
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the USENIX Annual Technical Conference
Monterey, California, USA, June 6-11, 1999

The Pebble Component-Based
Operating System

_

_

Eran Gabber, Christopher Small, John Bruno,
José Brustoloni, and Avi Silberschatz

Lucent Technologies—Bell Laboratories

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

The Pebble Component-Based Operating System

Eran Gabber, Christopher Small, John Bruno†, José Brustoloni and Avi Silberschatz

Information Sciences Research Center
Lucent Technologies—Bell Laboratories

600 Mountain Ave.
Murray Hill, NJ 07974

{eran, chris, jbruno, jcb, avi}@research.bell-labs.com

†Also affiliated with the University of California at Santa Barbara

Abstract

Pebble is a new operating system designed with the
goals of flexibility, safety, and performance. Its architec-
ture combines a set of features heretofore not found in a
single system, including (a) a minimal privileged mode
nucleus, responsible for switching between protection
domains, (b) implementation of all system services by
replaceable user-level components with minimal privi-
leges (including the scheduler and all device drivers)
that run in separate protection domains enforced by
hardware memory protection, and (c) generation of code
specialized for each possible cross-domain transfer. The
combination of these techniques results in a system with
extremely inexpensive cross-domain calls that makes it
well-suited for both efficiently specializing the operat-
ing system on a per-application basis and supporting
modern component-based applications.

1 Introduction

A new operating system project should address a real
problem that is not currently being addressed; construct-
ing yet another general purpose POSIX- or Windows32-
compliant system that runs standard applications is not a
worthwhile goal in and of itself. The Pebble operating
system was designed with the goal of providing flexibil-
ity, safety, and high performance to applications in ways
that are not addressed by standard desktop operating
systems.

Flexibility is important for specialized systems, often
referred to as embedded systems. The term is a misno-
mer, however, as embedded systems run not just on
microcontrollers in cars and microwaves, but also on
high-performance general purpose processors found in
routers, laser printers, and hand-held computing
devices.

Safety is important when living in today’s world of
mobile code and component-based applications.
Although safe languages such as Java [Gosling96] and
Limbo [Dorward97] can be used for many applications,
hardware memory protection is important when code is
written in unsafe languages such as C and C++.

High performance cannot be sacrificed to provide safety
and flexibility. History has shown us that systems are
chosen primarily for their performance characteristics;
safety and flexibility almost always come in second
place. Any system structure added to support flexibility
and safety cannot come at a significant decrease in per-
formance; if possible, a new system should offer better
performance than existing systems.

Early in the project, the designers of Pebble decided that
to maximize system flexibility Pebble would run as little
code as possible in its privileged mode nucleus. If a
piece of functionality could be run at user level, it was
removed from the nucleus. This approach makes it easy
to replace, layer, and offer alternative versions of operat-
ing system services.

Each user-level component runs in its own protection
domain, isolated by means of hardware memory protec-
tion. All communication between protection domains is
done by means of a generalization of interrupt handlers,
termed portals. Only if a portal exists between protec-
tion domain A and protection domain B can A invoke a
service offered by B. Because each protection domain
has its own portal table, by restricting the set of portals
available to a protection domain, threads in that domain
are efficiently isolated from services to which they
should not have access.

Portals are not only the basis for flexibility and safety in
Pebble, they are also the key to its high performance.
Specialized, tamper-proof code can be generated for
each portal, using a simple interface definition lan-
guage. Portal code can thus be optimized for its portal,

saving and restoring the minimum necessary state, or
encapsulating and compiling out demultiplexing deci-
sions and run-time checks.

The remainder of this paper is structured as follows. In
Section 2 we discuss related work. In Section 3 we
describe the architecture of Pebble, and in Section 4 we
discuss the portal mechanism and its uses in more detail.
Section 5 covers several key implementation issues of
Pebble. Section 6 introduces the idea of implementing a
protected, application-transparent “sandbox” via portal
interposition, and shows the performance overhead of
such a sandbox. Section 7 compares the performance of
Pebble and OpenBSD on our test hardware, a MIPS
R5000 processor. Section 8 reviews the current status of
Pebble and discusses our plans for future work. We
summarize in Section 9, and include a short code exam-
ple that implements the sandbox discussed in Section 6.

2 Related Work

Pebble has the same general structure as classical micro-
kernel operating systems such as Mach [Acetta86], Cho-
rus [Rozer88], and Windows NT [Custer92], consisting
of a privileged mode kernel and a collection of user
level servers. Pebble’s protected mode nucleus is much
smaller and has fewer responsibilities than the kernels
of these systems, and in that way is much more like the
L4 microkernel [Liedtke95]. L4 and Pebble share a
common philosophy of running as little code in privi-
leged mode as possible. Where L4 implements IPC and
minimal virtual memory management in privileged
mode, Pebble’s nucleus includes only code to transfer
threads from one protection domain to another and a
small number of support functions that require kernel
mode.

Mach provides a facility to intercept system calls and
service them at user level [Golub90]. Pebble’s portal
mechanism, which was designed for high-performance
cross-protection-domain transfer, can be used in a simi-
lar way, taking an existing application component and
interposing one or more components between the appli-
cation component and the services it uses.

Pebble’s architecture is closer in spirit to the nested pro-
cess architecture of Fluke [Ford96]. Fluke provides an
architecture in which virtual operating systems can be
layered, with each layer only affecting the performance
of the subset of the operating system interface it imple-
ments. For example, the presence of multiple virtual
memory management “nesters” (e.g., to provide demand
paging, distributed shared memory, and persistence)
would have no effect on the cost of invoking file system

operations such as read and write. The Fluke model
requires that system functionality be replaced in groups;
a memory management nester must implement all of the
functions in the virtual memory interface specification.
Pebble portals can be replaced piecemeal, which permits
finer-grained extensibility.

The Exokernel model [Engler95, Kaashoek97] attempts
to “exterminate all OS abstractions,” with the privileged
mode kernel in charge of protecting resources, but leav-
ing resource abstraction to user level application code.
As with the Exokernel approach, Pebble moves the
implementation of resource abstractions to user level,
but unlike the Exokernel, Pebble provides a set of
abstractions, implemented by user-level operating sys-
tem components. Pebble OS components can be added
or replaced, allowing alternate OS abstractions to coex-
ist or override the default set.

Pebble can use the interposition technique discussed in
Section 6 to wrap a “sandbox” around untrusted code.
Several extensible operating system projects have stud-
ied the use of software techniques, such as safe lan-
guages (e.g., Spin [Bershad95]) and software fault
isolation (e.g., VINO [Seltzer96]), for this purpose.
Where software techniques require faith in the safety of
a compiler, interpreter, or software fault isolation tool, a
sandbox implemented by portal interposition and hard-
ware memory protection provides isolation at the hard-
ware level, which may be simpler to verify than
software techniques.

Philosophically, the Pebble approach to sandboxing is
akin to that provided by the Plan 9 operating system
[Pike90]. In Plan 9, nearly all resources are modeled as
files, and each process has its own file name space. By
restricting the namespace of a process, it can be effec-
tively isolated from resources to which it should not
have access. In contrast with Plan 9, Pebble can restrict
access to any service, not just those represented by files.

Pebble applies techniques developed by Bershad et al.
[Bershad89], Massalin [Massalin92], and Pu et al.
[Pu95] to improve the performance of IPC. Bershad’s
results showed that IPC data size tends to be very small
(which fits into registers) or large (which is passed by
sharing memory pages). Massalin’s work on the Synthe-
sis project, and, more recently, work by Pu et al. on the
Synthetix project, studied the use of generating special-
ized code to improve performance.

Pebble was inspired by the SPACE project [Probert91].
Many of the concepts and much of the terminology of
the project come from Probert’s work; e.g., SPACE pro-

vided us with the idea of cross-domain communication
as a generalization of interrupt handling.

The Spring kernel [Mitchell94] provided cross-protec-
tion domain calls via doors, which are similar to Peb-
ble’s portals. However, Spring’s doors are used only for
implementing operations on objects, and do not include
general purpose parameter manipulations.

The Kea system [Veitch96] is very similar to Pebble. It
provides protection domains, inter-domain calls via por-
tals and portal remapping. However, Kea’s portals do
not perform general parameter manipulations like Peb-
ble. Parameter manipulations, such as sharing memory
pages, are essential for efficient communication
between components.

The MMLite system [Helander98] is a component-
based system that provides a wide selection of object-
oriented components that are assembled into an applica-
tion system. MMLite’s components are space efficient.
However, MMLite does not use any memory protection,
and all components execute in the same protection
domain.

Like Dijkstra’s THE system [Dijkstra68], Pebble hides
the details of interrupts from higher level components
and uses only semaphores for synchronization.

Some CISC processors provide a single instruction that
performs a full context switch. A notable example is the
Intel x86 task switch via a call gate [Intel94]. However,
this instruction takes more than 100 machine cycles.

3 Philosophy and Architecture

The Pebble philosophy consists of the following four
key ideas.

The privileged-mode nucleus is as small as possible. If
something can be run at user level, it is.

The privileged-mode nucleus is only responsible for
switching between protection domains. In a perfect
world, Pebble would include only one privileged-mode
instruction, which would transfer control from one pro-
tection domain to the next. By minimizing the work
done in privileged mode, we reduce both the amount of
privileged code and the time needed to perform essential
privileged mode services.

