
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1999 USENIX
Annual Technical Conference
Monterey, California, USA, June 6–11, 1999

Adaptive Modem Connection Lifetimes

Fred Douglis and Tom Killian
AT&T Labs{Research

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org



Adaptive Modem Connection Lifetimes

Fred Douglis Tom Killian

AT&T Labs{Research, Florham Park, NJ, USA

July 15, 1998

Abstract

Internet Service Providers sometimes go to great lengths to minimize dial-up connection

times, in order to make the best use of limited resources. Typically they disconnect users after a

�xed period of complete inactivity, such as 10{15minutes. We propose adaptive time-out policies

that take past history into account, and we evaluate some of these policies using a trace from a

production environment. We �nd that adaptive policies can reduce cumulative connection times

and average simultaneous usage by about 10{20% compared to a conservative �xed threshold, in

exchange for a moderate increase in the number of disconnections that inconvenience the user.

1 Introduction

In computers, as in real life, using resources often comes at a cost in proportion to the duration

of use. That cost can typically be reduced by discontinuing use temporarily|assuming that the

resource will not be needed for a period of time|and then using the resource again in exchange for

some possible start-up overhead. Often, the decision to discontinue use is based on a �xed time-out

interval: one waits for the resource to be idle long enough that one can assume it will continue to

be idle a while longer, long enough to avoid antagonizing the user. It must also be idle long enough

to amortize any start-up overhead and result in a net gain from discontinuing use.

One category of resource use with variable timeouts is anything that consumes energy on a

battery-operated device such as a mobile computer. Examples include spinning down the disk [3,

2, 7], putting the CPU in a low-power or reduced-power state [9], and suspending the display. In the

communications domain, an example of this tradeo� has been demonstrated in the IP-over-ATM

area. One can use a variety of algorithms to decide when to relinquish a virtual circuit that is

being used to transmit a sequence of IP datagrams [5]. An algorithmic approach that is common

1



to many of these systems has been termed a \random walk," in which a parameter varies over time

in response to past history [4].

Modems are another type of limited resource, with some interesting properties that make

straightforward approaches somewhat problematic. With most telephone-modem-based ISPs, a

computer connects to the Internet via a pair of modems, one owned by the user and one owned

by the ISP. The ISP provides a temporary IP address using PPP or some other protocol. If the

modem connection is terminated, the computer is not guaranteed to get the same IP address the

next time it connects. This means that proactively disconnecting the modem will likely terminate

any existing TCP connections using the older IP address.

Furthermore, even if the IP address is �xed, there is a signi�cant delay in reestablishing a PPP

connection: we have measured 30{40s for dialing, training, and PPP negotiation. This delay can

be annoying to the user, and it can also cause application-level or system-level timeouts to occur.

This might result in a transient error (for instance, downloading a Web page) or a more serious

one (such as terminating a telnet session, forcing it to be reestablished and losing any state in it).

At the same time, constant use of an ISP's modem is generally discouraged. One way to

discourage use is an economic disincentive: AT&T, MCI, and other ISPs recently changed their

\unlimited" Internet Access to have a limit of 150 hours per month before surcharges are applied.

This limit was imposed because a small fraction of the user community would use the system

virtually non-stop, forcing the ISPs to continually increase capacity or risk having other customers

encounter busy signals.

Another way to limit modem use is to proactively disconnect \idle" users and su�er the conse-

quences. It appears that many ISPs will disconnect a completely idle user after some �xed interval

that varies in the range of about 10{60 minutes. But users do not like to su�er the 30{40s delay

reconnecting to the ISP after being reconnected, nor the possibility of a busy signal, nor the pos-

sible loss of TCP sessions that are open but inactive and which get reset after a hangup. A simple

solution, from their perspective, is to run a daemon that uses the modem periodically, more often

than the usual timeout. Checking electronic mail is an obvious example of such a daemon. Since

completely periodic use, such as checking mail every 5 minutes, could be detected and compensated

for, a more sophisticated approach would be to access the modem at somewhat random intervals

for as long as the client wishes to keep the modem connection alive. As a result, some ISPs drop

2



connections after an extended period of activity, such as a day, regardless of ongoing use.

