ACM, Sept. 1989, pp.

1-12.

[10] P. Druschel and G. Banga. \Lazy Receiver Pro-

cessing (LRP): A Network Subsystem Archi-

tecture for Server Systems", in Proc. OSDI'96,

USENIX, Oct. 1996, pp. 261-275.

[11] P. Goyal, X. Guo and H. Vin. \A Hierarchical

CPU Scheduler for Multimedia Operating Sys-

tems", in Proc. OSDI'96, USENIX, Oct. 1996,

pp. 107-121.

[12] P. Goyal, H. Vin and H. Chen. \Start-Time

Fair Queueing: A Scheduling Algorithm for In-

tegrated Services Packet Switching Networks",

in Proc. SIGCOMM'96, ACM, Aug. 1996.

[13] M. Jones, D. Ro su and M. Ro su. \CPU Reser-

vations and Time Constraints: E�cient, Pre-

dictable Scheduling of Independent Activities",

in Proc. SOSP'97, ACM, Oct. 1997, pp. 198-

211.

[14] I. Leslie, D. McAuley, R. Black, T. Roscoe, P.

Barham, D. Evers, R. Fairbairns and E. Hyden.

\The Design and Implementation of an Oper-

ating System to Support Distributed Multime-

dia Applications", in JSAC, 14(7), IEEE, Sept.

1996, pp. 1280-1297.

[15] M. McKusick, K. Bostic, M. Karels and J.

Quarterman. \The Design and Implementation

of the 4.4 BSD Operating System", Addison-

Wesley Pub. Co., Reading, MA, 1996.

[16] J. Mogul and K. K. Ramakrishnan. \Elim-

inating Receive Livelock in an Interrupt-

Driven Kernel", in Proc. Annual Tech. Conf.,

USENIX, 1996, pp. 99-111.

[17] J. Nieh and M. Lam. \The Design, Implementa-

tion and Evaluation of SMART: A Scheduler for

Multimedia Applications", in Proc. SOSP'97,

ACM, Oct. 1997, pp. 184-197.

[18] A. Parekh and R. Gallager. \A Generalized Pro-

cessor Sharing Approach to Flow Control |

The Single Node Case", in Trans. Networking,

ACM/IEEE, 1(3):344-357, June 1993.

[19] R. Pike, D. Presotto, S. Dorward, B. Flandrena,

K. Thompson, H. Trickey and P. Winterbot-

tom. \Plan 9 from Bell Labs", in Computing

Systems, USENIX, 8(3):221-254, Summer 1995.

[20] P. Shenoy and H. Vin. \Cello: A Disk Schedul-

ing Framework for Next Generation Operating

Systems", in Proc. SIGMETRICS'98, ACM,

June 1998.

[21] P. Shenoy. P. Goyal, S. Rao and H. Vin. \Design

and Implementation of Symphony: An Inte-

grated Multimedia File System", in Proc. Mul-

timedia Computing and Networking, SPIE, Jan.

1998.

[22] D. Stiliadis and A. Varma. \Frame-Based Fair

Queueing: A New Tra�c Scheduling Algorithm

for Packet-Switched Networks", Tech. Rep.

UCSC-CRL-95-39, Univ. Calif. Santa Cruz,

July 1995.

[23] I. Stoica, H. Abdel-Wahab, K. Je�ay, S.

Baruah, J. Gehrke and C. G. Plaxton. \A Pro-

portional Share Resource Allocation Algorithm

for Real-Time, Time-Shared Systems", in Proc.

Real Time Systems Symp., IEEE, Dec. 1996.

[24] C. Waldspurger and W. Weihl. \An Object-

Oriented Framework for Modular Resource

Management', in Proc. IWOOOS '96, IEEE,

Oct. 1996, pp. 138-143.