The operating system is built from fine-grained replace-
able components, isolated through the use of hardware
memory protection.

The functionality of the operating system is imple-
mented by trusted user-level components. The compo-
nents can be replaced, augmented, or layered.

The architecture of Pebble is based around the availabil-
ity of hardware memory protection; Pebble, as described
here, requires a memory management unit.

The cost of transferring a thread from one protection
domain to another should be small enough that there is
no performance-related reason to co-locate services.

It has been demonstrated that the cost of using hardware
memory protection on the Intel x86 can be made
extremely small [Liedtke97], and we believe that if it
can be done on the x86, it could be done anywhere. Our
results bear us out—Pebble can perform a one-way IPC
in 114 machine cycles on a MIPS R5000 processor (see
Section 7 for details).

Transferring a thread between protection domains is
done by a generalization of hardware interrupt han-
dling, termed portal traversal. Portal code is generated
dynamically and performs portal-specific actions.

Hardware interrupts, IPC, and the Pebble equivalent of
system calls are all handled by the portal mechanism.
Pebble generates specialized code for each portal to
improve run-time efficiency. Portals are discussed in
more detail in the following section.

3.1 Protection Domains, Portals and Threads

Each component runs in its own protection domain
(PD). A protection domain consists of a set of pages,
represented by a page table, and a set of portals, which
are generalized interrupt handlers, stored in the protec-
tion domain’s portal table. A protection domain may
share both pages and portals with other protection
domains. Figure 1 illustrates the Pebble architecture.

Figure 1. Pebble architecture. Arrows denote portal
traversals. On the right, an interrupt causes a device
driver’s semaphore to be incremented, unblocking the
device driver’s thread (see Section).

interrupt
dispatcher

scheduler

server

file system

device
driver

application

...

nucleus

v()

Portals are used to handle both hardware interrupts and
software traps and exceptions. The existence of a portal
from PDA to PDB means that a thread running in PDA

can invoke a specific entry point of PDB (and then
return). Associated with each portal is code to transfer a
thread from the invoking domain to the invoked domain.
Portal code copies arguments, changes stacks, and maps
pages shared between the domains. Portal code is spe-
cific to its portal, which allows several important opti-
mizations to be performed (described below).

Portals are usually generated in pairs. The call portal
transfers control from domain PDA to PDB, and the

return portal allows PDB to return to PDA. In the follow-
ing discussion we will omit the return portal for brevity.

Portals are generated when certain resources are created
(e.g. semaphores) and when clients connect to servers
(e.g. when files are opened). Some portals are created at
the system initialization time (e.g. interrupt and excep-
tion handling portals).

A scheduling priority, a stack, and a machine context are
associated with each Pebble thread. When a thread
traverses a portal, no scheduling decision is made; the
thread continues to run, with the same priority, in the
invoked protection domain. Once the thread executes in
the invoked domain, it may access all of the resources
available in the invoked domain, while it can no longer
access the resources of the invoking domain. Several
threads may execute in the same protection domain at
the same time, which means that they share the same
portal table and all other resources.

As part of a portal traversal, the portal code can manipu-
late the page tables of the invoking and/or invoked pro-
tection domains. This most commonly occurs when a
thread wishes to map, for the duration of the IPC, a
region of memory belonging to the invoking protection
domain into the virtual address space of the invoked
protection domain; this gives the thread a window into
the address space of the invoking protection domain
while running in the invoked protection domain. When
the thread returns, the window is closed.

Such a memory window can be used to save the cost of
copying data between protection domains. Variations
include windows that remain open (to share pages
between protection domains), windows that transfer
pages from the invoking domain to the invoked domain
(to implement tear-away write) and windows that trans-
fer pages from the invoked domain to the invoker (to
implement tear-away read).

Note that although the portal code may modify VM data
structures, only the VM manager and the portal manager
(which generates portal code) share the knowledge
about these data structures. The Pebble nucleus itself is
oblivious to those data structures.

3.2 Safety

Pebble implements a safe execution environment by a
combination of hardware memory protection that pre-
vents access to memory outside the protection domain,
and by limiting the access to the domain’s portal table.
An protection domain may access only the portals it
inherited from its parent and new portals that were gen-
erated on its behalf by the portal manager. The portal
manager may restrict access to new portals in conjunc-
tion with the name server. A protection domain cannot
transfer a portal it has in its portal table to an unrelated
domain. Moreover, the parent domain may intercept all
of its child portal calls, including calls that indirectly
manipulate the child’s portal table, as described in
Section 6.

3.3 Server Components

As part of the Pebble philosophy, system services are
provided by operating system server components, which
run in user mode protection domains. Unlike applica-
tions, server components are trusted, so they may be
granted limited privileges not afforded to application
components. For example, the scheduler runs with inter-
rupts disabled, device drivers have device registers
mapped into their memory region, and the portal man-
ager may add portals to protection domains (a protection
domain cannot modify its portal table directly).

There are many advantages of implementing services at
user level. First, from a software engineering standpoint,
we are guaranteed that a server component will use only
the exported interface of other components. Second,
because each server component is only given the privi-
leges that it needs to do its job, a programming error in
one component will not directly affect other compo-
nents. If a critical component fails (e.g., VM) the system
as a whole will be affected—but a bug in console device
driver will not overwrite page tables.

Additionally, as user-level servers can be interrupted at
any time, this approach has the possibility of offering
lower interrupt latency time. Given that server compo-
nents run at user level (including interrupt-driven
threads), they can use blocking synchronization primi-
tives, which simplifies their design. This is in contrast
with handlers that run at interrupt level, which must not

block, and require careful coding to synchronize with
the upper parts of device drivers.

3.4 The Portal Manager

The Portal Manager is the operating system component
responsible for instantiating and managing portals. It is
privileged in that it is the only component that is permit-
ted to modify portal tables.

Portal instantiation is a two-step process. First, the
server (which can be a Pebble system component or an
application component) registers the portal with the por-
tal manager, specifying the entrypoint, the interface def-
inition, and the name of the portal. Second, a client
component requests that a portal with a given name be
opened. The portal manager may call the name server to
identify the portal and to verify that the client is permit-
ted to open the portal. If the name server approves the
access, the portal manger generates the code for the por-
tal, and installs the portal in the client’s portal table. The
portal number of the newly generated portal is returned
to the client. A client may also inherit a portal from its
parent as the result of a domain_fork(), as
described in Section 4.5.

To invoke the portal, a thread running in the client loads
the portal number into a register and traps to the
nucleus. The trap handler uses the portal number as an
index into the portal table and jumps to the code associ-
ated with the portal. The portal code transfers the thread
from the invoking protection domain to the invoked pro-
tection domain and returns to user level. As stated
above, a portal transfer does not involve the scheduler in
any way. (Section 5.4 describes the only exception to
this rule.)

Portal interfaces are written using a (tiny) interface defi-
nition language, as described in Section 4.4. Each portal
argument may be processed or transformed by portal
code. The argument transformation may involve a func-
tion of the nucleus state, such as inserting the identity of
the calling thread or the current time. The argument
transformation may also involve other servers. For
example, a portal argument may specify the address of a
memory window to be mapped into the receiver’s
address space. This transformation requires the manipu-
lation of data structures in the virtual memory server.

The design of the portal mechanism presents the follow-
ing conflict: on one hand, in order to be efficient, the
argument transformation code in the portal may need to
have access to private data structures of a trusted server
(e.g., the virtual memory system); on the other hand,

trusted servers should be allowed to keep their internal
data representations private.

The solution we advocate is to allow trusted servers,
such as the virtual memory manager, to register argu-
ment transformation code templates with the portal
manager. (Portals registered by untrusted services would
be required to use the standard argument types.) When
the portal manager instantiates a portal that uses such an
argument, the appropriate type-specific code is gener-
ated as part of the portal. This technique allows portal
code to be both efficient (by inlining code that trans-
forms arguments) and encapsulated (by allowing servers
to keep their internal representations private). Although
portal code that runs in kernel mode has access to
server-specific data structures, these data structures can-
not be accessed by other servers. The portal manager
currently supports argument transformation code of a
single trusted server, the virtual memory server.

3.5 Scheduling and Synchronization

Because inter-thread synchronization is intrinsically a
scheduling activity, synchronization is managed entirely
by the user-level scheduler. When a thread creates a
semaphore, two portals (for P and V) are added to its
portal table that transfer control to the scheduler. When
a thread in the domain invokes P, the thread is trans-
ferred to the scheduler; if the P succeeds, the scheduler
returns. If the P fails, the scheduler marks the thread as
blocked and schedules another thread. A V operation
works analogously; if the operation unblocks a thread
that has higher priority than the invoker, the scheduler
can block the invoking thread and run the newly-awak-
ened one.

3.6 Device Drivers and Interrupt Handling

Each hardware device in the system has an associated
semaphore used to communicate between the interrupt
dispatcher component and the device driver component
for the specific device.