Our goal was to see whether another approach to disconnecting idle modems might reduce

modem usage without signi�cantly inconveniencing users. Here we apply an \adaptive" timeout

technique, which was previously applied to the domain of disks [2], to the domain of modems. The

basic approach is the same: an ISP would start with some timeout interval, and then vary that

timeout interval for each modem over time based on usage patterns. A shorter interval will generally

reduce modem usage but be more susceptible to making a mistake, i.e. disconnecting a modem at

a time when it will be used again too soon to make disconnecting it worthwhile. One decreases the

timeout when the previous interval successfully predicted a long enough idle interval, and increases

it when the idle interval proved too short. One can also simultaneously track patterns of bursts of

activity, for instance accesses for just a few seconds every 15 minutes, in order to predict the next

idle interval and disconnect immediately. We will elaborate on these approaches, and quantify the

outcomes, later in this paper.

The environment in which we apply adaptive modem timeouts is particularly conducive to proac-

tive hangups, despite the problems mentioned above. This is because it uses static IP addresses, so

a modem can be disconnected and later reconnected without a�ecting running applications if the

applications do not attempt communication during the downtime. If they do communicate, they

must have a long enough timeout to tolerate the reconnect delay.

Trace-driven simulations indicate that varying the timeout adaptively has signi�cant bene�ts

over relatively short �xed timeout intervals (2{10minutes). For instance, all the adaptive algorithms

we studied resulted in many fewer bad choices about when to hang up the modem than a short

�xed threshold, with at most the same cumulative connection time. The longest �xed threshold

we considered, 15 minutes, substantially drops the number of bad choices by comparison to the

adaptive and shorter �xed thresholds, in exchange for more connect time.

The rest of this paper is organized as follows. The next section discusses the metrics we use to

evaluate the costs and bene�ts of modem disconnection. Section 3 discusses our target environment

and the traces we collected from it. Section 4 discusses several di�erent approaches to varying the

timeout threshold. In Section 5, we describe the experiments we performed, the results of which

appear in Section 6. Section 7 concludes.

3



2 Metrics

In deciding when to disconnect a modem, one must balance the inconvenience to the user against

the bene�t to the ISP due to reclaiming the modem.

2.1 Inconvenience

From the user's perspective, each time the modem disconnects there is potentially some inconve-

nience. Waiting several seconds (typically on the order of a half-minute) for reconnection is a mild

annoyance if the user hasn't used the network for a long time, but it would be a greater problem if:

� the idle time was very brief, or

� the reconnection adversely a�ected running processes (such as terminating a telnet session).

Occasional annoyances are probably �ne, while frequent ones would be intolerable and should be

avoided.

Our passive monitoring of the modem pool won't tell us when a connection is terminated, so

we focus on idle time. In our initial experiments, we use a parameterized idle-time threshold. If

the modem has been idle that long after being disconnected, then disconnecting was desirable. If

it has not, then disconnecting was undesirable. In the adaptive disk spin-down work [2] on which

we model our system, undesirable disk spin-downs were referred to as \bumps," and we adopt that

terminology here. We use a default of 5m of inactivity after a disconnect as the required idle time

to avoid a bump, and then compare this with a more conservative 10m threshold.

In [2], a bump was considered a binary event: either a bad spin-up occurred, or it didn't. The

study alluded to considering some bumps as more egregious than others. We apply that reasoning

here by counting bumps either as binary events or as fractional numbers. In the former case, we

charge the same amount (1) any time the idle-time threshold is not met. In the latter case, we

charge 1 � I

T
, where I is the idle time since disconnect and T is the threshold. Thus a reconnect

immediately after a disconnect is charged 1 unit, whereas a reconnect just before the threshold T

is crossed is charged almost nothing. One can view these two values as a count of the total number

of bumps and the severity of the bumps.

4



2.2 Bene�ts

Bene�ts to the ISP accrue when a modem (and the phone line to which it is attached|there is

e�ectively a one-to-one ratio) is used less. In the event that an ISP is charged in proportion to

connect time, the total connect time across all users is relevant. (Examples of this in the general

ISP market are rare, but some services that function e�ectively as ISPs do observe this property.

For instance, AT&T has a corporate network for employees with a toll-free number, and it pays

per-minute charges which are in turn charged back to the users of the dial-up service.)