In the portal table of each protection domain there are
entries for the portals that corresponds to the machine’s
hardware interrupts. The Pebble nucleus includes a short
trampoline function that handles all exceptions and
interrupts. This code first determines the portal table of
the current thread and then transfers control to the
address that is taken from the corresponding entry in
this portal table. The nucleus is oblivious to the specific
semantics of the portal that is being invoked. The portal
that handles the interrupt starts by saving the processor
state on the invocation stack (see Section 5.1), then it
switches to the interrupt stack and jumps to the interrupt

dispatcher. In other words, this mechanism converts
interrupts to portal calls.

The interrupt dispatcher determines which device gener-
ated the interrupt and performs a V operation on the
device’s semaphore. Typically, the device driver would
have left a thread blocked on that semaphore. The V
operation unblocks this thread, and if the now-runnable
thread has higher priority than the currently running
thread, it gains control of the CPU, and the interrupt is
handled immediately. Typically, the priority of the inter-
rupt handling threads corresponds to the hardware inter-
rupt priority in order to support nested interrupts. The
priority of the interrupt handling threads is higher than
all other threads to ensure short handling latencies. In
this way, Pebble unifies interrupt priority with thread
priority, and handles both in the scheduler. A pictorial
example of this process is found in Figure 1.

Note that Pebble invokes the interrupt dispatcher
promptly for all interrupts, including low priority ones.
However, the interrupt handling thread is scheduled
only if its priority is higher than the currently running
thread.

Only a small portion of Pebble runs with interrupts dis-
abled, namely portal code, the interrupt dispatcher, and
the scheduler. This is necessary to avoid race conditions
due to nested exceptions.

3.7 Low and Consistent Interrupt Latency

Pebble provides low and consistent interrupt latency by
design, since most servers (except the interrupt dis-
patcher and the scheduler) run with interrupts enabled.
The interrupt-disabled execution path in Pebble is short,
since portal code contain no loops, and the interrupt dis-
patcher and the scheduler are optimized for speed. User
code cannot increase the length of the longest interrupt-
disabled path, and thus cannot increase the interrupt
latency. In previous work we included details on the
interrupt handling mechanism in Pebble, along with
measurements of the interrupt latency on machines with
differering memory hierarchies [Bruno99]. In particular,
the interrupt latency on the MIPS R5000 processor that
is used in this paper is typically 1200-1300 cycles from
the exception until the scheduling of the user-level han-
dling thread.

3.8 Non-Stop Systems

Non-stop (or high-availability) systems are character-
ized by the ability to run continuously over extended
periods of time and support dynamic updates. For exam-
ple, some systems, such as telephone switches, are

expected to run for years without unscheduled down
time. Pebble is especially suited for these systems, since
most system functionality may be replaced dynamically
by loading new servers and modifying portal tables. The
only component that cannot be replaced is the nucleus,
which provides only minimal functionality.

4 Portals and Their Uses

Portals are used for multiple purposes in Pebble. In this
section, we describe a few of their applications.

4.1 Interposition and Layering

One technique for building flexible system is to factor it
into components with orthogonal functionality that can
be composed in arbitrary ways. For example, distributed
shared memory or persistent virtual memory can be
implemented as a layer on top of a standard virtual
memory service. Or, altered semantics can be offered by
layering: the binary interface of one operating system
can be emulated on another operating system by inter-
cepting system calls made by an application written for
the emulated system and implementing them through
the use of native system calls.

The portal mechanism supports this development meth-
odology very nicely. Because the portal mechanism is
used uniformly throughout the system, and a portal per-
forms a user-level to user-level transfer, service compo-
nents can be designed to both accept and use the same
set of portals.

For example, the primary task of a virtual memory man-
ager is to accept requests for pages from its clients and
service them by obtaining the pages from the backing
store. When a client requests a page, the virtual memory
manager would read the page from the backing store
and return it to the client via a memory window opera-
tion. A standard virtual memory service implementation
would support just this protocol, and would typically be
configured with a user application as its client and the
file system as its backing store server.

However, the backing store could be replaced with a dis-
tributed shared memory (DSM) server, which would
have the same interface as the virtual memory manager:
it would accept page requests from its client, obtain the
pages from its backing store (although in this case the
backing store for a page might be the local disk or
another remote DSM server) and return the page to its
client via a memory window operation. By implement-
ing the DSM server using the standard virtual memory
interface, it can be layered between the VM and the file

system. Other services, such as persistent virtual mem-
ory and transactional memory, can be added this way as
well.

When a page fault takes place, the faulting address is
used to determine which portal to invoke. Typically a
single VM fault handler is registered for the entire range
of an application’s heap, but this need not be the case.
For example, a fault on a page in a shared memory
region should be handled differently than a fault on a
page in a private memory region. By assigning different
portals to subranges of a protection domain’s address
space, different virtual memory semantics can be sup-
ported for each range.

4.2 Portals Can Encapsulate State

Because portal code is trusted, is specific to its portal,
and can have private data, portal code can encapsulate
state associated with the portal that need not be exposed
to either endpoint. The state of the invoking thread is a
trivial example of this: portal code saves the thread’s
registers on the invocation stack (see Section 5.1), and
restores them when the thread returns. On the flip side,
data used only by the invoked protection domain can be
embedded in the portal where the invoker cannot view
or manipulate it. Because the portal code cannot be
modified by the invoking protection domain, the
invoked protection domain is ensured that the values
passed to it are valid. This technique frequently allows
run-time demultiplexing and data validation code to be
removed from the code path.

As an example, in Pebble, portals take the place of file
descriptors. An open() call creates four portals in the
invoking protection domain, one each for reading, writ-
ing, seeking and closing. The code for each portal has
embedded in it a pointer to the control block for the file.
To read the file, the client domain invokes the read
portal; the portal code loads the control block pointer
into a register and transfers control directly to the spe-
cific routine for reading the underlying object (disk file,
socket, etc.). No file handle verification needs to be
done, as the client is never given a file handle; nor does
any demultiplexing or branching based on the type of
the underlying object need to be done, as the appropriate
read routine for the underlying object is invoked directly
by the portal code. In this way, portals permit run-time
checks to be “compiled out,” shortening the code path.

To be more concrete, the open() call generates four
consecutive portals in the caller’s portal table. Open()
returns a file descriptor, which corresponds to the index
of the first of the four portals. The read(), write(),

seek() and close() calls are implemented by
library routines, which invoke the appropriate portals, as
seen in Figure 2. invoke_portal() invokes the
portal that is specified in its first argument. (Note that
the portal code of read and write may map the buffer
argument in a memory window to avoid data copying.)

4.3 Short-Circuit Portals

In some cases the amount of work done by portal tra-
versal to a server is so small that the portal code itself
can implement the service. A short-circuit portal is one
that does not actually transfer the invoking thread to a
new protection domain, but instead performs the
requested action inline, in the portal code. Examples
include simple “system calls” to get the current thread’s
ID and read the high resolution cycle counter. The TLB
miss handler (which is in software on the MIPS archi-
tecture, the current platform for Pebble) is also imple-
mented as a short-circuit portal.

Currently, semaphore synchronization primitives are
implemented by the scheduler and necessitate portal tra-
versals even if the operation does not block. However,
these primitives are good candidates for implementation
as hybrid portals. When a P operation is done, if the
semaphore’s value is positive (and thus the invoking
thread will not block), the only work done is to decre-
ment the semaphore, and so there is no need for the
thread to transfer to the scheduler. The portal code could
decrement the semaphore directly, and then return. Only
in the case where the semaphore’s value is zero and the
thread will block does the calling thread need to transfer
to the scheduler. Similarly, a V operation on a sema-
phore with a non-negative value (i.e., no threads are
blocked waiting for the semaphore) could be performed
in a handful of instructions in the portal code itself.

Although these optimizations are small ones (domain
transfer takes only a few hundred cycles), operations

Figure 2. Implementing file descriptors with portals

read(fd, buf, n)

invoke_portal(fd, buf, n)

write(fd, buf, n)

invoke_portal(fd+1, buf, n)

seek(fd, offset, whence)

invoke_portal(fd+2, offset, whence)

close(fd)

invoke_portal(fd+3)

that are on the critical path can benefit from even these
small savings.

4.4 Portal Specification

The portal specification is a string that describes the
behavior of the portal. It controls the generation of por-
tal code by the portal manager. The portal specification
includes the calling conventions of the portal, which
registers are saved, whether the invoking domain shares
a stack with the invoked domain, and how each argu-
ments is processed.

The first character in the specification encodes the por-
tal’s stack manipulation. For example, “s” denotes that
the invoking domain shares its stack with the invoked
domain. “n” denotes that the invoked domain allocated
a new stack. The second character specifies the amount
of processor state that is saved or restored. For example,
“m” denotes that only minimal state is saved, and that
the invoking domain trusts the invoked domain to obey
the C calling convention. “p” denotes that partial state
is saved, and that the invoking domain does not trust the
invoked domain to retain the values of the registers
required by the C calling convention. The rest of the
specification contains a sequence of single character
function codes, that specify handling of the correspond-
ing parameters. For example, the template “smcwi”
specifies a shared stack, saving minimal state, passing a
constant in the first parameter, passing a one-page mem-
ory window in the second parameter, and passing a word
without transformation in the third parameter. This tem-
plate is used by the read and write portals.

4.5 Portal Manipulations

As described earlier, portals are referred to by their
index in the local portal table. A portal that is available
in a particular portal table cannot be exported to other
protection domains using this index. A protection
domain may access only the portals in its portal table.
These properties are the basis for Pebble safety. When a
thread calls fork() , it creates a new thread that exe-
cutes in the same protection domain as the parent. When
a thread calls domain_fork() , it creates a new pro-
tection domain that has a copy of the parent domain’s
portal table. The parent may modify the child’s portal
table to allow portal interposition, which is described in
Section 6.

5 Implementation Issues

In this section we discuss some of the more interesting
implementation details of Pebble.

5.1 Nucleus Data Structures

The Pebble nucleus maintains only a handful of data
structures, which are illustrated in Figure 3. Each thread
is associated with a Thread data structure. It contains
pointer to the thread’s current portal table, user stack,
interrupt stack and invocation stack. The user stack is
the normal stack that is used by user mode code. The
interrupt stack is used whenever an interrupt or excep-
tion occurs while the thread is executing. The interrupt
portal switches to the interrupt stack, saves state on the
invocation stack and calls the interrupt dispatcher
server.

The invocation stack keeps track of portal traversals and
processor state. The portal call code saves the invoking
domain’s state on this stack. It also saves the address of
the corresponding return portal on the invocation stack.
The portal return code restores the state from this stack.

The portal table pointer in the Thread data structure is
portal table of the domain that the thread is currently
executing in. It is changed by the portal call and restored
by the portal return.

5.2 Virtual Memory and Cache

The virtual memory manager is responsible for main-
taining the page tables, which are accessed by the TLB
miss handler and by the memory window manipulation
code in portals. The virtual memory manager is the only
component that has access to the entire physical mem-
ory. The current implementation of Pebble does not sup-
port demand-paged virtual memory.

Pebble implementation takes advantage of the MIPS
tagged memory architecture. Each protection domain is

Figure 3. Pebble nucleus data structures

thread
currently
running
thread

user interrupt invocation portal
stack stack stack table

...

data structure

allocated a unique ASID (address space identifier),
which avoids TLB and cache flushes during context
switches. Portal calls and returns also load the mapping
of the current stack into TLB entry 0 to avoid a certain
TLB miss.

On the flip side, Pebble components run in separate pro-
tection domains in user mode, which necessitates care-
ful memory allocation and cache flushes whenever a
component must commit values to physical memory.
For example, the portal manager must generate portal
code so that it is placed in contiguous physical memory.

5.3 Memory Windows

The portal code that opens a memory window updates
an access data structure that contains a vector of
counters, one counter for each protection domain in the
system. The vector is addressed by the ASID of the cor-
responding domain. The counter keeps track of the num-
ber of portal traversals into the corresponding domain
that passed this page in a memory window. This counter
is incremented by one for each portal call, and is decre-
mented by one for each portal return. The page is acces-
sible if the counter that corresponds with the domain is
greater than zero. We must use counters and not bit val-
ues for maintaining page access rights, since the same
page may be handed to the same domain by multiple
concurrent threads.

The page table contains a pointer to the corresponding
access data structure, if any. Only shared pages have a
dedicated access data structure.

The portal code does not load the TLB with the mapping
of the memory window page. Rather, the TLB miss han-
dler consults this counter vector in order to verify the
access rights to this page. This arrangement saves time
if the shared window is passed to another domain with-
out being touched by the current domain. The portal
return code must remove the corresponding TLB entry
when the counter reaches zero.

5.4 Stack Manipulations

The portal call may implement stack sharing, which
does not require any stack manipulations. The invoked
domain just uses the current thread’s stack.

If the portal call requires a new stack, it obtains one
from the invoked domain’s stack queue. In this case, the
invoked protection domain must pre-allocate one or
more stacks and notify the portal manger to place them
in the domain’s stack queue. The portal call dequeues a
new stack from the invoked domain’s stack queue. If the

stacks queue is empty, the portal calls the scheduler and
waits until a stack becomes available. The portal return
enqueues the released stack back in the stack queue. If
there are any threads waiting for the stack, the portal
return calls the scheduler to pick the first waiting thread
and allow it to proceed in its portal code.

The portal that calls the interrupt dispatcher after an
interrupt switches the stack to the interrupt stack, which
is always available in every thread.

5.5 Footprint

The Pebble nucleus and the essential components (inter-
rupt dispatcher, scheduler, portal manager, real-time
clock, console driver and the idle task) can fit into about
70 pages (8KB each). Pebble does not support shared
libraries yet, which cause code duplication among com-
ponents. Each user thread has three stacks (user, inter-
rupt and invocation) which require three pages, although
the interrupt and invocation stacks could be placed on
the same page to reduce memory consumption. In addi-
tion, fixed size pages inherently waste memory. This
could be alleviated on segmented architectures.

6 Portal Interposition

An important aspect of component-based system is the
ability to interpose code between any client and its serv-
ers. The interposed code can modify the operation of the
server, enforce safety policies, enable logging and error
recovery services, or even implement protocol stacks
and other layered system services.

Pebble implements low-overhead interposition by modi-
fying the portal table of the controlled domain. Since all
interactions between the domain and its surroundings
are implemented by portal traversals, it is possible to
place the controlled domain in a comprehensive sand-
box by replacing the domain’s portal table. All of the
original portals are replaced with portal stubs, which
transfer to the interposed controlling domain. The con-
trolling domain intercepts each portal traversal that
takes place, performs whatever actions it deems neces-
sary, and then calls the original portal. Portal stubs pass
their parameters in the same way as the original portals,
which is necessary to maintain the semantics of the
parameter passing (e.g. windows). Actually, portal stubs
are regular portals that pass the corresponding portal
index in their first argument. The controlling domain
does not have to be aware of the particular semantics of
the intercepted portals; it can implement a transparent
sandbox by passing portal parameters verbatim.

The top diagram of Figure 4 illustrates the configuration
of the original portal table without interposition, where
the domain calls its servers directly. The bottom dia-
gram shows the operation of portal interposition. In this
case, all of the portals in the controlled domain call the
controlling domain, which makes the calls to the serv-
ers.

However, one-time modification of the controlled
domain’s portal table is not enough. Many servers create
new portals dynamically in their client’s portal table,
and then return an index to the newly created portal
back to the client. Since the controlling domain calls the
server, the server creates new portals in the controlling
domain’s table. The controlling domain is notified by
the portal manager that a new portal was created in its
portal table. The notification portal completes the pro-
cess by creating a portal stub in the controlled domain’s
table with the same index as in controlling domain table.

The portal stub calls the controlling domain and passes
the parameters in the same way as the original portal. In
this way, the controlling domain implements a robust
sandbox around the controlled domain, without actually
understanding the semantics of the controlled domain
portals.

There are a few comments about this interposition
mechanism. First, the controlled domain cannot detect
that its portals are diverted nor can it thwart the interpo-
sition in any way. This mechanism is similar to the Unix
I/O redirection, in which a child process accesses stan-
dard file descriptor (e.g., 0, 1 and 2), which are redi-
rected by the parent process. Second, portal
interposition is more comprehensive than Unix I/O redi-
rection, since we can control all interactions between
the controlled domain and its environment. Third, inter-
position can be recursive: a controlling domain inter-
poses the portals of a child domain, which does the same
to its child, ad infinitum. The last comment deals with
the semantics of certain system services, like fork()
and sbrk(), which change the internal state of the
calling domain; these are somewhat tricky to implement
in the face of transparent interposition. We have had to
make special accommodations to allow the controlling
domain to issue them on behalf of the controlled
domain.

6.1 Implementing a Transparent Sandbox by Portal
Interposition

The Appendix contains a code excerpt from a program
that implements a transparent sandbox around its child
domain. The program counts the number of times each
portal was called by the child domain, and completes all
child portal traversals by calling the appropriate server.
It is a fully functional program; we omitted only error
handling code, due to space constraints. When run on
our test hardware (see Section 7, below) the overhead of
this process is 1511 machine cycles for one iteration
(two sem_wait() and two sem_post()), which is
roughly twice the execution time of the original code
without interposition.

The program starts by calling portal_notify(),
which registers the routine notify() with the portal
manager. Any modification to the calling domain’s por-
tal table will call notify() immediately even before
the portal that caused it has returned.
Portal_notify() is necessary to handle any portal
call that the parent executed on behalf of the child which
created a new portal in the parent’s portal table. This
new portal should be replicated also in the child’s portal
table to ensure correct operation. The above situation

domain

portal
table

server A

server B

server C

server D

Figure 4. Original portal configuration (above)
and with portal interposition (below)

create portal

server A

server B

server C

server D

controlled
domain

portal
table

controlling
domain

portal table
notification

 intercept

create
portal

create
portal

occurs in the example when the parent executes
sem_create() on behalf of the child.

The notify() routine receives the template of the
newly created portal and its position in the portal table.
It creates a portal in the child’s portal table at the same
position. The portal’s template is modified to pass the
portal number as the first argument.

The program proceeds to create a child domain by
domain_fork(). The child starts with a copy of the
parent’s portal table. However, all of the entries in the
child’s portal table now point at the intercept()
routine in the parent domain. The first argument to the
intercept() routine is the index of the called portal
in the portal table. This routine increments the counters
and then performs the required action by invoking the
portal with the same index in the parent domain.
invoke_portal() let applications invoke a specific
portal in the caller’s portal table. The intercept()
routine assumes that portals have no more than five
parameters.