Another bene�t is the potential ability to reduce the total number of modems in the ISP (or

conversely, to serve more users with the same number of modems). We consider both the average

simultaneous user count and the maximum simultaneous user count. The average is an indication

of how one could provision the modem pool to satisfy demand most of the time while rarely running

out of resources. The maximum shows how to provision the modem pool in order never to run out

of resources at all. Another useful metric might be the 90th or 95th percentiles, rather than the

mean, but we have not yet considered percentiles other than 100%.

3 Environment and Traces

This study was performed in the context of the Speedy Asymmetric Intranet Link (SAIL) project

in AT&T Labs. SAIL uses cable modems to transmit data at high-speed to home users, with the

\upstream" link over a 28.8 kbps telephone modem. (This con�guration is typical for cable modems,

with only about 20% of cable plants supporting two-way communication [6].) The upstream link

uses the Point-to-Point Protocol (PPP) [8], with dynamically assigned IP addresses. IP endpoints,

however, deal only with the downstream cable-modem addresses, and these are statically assigned.

Using static downstream addresses enables the modem pool to disconnect a user after a relatively

short period of inactivity, usually 10{15 minutes, without normally impacting connections beyond

the dial-up overhead. It takes 30{40s to reconnect over the telephone modem; the cable modem is

virtually always accessible.

Figure 1 depicts the architecture of SAIL. SAIL connects AT&T Labs{Research with homes

throughout the northern part of New Jersey, by distributing data over several cable head-ends.

The upstream connections come in through modem pools at or near the cable head-ends and are

backhauled into the AT&T Labs network. Downstream data 
ows over a collection of T1 lines and

5



Figure 1: SAIL architecture.

optical �ber to four regional cable television headends.

We used two sets of traces. The �rst was a packet-level trace that was collected in November,

1997 in one of the modem pools. While activity could be detected by the existence of a packet to

or from a particular host, a voluntary disconnection of the modem would be indistinguishable from

an idle connection. We used this trace initially as a proof-of-concept, but felt that a live system

would not want to make decisions on a packet-by-packet basis. We do not discuss the �rst trace

further in this paper.

The second trace was collected over a one-week period in May, 1998 by periodically polling

each of the modem pools for activity. The modems would report which users were active, and how

many bytes had been transferred since the most recent connection. Activity could be inferred by

a change in the byte-count, while disconnection could be detected by the complete absence of a

particular userid in the report. The polling granularity was set at 30 seconds, a somewhat arbitrary

choice that was based on the balance between the desire not to load the modems unnecessarily and

the desire for current statistics. With a 30-second granularity, one could not tell whether a newly

6



detected connection was established just after the previous poll (i.e., 30s previously), just before the

current poll, or anytime in-between. We take the conservative approach of \charging" a connection

from the earliest point when it may have become active, which we approximate as 29s before the

current polling interval.

Although the script that gathered the latter trace was capable of actually disconnecting modems,

it acted primarily in a non-intrusive capacity. The reason for this was two-fold. First, acting on live

connections permits one to apply only one policy, since after disconnecting a modem, one cannot

wait a minute or two and disconnect it again. In practice, the modems use a �xed-threshold policy

with a 15-minute timeout in the vast majority of cases and an in�nite timeout in a few cases where

users previously complained about unwanted disconnections. This would limit us to implementing

policies that would disconnect in at most 15 minutes, since anything longer would have the real

system \beat us to the punch" in disconnecting the user.

The second reason was a fear that disconnecting live users might upset them if we were too

aggressive. We wanted to simulate the e�ect �rst. The sole exception to this \hands o�" approach

was the modem connection of one of the authors, which was disconnected using one of the simple

adaptive schemes described below. Over the one-week collection interval, his modem was discon-

nected by the script just over 200 times, and 43 of them (21%) were deemed by the script to be

premature: the subsequent idle time wasn't long enough. However, completely subjectively, at no

time was the idle time since the previous access so short as to prove particularly annoying.

4 Variable Timeouts

In contrast to the �xed timeout intervals currently in use, we consider two types of variable timeout

intervals, which are complementary. Adaptive timeouts use an interval that 
uctuates over time as

a function of past history. Predictive timeouts use a small window of past history to predict when

the next access will follow the same pattern. In addition, we consider an o�-line optimal timeout

algorithm as a baseline against which to compare other approaches.