The child domain executes the measure() routine,
which measures the execution time of a semaphore
ping-pong between two threads in the same domain. The
hrtime() function returns the current value of the
high-resolution timer, which is incremented every two
machine cycles. Measure() creates two semaphores
by calling sem_create(). The scheduler creates two
new portals for each semaphore in the parent domain,
which calls notify() to create the corresponding
stubs in the child domain’s portal table.

7 Performance Measurements

In this section we measure the performance of Pebble
and, where possible, compare it with OpenBSD running
on the same hardware. The test hardware is an Algorith-
mics P-5064 board, which includes a 166 MHz MIPS
R5000 processor with 32 KB instruction + 32 KB data
level one cache (two way set associative), one megabyte
integrated level two cache and 64MB of memory. We
ran version 2.4 of OpenBSD.

Times were measured using the high-resolution on-chip
timer, which is incremented every two clock cycles. All
results are presented in terms of elapsed machine cycles,
not elapsed time, as our tests generally fit into the level
one or level two cache. As long as cache memory speed
scales with processor speed, cycle-based results will
remain meaningful. To convert cycle counts to elapsed
time, multiply by the cycle time (6 ns).

As the code size of Pebble is very small, and the cache
associativity of the level one cache is low (two-way),
the performance of Pebble is very dependent on how
code and data is placed in the cache. Out of a sense of
fairness, in our experiments we specifically do not make
any attempt to control cache layout. We believe that
with careful tuning of the cache layout, we could reduce
the number of cache misses and conflicts. Given the per-
formance results we have seen to date, we have felt little
need to go to this effort.

The context switch, pipe latency, and semaphore latency
tests were adapted from the hBench:OS test suite
[Brown98]. All tests on Pebble were run 10,000 times.
The context switch and pipe latency times presented for
OpenBSD were the 80% trimmed mean (excluding the
smallest 10% and largest 10% of the measurements) of
twenty results of 10,000 iterations, as per the
hBench:OS measurement methodology. In all cases the
standard deviation for Pebble measurements was less
than 1%.

7.1 IPC

A naive implementation of inter-process communication
(IPC) will emulate the behavior of a remote procedure
call (RPC), marshalling all arguments into a buffer,
copying the buffer from the invoking protection domain
to the invoked protection domain, unmarshalling them,
and then calling the server function. Several common
optimizations can be performed that greatly improve the
performance of IPC.

First, the amount of data transmitted in an IPC follows a
bimodal distribution [Bershad89]; either a small number
of bytes are sent (in which case they can be passed in
registers) or a large number of bytes are sent (in which
case it may make more sense to transfer the data using
virtual memory mapping operations).

In this test we measure the cost of performing an IPC
when all data fits into registers, when a one-page mem-
ory window is passed to the invoked domain (but the
invoked domain does not access the page), and when the
one-page memory window is written by the invoked
domain. Because virtual memory and the TLB are man-
aged in software on the MIPS, the memory management
unit is not involved if when passing a memory window
if the window is never used, although there is some
additional portal overhead. When the window is used in
the invoked domain, a TLB fault takes place, and the
memory management unit comes into play. Moreover,
the portal code may have to remove the resulting TLB
entry on return.

Simply measuring the per-leg cost of an IPC between
two domains does not tell the entire story. In a system
that has been factored into components, we may find
that a client request to service A causes A to make a
request of A′, A′ to make a request of A′′, and so on, until
the initial request is finally satisfied. For example, a cli-
ent page fault generates a request to its VM service, then
makes a request of the file system, which then makes a
request the disk driver to bring the page into memory.
Although simple IPC between two protection domains
must be cheap, it is also critical that when a cascade of
IPCs takes place performance does not drop precipi-
tously.

In this test we measure the time to perform an IPC to the
same domain and return (A→A→A), the time required
to perform an IPC to a second domain and return
(A→B→A), an IPC involving three domains
(A→B→C→B→A) and so on, up to a total of eight
domains. We used the portal specification “npciii”
(no window) and “npcwii” (with memory window),
which means that a new stack was allocated on call and
reclaimed on the return. Also, all processor registers that
should be preserved across calls according to the C call-
ing convention were saved on call and restored on
return. See Section 4.4 for a description of portal speci-
fication. The results are presented as the per-leg (one-
way) time, in cycles.

As a point of comparison, we included the time required
to perform a “null” short-circuit portal traversal (user
level → nucleus → user level). This is the Pebble equiv-
alent to a “null” system call, and can be thought of as the
minimum time required to enter and leave the nucleus.
Results of these tests are found in Table 1. In all cases.

parameters are passed only in registers and not on the
stack.

We see that the times per leg with no window and with
an unused window remains roughly constant as the
number of domains traversed increases, at about 114 and
135 cycles; the overhead of passing a window through a
portal is thus 21 machine cycles. The time per leg
increases above 4 domains due to cache contention.
When the memory window is used, the cost increases by
about 50 cycles, which is the time required to handle a
TLB fault and then remove the TLB entry on return
from the IPC. The one outlier is in the single domain
case, where there is no TLB fault at all; this is because
the page is already mapped in the domain (as there is
only one domain).

An optimization can be performed if the invoking
domain trusts the invoked domain (as would be the case
with an application invoking a system service). The two
can share a stack, saving the costs of allocating a stack
from a pool in the invoked protection domain and copy-
ing data to the new stack. Also, no additional processor
registered are saved on the call, since the invoking
domain trusts the invoked domain to save and restore
those registers. We used the portal specifications
“smciii” and “smcwii” . Even in the tested case,
where no data is passed on the stack, this optimization
has a significant performance benefit, as seen in Table 2.

The savings of this optimization are measured here to be
about 20 cycles, which reduces the per-leg time by 17%.
In addition, by sharing stacks between invoking and
invoked protection domains, the number of stacks, and
hence amount of memory, needed by the system is
decreased, which is an absolute good.

Pebble IPC time is slightly higher than Aegis, an exok-
ernel, on MIPS processors [Engler95]. Aegis performs a
minimal one-way protected control transfer in about 36
cycles on MIPS R2000 and R3000 processors, and per-
forms a null system call without a stack in about 40
cycles. Pebble’s IPC takes longer since it maintains an
invocation stack, which enables easy scheduling of the
thread.

n domains
no

window
window

window +
fault

short-
circuit

45 — —

1 114 133 135

2 114 134 185

4 118 139 190

8 133 153 209

Table 1. IPC in Pebble, new stack and partial save,
All times in CPU cycles, the mean of 10,000 runs.

n domains
no

window
window

window +
fault

1 95 115 118

2 95 116 168

4 95 116 168

8 98 120 182

Table 2. IPC in Pebble, shared stack and minimal
save. In CPU cycles, the mean of 10,000 runs

7.2 Context Switch

As described above, portal traversal does not involve a
scheduling decision. In this section we show the cost of
a context switch in Pebble.

We measure Pebble context switch cost in two ways,
first using Pebble’s explicit yield primitive, and then by
passing a one-byte token around a ring of pipes. The lat-
ter test was derived from hBench:OS, and was used to
compare the performance of Pebble with OpenBSD. In
both cases a number of protection domains, with a sin-
gle thread each, are arranged in a ring, and scheduled in
turn. Measurements are found in Table 3.

We see that the cost of an explicit yield increases with
the number of protection domains, up to a certain point,
and then levels off. As the work done by the scheduler
in this case is independent of the number of processes (it
simply selects the next thread from the ready queue), the
increase in time is due to cache effects: as we grow out
of the level one cache, we rely more on the level two
cache, to the point where we are running almost entirely
out of the level two cache (at six protection domains).
We would expect to see a similar jump at the point
where we begin to overflow the one-megabyte level two
cache.

The OpenBSD pipe test shows similar behavior, level-
ing off at four protection domains and roughly 2200
machine cycles.

7.3 Pipe Latency

This test measures the time required to pass a single
byte through pipes connecting a ring of processes. Each
value represents the time to transfer one byte between
two adjacent processes, and includes the context switch
time. By measuring the time required to transmit a sin-
gle byte, we capture the overhead associated with using
pipes; the more data that is sent, the more the data copy
time will mask pipe costs. Results are found in Table 4.

We see that, as with the context switch times, the Open-
BSD pipe time increases up to five domains, and then
levels off. The difference between the numbers in
Table 4 and Table 3 gives us the time required to trans-
fer data through a pipe on each system. On OpenBSD
the pipe overhead is roughly 2000 cycles; on Pebble it is
approximately half that.

7.4 Semaphore Acquire/Release

This test is very similar to the test in Section 7.3, but
instead of using pipes we use semaphores. A number of
processes are arranged in a ring, and are synchronized
by means of n semaphores. Each process performs a V
operation on its right semaphore and then a P operation
on its left semaphore. Each value in the table represents
the time to release a semaphore in process p and acquire
it in process (p + 1) mod n around a ring of n processes,
including the context switch time. Results are found in
Table 5.

When there are two processes the difference between
Pebble and OpenBSD is roughly 1500 cycles, 1000
cycles of which can be attributed to the difference in
context switch times. As the number of domains (and
thus semaphores) increases, the difference widens;
because Pebble’s semaphores are a highly optimized
key system primitive, and OpenBSD’s semaphores are
not, we believe that this is due to a restriction in the
implementation of OpenBSD semaphores, and is not a
reflection of the difference in system structure.

n domains
Pebble
yield

Pebble
pipe

OpenBSD
pipe

2 425 411 1195

4 549 963 2093

8 814 1162 2179

Table 3. Context switch times, Pebble vs. OpenBSD.
In CPU cycles, the mean of at least 10,000 runs.

n domains Pebble pipe OpenBSD pipe

2 1310 3088

4 1914 3979

8 2061 4055

Table 4. Pipe latency, Pebble vs. OpenBSD. In CPU
cycles, the mean of at least 10,000 runs.

n domains
Pebble

semaphore
OpenBSD
semaphore

2 781 2275

4 942 3415

8 1198 5091

Table 5. Semaphore acquire/release, Pebble vs.
OpenBSD. In CPU cycles, the mean of 10,000 runs.

7.5 Portal Generation

Table 6 shows the portal generation time for two typical
portals. This is the time measured by an application pro-
gram, including all overheads incurred by the portal
manager. The first portal (with specification “smcii”)
is typically used to call a trusted server with only integer
arguments. The second portal (with specification
“npcwi”) is typically used to call an untrusted server
with a memory window argument. See Section 4.4 for
additional explanations of portal specifications.

Table 6 indicates that portal generation time is relatively
fast. An examination of the portal manager reveals that
portal generation time includes a large fixed overhead
for interpretation of the specification string and for
cache flushing. We can reduce this time by employing
various techniques used for run-time code generation,
e.g., the techniques used by VCODE [Engler96].

8 Status and Future Work

The Pebble nucleus and a small set of servers (sched-
uler, portal manager, interrupt dispatcher, and minimal
VM) and devices (console and clock) currently run on
MIPS-based single-board computers from Algorithmics.
We support both the P-4032 (with QED RM5230 pro-
cessor) and P-5064 (with IDT R5000 or QED RM7000
processors). We are currently porting Ethernet and SCSI
device drivers to Pebble.

Next we plan to port Pebble to the Intel x86 to verify
that Pebble mechanisms and performance advantages
are indeed architecture independent. We also plan to
implement a demand-paged virtual memory system.
Building a high-performance VM system for Pebble is a
challenge, since the servers cannot (and should not)
share data structures freely. We also plan to port a TCP/
IP stack to Pebble and compare its performance with
similar user-level protocol stacks.

In addition to the Intel x86 port, we plan to port to a
symmetric multiprocessor and to an embedded proces-
sor such as the StrongARM. We also plan to investigate
the various processor architecture support for compo-
nent-based systems such as Pebble.

9 Summary

Pebble provides a new engineering trade-off for the con-
struction of efficient component-based systems, using
hardware memory management to enforce protection
domain boundaries, and reducing the cross domain
transfer time by synthesizing custom portal code. Pebble
enhances flexibility by maintaining a private portal table
for each domain. This table can be used to provide dif-
ferent implementations of system services, servers and
portal interposition for each domain. In addition, portal
interposition allows running untrusted code in a robust
sandbox with an acceptable overhead while using
unsafe languages such as C.

Having a small nucleus with minimal functionality
enhances system modularity, while it enables non-stop
systems to modify their behavior by integrating new
servers on-the-fly.

In this paper we showed that Pebble is much faster than
OpenBSD for a limited set of system-related micro-
benchmarks. Pebble efficiency does not stem from
clever low-level highly-optimized code; rather it is a
natural consequence of custom portal synthesis, judi-
cious processor state manipulations at portal traversals,
encapsulating state in portal code, and direct transfer of
control from clients to their servers without scheduler
intervention.

Pebble can be used to build systems that are more flexi-
ble, as safe as, and have higher performance than con-
ventionally constructed systems.

Acknowledgments

The authors would like to thank the anonymous referees
for their insightful comments.

References

[Accetta86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R.
Rashid, A. Tevanian, M. Young, “Mach: A New Kernel Foun-
dation for UNIX Development,” Proc. Summer 1986 USENIX
Conf., pp. 93–112 (1986).

[Bershad89] B. Bershad, T. Anderson, E. Lazowska, H. Levy,
“Lightweight Remote Procedure Call,” Proc. 12th SOSP, pp.
102–113 (1989).

[Bershad95] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M.
Fiuczynski, D. Becker, C. Chambers, S. Eggers, “Extensibility,
Safety, and Performance in the SPIN Operating System,”
Proc. 15th SOSP, pp. 267–284 (1995).

portal
spec.

portal len
(instr.)

time
(cycles)

cycles per
instr.

smcii 64 7282 114

npcwi 112 8593 77

Table 6. Portal generation time.

[Brown98] A. Brown, M. Seltzer, “Operating System Bench-
marking in the Wake of lmbench: A Case Study of the Perfor-
mance of NetBSD on the Intel x86 Architecture,” Proc. 1997
SIGMETRICS, pp. 214–224 (1997).

[Bruno99] J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz,
C. Small, “Pebble: A Component-Based Operating System for
Embedded Applications,” Proc. USENIX Workshop on
Embedded Systems, Cambridge, MA (1999).

[Custer92] H. Custer, Inside Windows NT, Microsoft Press,
Redmond, WA (1992).

[Dijkstra68] E. W. Dijkstra, “The Structure of “THE” Multi-
programming System,” CACM, Volume 11, Number 5, pp.
341-346 (1968).

[Dorward97] S. Dorward, R. Pike, D. Presotto, D. Ritchie, H.
Trickey, P. Winterbottom, “Inferno,” Proc. IEEE Compcon 97,
pp. 241–244 (1997).

[Engler95] D. Engler, M. Frans Kaashoek, J. O’Toole Jr.,
“Exokernel: An Operating System Architecture for Applica-
tion-Level Resource Management”, Proc. 15th SOSP, pp. 251-
266 (1995).

[Engler96] D. Engler, “VCODE: A Retargetable, Extensible,
Very Fast Dynamic Code Generation System”, Proc. Confer-
ence on Programming Language Design and Implementation
(PLDI’96), pp. 160-170 (1996).

[Ford96] B. Ford, M. Hibler, J,. Lepreau, P. Tullmann, G.
Back, S. Clawson, “Microkernels Meet Recursive Virtual
Machines,” Proc. 2nd OSDI, pp. 137–151 (1996).

[Golub90] D. Golub, R. Dean, A. Forin, R. Rashid, “UNIX as
an Application Program,” Proc. 1990 Summer USENIX, pp.
87–96 (1990).

[Gosling96] J. Gosling, B. Joy, G. Steele, The Java Lan-
guage Specification, Addison-Wesley, Reading, MA (1996).

[Helander98] J. Helander and A. Forin, “MMLite: A Highly
Componentized System Architecture”, Proc. 8th ACM
SIGOPS European Workshop, Sintra, Portugal (1998).

[Intel94] Intel Corp., Pentium Family User’s Manual Volume
3: Architecture and Programming Manual (1994).

[Kaashoek97] M. F. Kaashoek, D. Engler, G. Ganger, H.
Briceño, R. Hunt, D. Mazières, T. Pinckney, “Application Per-
formance and Flexibility on Exokernel Systems,” Proc. 16th
SOSP, pp. 52–65 (1997).

[Liedtke95] J. Liedtke, “On Micro-Kernel Construction,”
Proc. 15th SOSP, pp. 237–250 (1995).

[Liedtke97] J. Liedtke, K. Elphinstone, S. Schönberg, H. Här-
tig, G. Heiser, N. Islam, T. Jager, “Achieved IPC Perfor-
mance,” Proc. 6th HotOS, pp. 28–3 (1997).

[Massalin92] H. Massalin, Synthesis: An Efficient Implemen-
tation of Fundamental Operating System Services, Ph.D. the-
sis, Columbia University Department of Computer Science,
New York, NY (1992).

[Mitchell94] J. G. Mitchel et al, “An Overview of the Spring
System”, Proc. Compcon Spring 1994, pp. 122-131 (1994).

[Pike90] R. Pike, D. Presotto, K. Thompson, H. Trickey, “Plan
9 from Bell Labs,” Proc. Summer 1990 UKUUG Conf., pp. 1–
9 (1990).

[Probert91] D. Probert, J. Bruno, M. Karaorman, “SPACE: A
New Approach to Operating System Abstractions,” Proc. Intl.
Workshop on Object Orientation in Operating Systems
(IWOOS), pp. 133–137 (1991), Also available on-line at
ftp.cs.ucsb.edu/pub/papers/space/iwooos91.ps.gz

[Pu95] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J.
Inouye, L. Kethana, J. Walpole, K. Zhang, “Optimistic Incre-
mental Specialization: Streamlining a Commercial Operating
System,” Proc. 15th SOSP, pp. 314–324, (1995).

[Rozier88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M.
Gien, M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P.
Leonard, W. Neuhauser. “Chorus Distributed Operating Sys-
tem.” Computing Systems 1(4), pp. 305–370 (1988).

[Seltzer96] M. Seltzer, Y. Endo, C. Small, K. Smith, “Dealing
With Disaster: Surviving Misbehaved Kernel Extensions,”
Proc. 2nd OSDI, pp. 213–227 (1996).