4.1 Adaptive Timeouts

Our adaptive algorithm attempts to keep the number of undesirable disconnects low, relative to

total connect time. At any given time, each modem has a timeout Tm associated with it. If the

modem has been idle for Tm seconds, it is disconnected. The next time the modem is used, the

7



idle time since the disconnect, I , is compared against a minimum idle time M . If I �M , then the

disconnect was \acceptable" and the threshold Tm is reduced. Otherwise, it was a \bump," and

Tm is increased.

A key question with this approach is how much to adjust the threshold. We use the same

approach as with adaptive disk spin-down [2], permitting both additive and multiplicative modi�ers

along with minimum and maximum values. A given policy speci�es a starting threshold Ts, how to

adjust on a acceptable disconnect or a bump, and a range. If the adjustments are additive, then we

add a �xed amount on a bump, or subtract on an acceptable disconnect. We repeat the terminology

of [2], using �a or �m to adjust on a bump (the subscript a denotes an additive adjustment and

the subscript m denotes a multiplicative adjustment), while �a and �m apply in the case of an

acceptable disconnect. As with disk spindown, experience suggests that one should decrease the

threshold slowly on success and increase it more rapidly on failure.

Multiplicative adjustments tend to a�ect the threshold more rapidly. For instance, we may

multiply by 1.4 on a bad disconnect and divide by 1.1 on an acceptable one. The threshold will

nearly double on back-to-back bumps.

The range is used as a sanity check. By preventing the threshold from falling below some

minimum (e.g., 1 minute), we avoid entering a state in which a disconnect might occur through a

perfectly normal gap between packets. By keeping it from rising above some maximum (e.g., 15

minutes), we prevent an adaptive algorithm from becoming strictly worse than the most conserva-

tive �xed threshold we would apply. (In addition, since the original trace applied a maximum, the

trace would indicate a disconnect even if the replay would have kept the connection intact.)

4.2 Predictive Timeouts

In studying access patterns, it became apparent that some modems were used at regular intervals.

For example, a host might check mail or perform some other sort of \keep-alive" at 15-minute inter-

vals, and with a 15-minute �xed timeout, the modem might either never disconnect or repeatedly

disconnect just moments before the next access. It seemed desirable to detect these patterns and

disconnect quickly after each burst of activity, under the assumption that the next activity would

not occur for many minutes. One must use a history bu�er to look at some number of past accesses

for a pattern; in our case we looked at the past 5 active and idle periods.

8



Being too aggressive in detecting these patterns could of course be a mistake. If one were to

assume that because every recent interval of activity was brief (a few seconds), the next interval

will be equally brief, then normal activity might also trigger a disconnect during a momentary

lull. This situation is analogous to the case of a very short adaptive threshold, and is addressed

the same way: a separate minimum idle time is established. In our simulations we used a 2-

minute threshold, meaning that when periodic activity was detected, the timeout threshold would

be dropped temporarily to 2 minutes if it were not already below that point.

What if the prediction is wrong? A wrong prediction would mean that past recent history was

not a good predictor of the next access. We increment a counter, and stop predicting for a client if

the count of incorrect predictions exceeds a threshold (currently 2 mistaken predictions). In that

event, the adaptive modi�ers to the threshold still apply, but we don't shortcut the threshold just

because a pattern seems to develop.

4.3 O�-line Optimal

Given a trace, it is possible to look ahead to the next access and disconnect the modem if and only

if the next access will be M seconds in the future. (In fact, assuming the time cost of reconnecting

is C, one could take this a step further and reestablish the connection C seconds before the next

access [2], but we do not consider that here.) We simulated the o�-line optimal threshold as a way

to compare di�erent algorithms and evaluate any additional room for improvement.

In the case of connect times, we use the total connect time for the o�-line optimal as a baseline,

and report other connect times as a ratio by comparison to the optimal. In general, a 2-minute

�xed threshold has less cumulative connect time than the optimal (because the optimal requires

a 5-minute period of inactivity), in exchange for an exceptionally high number of bumps. The

same holds true of the average and maximum number of modems in use over time, which are also

normalized to the optimal.

The number of bumps is zero for the o�-line optimal, so a ratio does not apply. We use absolute

counts, displayed on a log scale, with the zero value for the optimal case represented by a small

nonzero number.

9



4.4 Required State

With �xed thresholds, the per-modem state at the ISP is minimal: just the last time when there

was activity, and a per-modem timeout if that is con�gurable for each modem. Using an adaptive

threshold, one needs the per-modem timeout, as well as a global or per-modem set of parameters for

adjusting the timeout. One also must note not only the last time of activity but also the time when

a modem disconnected, in order to determine whether a bump has occurred. Predictive timeouts,

which use a bu�er of historical information, require several idle time and active intervals for each

modem. In no case is the per-modem state more than a few tens or hundreds of bytes per modem,

however.

5 Experiments

The �xed-threshold policies used disconnect thresholds of 2, 5, 10, and 15 minutes. When reported

individually, these are designated by �xedN, for a value of N . In our graphs, the �xed policies

are generally connected by a dashed line to highlight them by comparison to the adaptive policies,

and because one can usually interpolate between two �xed thresholds. The adaptive policies used

additive or multiplicative modi�ers within ranges that approximated the �xed-threshold policies.

When clustered, these are grouped by the type of modi�ed and the range within which they vary.

When shown separately, they are designated by a string of the form S-�a+�amminMmax for

additive modi�ers, or S/�m*�mmminMmax for multiplicative ones. S is a starting threshold in

minutes; all experiments reported here started with a 5-minute threshold.

The values for � and � appear in Table 1(a), and the ranges among which they varied appear

in Table 1(b). Note that the values for �m in the table refer to an amount by which to divide the

current threshold.

In addition to varying the modi�ers and ranges, we varied the de�nition of a bump and the

inclusion or exclusion of \workaholics," as described next.

5.1 Workaholics

Some clients are essentially always active. This may be because they are actively using the network,

getting useful work done. In other cases the communication is \busy work" that is speci�cally

intended to keep the connection alive. Either way, no method that is intended to modify the

disconnection threshold is going to a�ect these clients. The more \workaholics" there are, the less

10



Additive Multiplicative

�a �a �m �m

5.00 �1:00 1.2 1.1

5.00 �2:00 1.4 1.1

3.00 �2:00 1.4 1.2

(a) Adjustment values. The left two
columns list the additive values studied
in this paper, while the right two list the
multiplicative values. Additive times are
in minutes.

Starting Minimum Maximum

value value Tmin value Tmax

5 1 15

5 5 15

5 5 30

(b) Ranges of the disconnect threshold studied in this paper,
in minutes.

Table 1: Parameters for adaptive spin-down (times in seconds). The cross-product of the sets of parameters

was used to drive the simulations; that is, each of the 3 combinations of (�a, �a) and 3 combinations of (�m,

�m) in Table (a) is used with each of the 3 sets of values in Table (b), giving 18 sets of adaptive parameters

to drive the simulator.

overall bene�t might accrue from modifying the behavior of the non-workaholics. (Barbar�a and

Imieli�nski [1] refer to the latter as \sleepers.")

We identify workaholics by noting those modems that accumulated a total connection time of

at least 80% of the entire trace, using the o�-line optimal disconnection threshold. The simulator

reports statistics across all modems and also excluding those modems that are identi�ed during

the o�-line optimal run as workaholics. The number of workaholics is partially dependent on the

de�nition of a bump; in our trace, with a 5-minute bump threshold, 15 hosts were so identi�ed,

and the number increased to 19 with a 10-minute threshold.

How should workaholics be treated? A workaholic that would be active even if modem dis-

connections were unintrusive should be considered in all results, because it will limit the overall

bene�t available if new policies were deployed. One that is that arti�cially busy because of the in-

convenience of modem disconnections should be factored out. Our experience in discussing modem

activity with their owners has suggested that the latter case is far more common, and we there-

fore exclude workaholics from consideration in this paper unless stated otherwise. We consider

workaholics further in Section 6.4.

6 Results

We present results that compare adaptive and �xed thresholds, given a �xed de�nition of what

constitutes a bump and aggregating across all users. We then compare these results to a set of

11



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0

1

10

100

1000

10000
B

um
ps

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 2: Total bump count, 5-minute bump threshold, excluding 15 workaholics.

simulations with a more conservative de�nition of a bump. Next we consider the e�ect of increasing

the maximum number of prediction errors. We then include the e�ect of workaholics, and �nally

we look at variations of the adaptive thresholds among two individual users.