[Veitch96] A. C. Veitch and N. C. Hutchinson, “Kea - A
Dynamically Extensible and Configurable Operating System
Kernel”, Proc. 3rd Conference on Configurable and Distrib-
uted Systems (ICCDS’96), Annapolis, Mariland (1996).

Appendix: Implementing a Transparent
Sandbox by Portal Interposition

/* see Section 6.1 for explanations */
#include <pebble.h>

#define N 10000

int child_asid;
int count[NPORTALS];

/* child domain runs this routine */
void measure(void)
{

int code, i;
unsigned long long start, elapsed;
int sem_id1, sem_id2;

/* create semaphores */
sem_id1 = sem_create(0);
sem_id2 = sem_create(0);

/* create child thread in the same
domain */

if ((code = fork()) == 0) {
/* child thread wakes parent */
sem_post(sem_id2);

for (i = 0;; i++) {
sem_wait(sem_id1);
sem_post(sem_id2);

}

/* never reached */
exit(1);

}

/* parent thread waits until child
is active for accurate timing */

sem_wait(sem_id2);

/* time semaphore ping-pong with
child */

start = hrtime();

for (i = 0; i < N; i++) {
sem_post(sem_id1);
sem_wait(sem_id2);

}
elapsed = 2*(hrtime() - start);

printf(“each iteration: %d \
cycles\n”, (int)(elapsed/N));

}

void dump_counters(void)
{

int i;

for (i = 1; i < NPORTALS; i++)
if (count[i] != 0)

printf(“portal %d called %d\
times\n”, i, count[i]);

}

/* parent domain intercepts child por-
tal call */
int intercept(int id, int p1, int p2,

int p3, int p4, int p5)
{

count[id]++;
if (id == SYS_EXIT)

dump_counters();

return invoke_portal(id, p1, p2,
p3, p4, p5);

}

/* parent domain gets notification */
int notify(int asid, int id,

char *template)
{

char s[NAMELEN];

sprintf(s, “sm=%s”, template+3);
portal_create_child(child_asid,

id, s, 0, intercept);
return 0;

}

void main(void)
{

portal_notify(notify);

child_asid =
domain_fork(intercept);

if (child_asid == 0) {
/* child domain */
measure();
exit(0);

}

/* parent waits here until child
exits */

sem_wait(sem_create(0));

exit(0);
}

The Pebble Component-Based Operating System

Eran Gabber, Christopher Small, John Bruno†, José Brustoloni and Avi Silberschatz

Information Sciences Research Center
Lucent Technologies—Bell Laboratories

600 Mountain Ave.
Murray Hill, NJ 07974

{eran, chris, jbruno, jcb, avi}@research.bell-labs.com

†Also affiliated with the University of California at Santa Barbara

Abstract

Pebble is a new operating system designed with the
goals of flexibility, safety, and performance. Its architec-
ture combines a set of features heretofore not found in a
single system, including (a) a minimal privileged mode
nucleus, responsible for switching between protection
domains, (b) implementation of all system services by
replaceable user-level components with minimal privi-
leges (including the scheduler and all device drivers)
that run in separate protection domains enforced by
hardware memory protection, and (c) generation of code
specialized for each possible cross-domain transfer. The
combination of these techniques results in a system with
extremely inexpensive cross-domain calls that makes it
well-suited for both efficiently specializing the operat-
ing system on a per-application basis and supporting
modern component-based applications.

1 Introduction

A new operating system project should address a real
problem that is not currently being addressed; construct-
ing yet another general purpose POSIX- or Windows32-
compliant system that runs standard applications is not a
worthwhile goal in and of itself. The Pebble operating
system was designed with the goal of providing flexibil-
ity, safety, and high performance to applications in ways
that are not addressed by standard desktop operating
systems.

Flexibility is important for specialized systems, often
referred to as embedded systems. The term is a misno-
mer, however, as embedded systems run not just on
microcontrollers in cars and microwaves, but also on
high-performance general purpose processors found in
routers, laser printers, and hand-held computing
devices.

Safety is important when living in today’s world of
mobile code and component-based applications.
Although safe languages such as Java [Gosling96] and
Limbo [Dorward97] can be used for many applications,
hardware memory protection is important when code is
written in unsafe languages such as C and C++.

High performance cannot be sacrificed to provide safety
and flexibility. History has shown us that systems are
chosen primarily for their performance characteristics;
safety and flexibility almost always come in second
place. Any system structure added to support flexibility
and safety cannot come at a significant decrease in per-
formance; if possible, a new system should offer better
performance than existing systems.

Early in the project, the designers of Pebble decided that
to maximize system flexibility Pebble would run as little
code as possible in its privileged mode nucleus. If a
piece of functionality could be run at user level, it was
removed from the nucleus. This approach makes it easy
to replace, layer, and offer alternative versions of operat-
ing system services.

Each user-level component runs in its own protection
domain, isolated by means of hardware memory protec-
tion. All communication between protection domains is
done by means of a generalization of interrupt handlers,
termed portals. Only if a portal exists between protec-
tion domain A and protection domain B can A invoke a
service offered by B. Because each protection domain
has its own portal table, by restricting the set of portals
available to a protection domain, threads in that domain
are efficiently isolated from services to which they
should not have access.

Portals are not only the basis for flexibility and safety in
Pebble, they are also the key to its high performance.
Specialized, tamper-proof code can be generated for
each portal, using a simple interface definition lan-
guage. Portal code can thus be optimized for its portal,

saving and restoring the minimum necessary state, or
encapsulating and compiling out demultiplexing deci-
sions and run-time checks.

The remainder of this paper is structured as follows. In
Section 2 we discuss related work. In Section 3 we
describe the architecture of Pebble, and in Section 4 we
discuss the portal mechanism and its uses in more detail.
Section 5 covers several key implementation issues of
Pebble. Section 6 introduces the idea of implementing a
protected, application-transparent “sandbox” via portal
interposition, and shows the performance overhead of
such a sandbox. Section 7 compares the performance of
Pebble and OpenBSD on our test hardware, a MIPS
R5000 processor. Section 8 reviews the current status of
Pebble and discusses our plans for future work. We
summarize in Section 9, and include a short code exam-
ple that implements the sandbox discussed in Section 6.

2 Related Work

Pebble has the same general structure as classical micro-
kernel operating systems such as Mach [Acetta86], Cho-
rus [Rozer88], and Windows NT [Custer92], consisting
of a privileged mode kernel and a collection of user
level servers. Pebble’s protected mode nucleus is much
smaller and has fewer responsibilities than the kernels
of these systems, and in that way is much more like the
L4 microkernel [Liedtke95]. L4 and Pebble share a
common philosophy of running as little code in privi-
leged mode as possible. Where L4 implements IPC and
minimal virtual memory management in privileged
mode, Pebble’s nucleus includes only code to transfer
threads from one protection domain to another and a
small number of support functions that require kernel
mode.

Mach provides a facility to intercept system calls and
service them at user level [Golub90]. Pebble’s portal
mechanism, which was designed for high-performance
cross-protection-domain transfer, can be used in a simi-
lar way, taking an existing application component and
interposing one or more components between the appli-
cation component and the services it uses.

Pebble’s architecture is closer in spirit to the nested pro-
cess architecture of Fluke [Ford96]. Fluke provides an
architecture in which virtual operating systems can be
layered, with each layer only affecting the performance
of the subset of the operating system interface it imple-
ments. For example, the presence of multiple virtual
memory management “nesters” (e.g., to provide demand
paging, distributed shared memory, and persistence)
would have no effect on the cost of invoking file system

operations such as read and write. The Fluke model
requires that system functionality be replaced in groups;
a memory management nester must implement all of the
functions in the virtual memory interface specification.
Pebble portals can be replaced piecemeal, which permits
finer-grained extensibility.

The Exokernel model [Engler95, Kaashoek97] attempts
to “exterminate all OS abstractions,” with the privileged
mode kernel in charge of protecting resources, but leav-
ing resource abstraction to user level application code.
As with the Exokernel approach, Pebble moves the
implementation of resource abstractions to user level,
but unlike the Exokernel, Pebble provides a set of
abstractions, implemented by user-level operating sys-
tem components. Pebble OS components can be added
or replaced, allowing alternate OS abstractions to coex-
ist or override the default set.

Pebble can use the interposition technique discussed in
Section 6 to wrap a “sandbox” around untrusted code.
Several extensible operating system projects have stud-
ied the use of software techniques, such as safe lan-
guages (e.g., Spin [Bershad95]) and software fault
isolation (e.g., VINO [Seltzer96]), for this purpose.
Where software techniques require faith in the safety of
a compiler, interpreter, or software fault isolation tool, a
sandbox implemented by portal interposition and hard-
ware memory protection provides isolation at the hard-
ware level, which may be simpler to verify than
software techniques.

Philosophically, the Pebble approach to sandboxing is
akin to that provided by the Plan 9 operating system
[Pike90]. In Plan 9, nearly all resources are modeled as
files, and each process has its own file name space. By
restricting the namespace of a process, it can be effec-
tively isolated from resources to which it should not
have access. In contrast with Plan 9, Pebble can restrict
access to any service, not just those represented by files.