6.1 Adaptive versus Fixed Thresholds

From the standpoint of user annoyance, the number of times the user must wait for a new connection

is of great importance. However, the longer since the user last communicated, the more willing the

user is to wait to reinitiate contact. Di�erent users may have varying levels of willingness to su�er

an initial delay. As a baseline, we consider a case where a disconnect is considered a bump if the

modem isn't idle for at least 5 minutes after the disconnection. We vary this threshold in the next

subsection.

12



The �rst set of �gures shows the cumulative e�ect across the entire user population of approxi-

mately 100 modems, but excluding the activity of 15 workaholics. Figure 2 shows the total number

of bumps encountered, on a log scale, by comparison to the total connect time. Connect time is

itself relative to the o�-line optimal case, as discussed above, which appears on the bottom axis at

the relative value of 1. The �xed 2-minute timeout uses slightly less connect time but encounters an

unacceptable total of over 20,000 bumps over a one-week period. The other �xed points encounter

far fewer bumps, but only the 15-minute threshold encounters fewer bumps than the various adap-

tive algorithms. Compared to the 5-minute threshold, some of the adaptive algorithms encounter

close to half an order of magnitude fewer bumps at no cost in connect time, while the rest reduce the

bumps further in exchange for more connect time. Compared to the 10-minute threshold, virtually

all the adaptive points are both below and to the left, i.e., encounter both fewer bumps and less

connect time.

The �xed 15-minute threshold is an interesting case. Compared to the adaptive point that is

farthest to the bottom-right of the graph, it uses 9% more connect time and encounters 27% fewer

bumps. The relative weights of the need to reclaim modems and the desire not to inconvenience

the user would determine whether the simpler �xed threshold would be more desirable.

Focusing on the di�erences between additive and multiplicative thresholds, we see that the

additive policies within a range of values are consistently below and to the right of the multiplicative

ones. (Refer to the solid polygons of a particular shape, comapred to the open ones.) This means

that the additive policies are connected longer but encounter fewer bumps. This is unsurprising

since the multiplicative ones react to bumps more aggressively; the same phenomenon was noted

in the domain of spinning down a disk [2].

\Bump severity" weights the bumps by the extent to which they missed the threshold. Figure 3

shows the severity-versus-connection plot comparable to Figure 2. Most of the same comments

apply, but the adaptive points with the lowest severity are closer to the 15-minute �xed threshold.

Here, the �xed threshold reduces the severity by just 10% in exchange for the same 9% increase in

connect time.

Figure 4 plots the average number of modems in use at each 30-second collection point, relative

to the optimal, against the same \relative connect time" in the preceding �gures. As one would

expect, the more total time used by an algorithm, the more likely additional modems will be

13



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0

1

10

100

1000

10000
B

um
p 

Se
ve

ri
ty

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 3: Bump severity, 5-minute bump threshold, excluding 15 workaholics.

in use in parallel. The 15-minute �xed threshold uses 23% more modems on average than the

optimal, whereas the adaptive algorithm with the fewest bumps uses just 13% more, equivalent to

a reduction of 8% from the 15-minute threshold. The 2-minute threshold uses much less than the

o�-line optimal, but of course it encounters too many bumps to be of practical interest.

Figure 5 is similar to Figure 4, but with the maximum number of simultaneous modems instead

of the average. With this trace and con�gurations, virtually all the thresholds except the �xed

2-minute one hit the same maximum. The 2-minute threshold had a lower maximum, as one would

expect. The 15-minute and a couple of the adaptive thresholds, including the one that is closest

to the 15-minute threshold in bumps, had a maximum that was one modem greater than the other

thresholds.

14



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
A

vg
 P

or
ts

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 4: Mean modem usage, 5-minute bump threshold, excluding 15 workaholics.

6.2 Varying the Bump Threshold

Figures 6{8 present simulation results corresponding to Figures 2{4, but with a bump if the idle

period is less than 10 minutes (rather than 5).1 Note that although most numbers are directly

comparable because they are relative to the optimal policy for that de�nition of a bump, the total

counts of bumps are absolute counts. Since they exclude di�erent numbers of workaholics, they are

not directly comparable, and one should instead consider the trends within each graph.

Focusing just on the number of bumps (Figure 6, compared with Figure 2), the overall shape

of the �xed-threshold curves and the relative positions of the adaptive-threshold points are similar.

There are some notable distinctions, though:

1The �gure corresponding to Figure 5 is omitted due to space limitations, but is virtually the same.

15



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
M

ax
 P

or
ts

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 5: Maximum modem usage, 5-minute bump threshold, excluding 15 workaholics.

� The 2-minute �xed timeout improves on the total connect time, relative to the 5-minute

bump threshold. This is because the optimal in the case of a 10-minute bump threshold

disconnects signi�cantly less often. The total bump count decreases, but only because of

the four additional workaholics that are excluded in the 10-minute bump case. Counting all

modems, the number of bumps increases by 11%, which is to be expected given the more

stringent threshold for a bump yet a consistently low disconnect threshold.

� While in both �gures the adaptive points are consistently below the line formed by the �xed-

threshold points, the best adaptive point in the 10-minute bump case is closer to the 15-minute

�xed threshold case than for the 5-minute bump. The adaptive policy with the fewest bumps

increases the total bump count by less than 4% compared to the 15-minute �xed threshold,

16



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0

1

10

100

1000

10000
B

um
ps

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 6: Total bump count, 10-minute bump threshold, excluding 19 workaholics.

and reduces connect time by 6%. When bump severity is considered, the adaptive policy

actually reduces overall severity by 4% compared to the 15-minute threshold.

The severity for the �xed 5-minute (Figure 3) and 10-minute (Figure 7) thresholds is virtually

identical: it actually increases by about 1% with the higher threshold, while simultaneously in-

creasing overall connect time by 14%. This is because waiting 10 minutes and then disconnecting

is more likely to hit network activity soon thereafter than waiting 5 minutes. For instance, a user

who checked mail every 12 minutes would encounter a bump with a �xed threshold of either 5 or

10 minutes and a need to be idle for another 10 minutes, but the reconnect would occur earlier

in the cycle for the 10-minute disconnect threshold than for the 5-minute threshold, resulting in a

higher weighted severity.

17



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0

1

10

100

1000

10000
B

um
p 

Se
ve

ri
ty

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 7: Bump severity, 10-minute bump threshold, excluding 19 workaholics.

6.3 Prediction Errors

When our system predicts a timeout based on repeated intervals of similar activity, it disconnects

the modem quickly by comparison to the normal disconnection threshold, which varies using a

\random walk" approach. As a result, if the prediction is in error, the user is likely to be much

more inconvenienced than with the adaptive threshold. Currently, the system counts the number of

such errors for each modem and stops making predictions for a modem that has already encountered

two such errors. We investigated the sensitivity to this threshold by increasing it from 2 to 5. As

one might expect, the e�ect was to increase the bump count while decreasing total connect time.

All such changes were moderate, and not readily discernible in a graph.

6.4 Workaholics

18



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
A

vg
 P

or
ts

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 8: Mean modem usage, 10-minute bump threshold, excluding 19 workaholics.

The e�ect of including workaholics in the simulation results is to compress the \relative connect

time" and \relative ... ports" numbers. This is because in each case, all numbers get shifted by a

constant amount (such as about 7 days of connect time, multiplied by the number of workaholics),

and then divided against the higher value for the o�-line optimal. Figure 9 gives an example of the

total bump count, including workaholics, corresponding to Figure 2. Note that the total number of

bumps will remain constant in almost all cases, since workaholics will not be disconnected except

with a very short �xed threshold.

6.5 Threshold Variation

Figures 10 and 11 plot the variation in threshold for the di�erent algorithms for two clients.

The modem in Figure 10 belonged to one of the authors and showed a marked 
uctuation over

19



0.0 0.5 1.0 1.5 2.0

Relative Connect Time

0

1

10

100

1000

10000

B
um

ps

optimal
fixed
Additive 1-15
Multiplicative 1-15
Additive 5-15
Multiplicative 5-15
Additive 5-30
Multiplicative 5-30

Figure 9: Total bump count, 5-minute bump threshold, including the 15 workaholics.

time. The modem in Figure 11 was one of the workaholics, accumulating 6.8 days' worth of connect

time over the 7-day trace interval using a 15-minute threshold. As a consequence, the adaptive

thresholds vary initially and eventually settle into a consistent state as a function of the rate at

which they adjust and the range with which they can vary. The consistent state indicates that no

further disconnects occur (otherwise the thresholds would continue to adjust).

7 Summary and Future Work

Adaptive techniques that use past history to predict a good timeout interval for modem disconnec-

tion can reduce overall resource consumption with little or no additional inconvenience to the user.

These techniques require minimal state on the part of the ISP and are easy to implement.

The exact choice of which modi�ers to use, and limitations to place on the range among which

20



0 2 4 6 8

Time (days)

0

10

20

30

T
hr

es
ho

ld
 (

m
in

)

fixed2
fixed5
fixed10
fixed15
5-60+300m1M15
5-120+300m1M15
5-120+180m1M15
5/1.1*1.2m1M15
5/1.1*1.4m1M15
5/1.2*1.4m1M15
5-60+300m5M15
5-120+300m5M15
5-120+180m5M15
5/1.1*1.2m5M15
5/1.1*1.4m5M15
5/1.2*1.4m5M15
5-60+300m5M30
5-120+300m5M30
5-120+180m5M30
5/1.1*1.2m5M30
5/1.1*1.4m5M30
5/1.2*1.4m5M30

Figure 10: Variation in thresholds for a user with irregular accesses.

21



0 2 4 6 8

Time (days)

0

5

10

15

T
hr

es
ho

ld
 (

m
in

)

fixed2
fixed5
fixed10
fixed15
5-60+300m1M15
5-120+300m1M15
5-120+180m1M15
5/1.1*1.2m1M15
5/1.1*1.4m1M15
5/1.2*1.4m1M15
5-60+300m5M15
5-120+300m5M15
5-120+180m5M15
5/1.1*1.2m5M15
5/1.1*1.4m5M15
5/1.2*1.4m5M15
5-60+300m5M30
5-120+300m5M30
5-120+180m5M30
5/1.1*1.2m5M30
5/1.1*1.4m5M30
5/1.2*1.4m5M30

Figure 11: Variation in thresholds for a user with regular and frequent accesses (a \workaholic."

22



the timeout can vary, is thus far an imprecise art. Additional experimentation with \live users"

will be helpful in further evaluating the technique and providing guidelines for these parameters.

References

[1] Daniel Barbar�a and Tomasz Imieli�nski. Sleepers and workaholics: Caching strategies in mobile envi-

ronments. In Richard T. Snodgrass and Marianne Winslett, editors, Proceedings of the International

Conference on Management of Data, pages 1{12, New York, NY, USA, May 1994. ACM Press.

[2] Fred Douglis, P. Krishnan, and Brian Bershad. Adaptive disk spin-down policies for mobile computers.

Computing Systems, 8(4):381{413, Fall 1995. An earlier version appeared in Proceedings of the Second

Symposium on Mobile and Location-independent Computing, pp. 121{137, April 1995.

[3] Fred Douglis, P. Krishnan, and Brian Marsh. Thwarting the Power Hungry Disk. In Proceedings of 1994

Winter USENIX Conference, pages 293{306, San Francisco, CA, January 1994.

[4] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studies of competitive spinning

for a shared-memory multiprocessor. In Proceedings of 13th ACM Symposium on Operating Systems

Principles, pages 41{55. Association for Computing Machinery SIGOPS, October 1991.

[5] S. Keshav, C. Lund, S. J. Phillips, N. Reingold, and H. Suran. An empirical evaluation of virtual circuit

holding time policies in IP-over-ATM networks. IEEE Journal on Selected Areas in Communications,

13(8):1371{1382, October 1995.

[6] Joseph R. Kiniry and Christopher Metz. Cable modems: Cable TV delivers the internet. IEEE Internet

Computing, 2(3):12{15, May{June 1998.

[7] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson. A Quantitative Analysis of Disk Drive

Power Management in Portable Computers. In Proceedings of the 1994 Winter USENIX, pages 279{291,

San Francisco, CA, 1994.

[8] William Simpson et al. RFC 1661: The point-to-point protocol (PPP), July 1994.

[9] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced CPU energy. In

Proceedings of the First Symposium on Operating Systems Design and Implementation (OSDI), pages

13{23. USENIX Association, November 1994.

23