Pebble applies techniques developed by Bershad et al.
[Bershad89], Massalin [Massalin92], and Pu et al.
[Pu95] to improve the performance of IPC. Bershad’s
results showed that IPC data size tends to be very small
(which fits into registers) or large (which is passed by
sharing memory pages). Massalin’s work on the Synthe-
sis project, and, more recently, work by Pu et al. on the
Synthetix project, studied the use of generating special-
ized code to improve performance.

Pebble was inspired by the SPACE project [Probert91].
Many of the concepts and much of the terminology of
the project come from Probert’s work; e.g., SPACE pro-

vided us with the idea of cross-domain communication
as a generalization of interrupt handling.

The Spring kernel [Mitchell94] provided cross-protec-
tion domain calls via doors, which are similar to Peb-
ble’s portals. However, Spring’s doors are used only for
implementing operations on objects, and do not include
general purpose parameter manipulations.

The Kea system [Veitch96] is very similar to Pebble. It
provides protection domains, inter-domain calls via por-
tals and portal remapping. However, Kea’s portals do
not perform general parameter manipulations like Peb-
ble. Parameter manipulations, such as sharing memory
pages, are essential for efficient communication
between components.

The MMLite system [Helander98] is a component-
based system that provides a wide selection of object-
oriented components that are assembled into an applica-
tion system. MMLite’s components are space efficient.
However, MMLite does not use any memory protection,
and all components execute in the same protection
domain.

Like Dijkstra’s THE system [Dijkstra68], Pebble hides
the details of interrupts from higher level components
and uses only semaphores for synchronization.

Some CISC processors provide a single instruction that
performs a full context switch. A notable example is the
Intel x86 task switch via a call gate [Intel94]. However,
this instruction takes more than 100 machine cycles.

3 Philosophy and Architecture

The Pebble philosophy consists of the following four
key ideas.

The privileged-mode nucleus is as small as possible. If
something can be run at user level, it is.

The privileged-mode nucleus is only responsible for
switching between protection domains. In a perfect
world, Pebble would include only one privileged-mode
instruction, which would transfer control from one pro-
tection domain to the next. By minimizing the work
done in privileged mode, we reduce both the amount of
privileged code and the time needed to perform essential
privileged mode services.

The operating system is built from fine-grained replace-
able components, isolated through the use of hardware
memory protection.

The functionality of the operating system is imple-
mented by trusted user-level components. The compo-
nents can be replaced, augmented, or layered.

The architecture of Pebble is based around the availabil-
ity of hardware memory protection; Pebble, as described
here, requires a memory management unit.

The cost of transferring a thread from one protection
domain to another should be small enough that there is
no performance-related reason to co-locate services.

It has been demonstrated that the cost of using hardware
memory protection on the Intel x86 can be made
extremely small [Liedtke97], and we believe that if it
can be done on the x86, it could be done anywhere. Our
results bear us out—Pebble can perform a one-way IPC
in 114 machine cycles on a MIPS R5000 processor (see
Section 7 for details).

Transferring a thread between protection domains is
done by a generalization of hardware interrupt han-
dling, termed portal traversal. Portal code is generated
dynamically and performs portal-specific actions.

Hardware interrupts, IPC, and the Pebble equivalent of
system calls are all handled by the portal mechanism.
Pebble generates specialized code for each portal to
improve run-time efficiency. Portals are discussed in
more detail in the following section.

3.1 Protection Domains, Portals and Threads

Each component runs in its own protection domain
(PD). A protection domain consists of a set of pages,
represented by a page table, and a set of portals, which
are generalized interrupt handlers, stored in the protec-
tion domain’s portal table. A protection domain may
share both pages and portals with other protection
domains. Figure 1 illustrates the Pebble architecture.

Figure 1. Pebble architecture. Arrows denote portal
traversals. On the right, an interrupt causes a device
driver’s semaphore to be incremented, unblocking the
device driver’s thread (see Section).

interrupt
dispatcher

scheduler

server

file system

device
driver

application

...

nucleus

v()

Portals are used to handle both hardware interrupts and
software traps and exceptions. The existence of a portal
from PDA to PDB means that a thread running in PDA

can invoke a specific entry point of PDB (and then
return). Associated with each portal is code to transfer a
thread from the invoking domain to the invoked domain.
Portal code copies arguments, changes stacks, and maps
pages shared between the domains. Portal code is spe-
cific to its portal, which allows several important opti-
mizations to be performed (described below).

Portals are usually generated in pairs. The call portal
transfers control from domain PDA to PDB, and the

return portal allows PDB to return to PDA. In the follow-
ing discussion we will omit the return portal for brevity.

Portals are generated when certain resources are created
(e.g. semaphores) and when clients connect to servers
(e.g. when files are opened). Some portals are created at
the system initialization time (e.g. interrupt and excep-
tion handling portals).

A scheduling priority, a stack, and a machine context are
associated with each Pebble thread. When a thread
traverses a portal, no scheduling decision is made; the
thread continues to run, with the same priority, in the
invoked protection domain. Once the thread executes in
the invoked domain, it may access all of the resources
available in the invoked domain, while it can no longer
access the resources of the invoking domain. Several
threads may execute in the same protection domain at
the same time, which means that they share the same
portal table and all other resources.

As part of a portal traversal, the portal code can manipu-
late the page tables of the invoking and/or invoked pro-
tection domains. This most commonly occurs when a
thread wishes to map, for the duration of the IPC, a
region of memory belonging to the invoking protection
domain into the virtual address space of the invoked
protection domain; this gives the thread a window into
the address space of the invoking protection domain
while running in the invoked protection domain. When
the thread returns, the window is closed.

Such a memory window can be used to save the cost of
copying data between protection domains. Variations
include windows that remain open (to share pages
between protection domains), windows that transfer
pages from the invoking domain to the invoked domain
(to implement tear-away write) and windows that trans-
fer pages from the invoked domain to the invoker (to
implement tear-away read).

Note that although the portal code may modify VM data
structures, only the VM manager and the portal manager
(which generates portal code) share the knowledge
about these data structures. The Pebble nucleus itself is
oblivious to those data structures.

3.2 Safety

Pebble implements a safe execution environment by a
combination of hardware memory protection that pre-
vents access to memory outside the protection domain,
and by limiting the access to the domain’s portal table.
An protection domain may access only the portals it
inherited from its parent and new portals that were gen-
erated on its behalf by the portal manager. The portal
manager may restrict access to new portals in conjunc-
tion with the name server. A protection domain cannot
transfer a portal it has in its portal table to an unrelated
domain. Moreover, the parent domain may intercept all
of its child portal calls, including calls that indirectly
manipulate the child’s portal table, as described in
Section 6.

3.3 Server Components

As part of the Pebble philosophy, system services are
provided by operating system server components, which
run in user mode protection domains. Unlike applica-
tions, server components are trusted, so they may be
granted limited privileges not afforded to application
components. For example, the scheduler runs with inter-
rupts disabled, device drivers have device registers
mapped into their memory region, and the portal man-
ager may add portals to protection domains (a protection
domain cannot modify its portal table directly).

There are many advantages of implementing services at
user level. First, from a software engineering standpoint,
we are guaranteed that a server component will use only
the exported interface of other components. Second,
because each server component is only given the privi-
leges that it needs to do its job, a programming error in
one component will not directly affect other compo-
nents. If a critical component fails (e.g., VM) the system
as a whole will be affected—but a bug in console device
driver will not overwrite page tables.

Additionally, as user-level servers can be interrupted at
any time, this approach has the possibility of offering
lower interrupt latency time. Given that server compo-
nents run at user level (including interrupt-driven
threads), they can use blocking synchronization primi-
tives, which simplifies their design. This is in contrast
with handlers that run at interrupt level, which must not

block, and require careful coding to synchronize with
the upper parts of device drivers.

3.4 The Portal Manager

The Portal Manager is the operating system component
responsible for instantiating and managing portals. It is
privileged in that it is the only component that is permit-
ted to modify portal tables.

Portal instantiation is a two-step process. First, the
server (which can be a Pebble system component or an
application component) registers the portal with the por-
tal manager, specifying the entrypoint, the interface def-
inition, and the name of the portal. Second, a client
component requests that a portal with a given name be
opened. The portal manager may call the name server to
identify the portal and to verify that the client is permit-
ted to open the portal. If the name server approves the
access, the portal manger generates the code for the por-
tal, and installs the portal in the client’s portal table. The
portal number of the newly generated portal is returned
to the client. A client may also inherit a portal from its
parent as the result of a domain_fork(), as
described in Section 4.5.

To invoke the portal, a thread running in the client loads
the portal number into a register and traps to the
nucleus. The trap handler uses the portal number as an
index into the portal table and jumps to the code associ-
ated with the portal. The portal code transfers the thread
from the invoking protection domain to the invoked pro-
tection domain and returns to user level. As stated
above, a portal transfer does not involve the scheduler in
any way. (Section 5.4 describes the only exception to
this rule.)

Portal interfaces are written using a (tiny) interface defi-
nition language, as described in Section 4.4. Each portal
argument may be processed or transformed by portal
code. The argument transformation may involve a func-
tion of the nucleus state, such as inserting the identity of
the calling thread or the current time. The argument
transformation may also involve other servers. For
example, a portal argument may specify the address of a
memory window to be mapped into the receiver’s
address space. This transformation requires the manipu-
lation of data structures in the virtual memory server.

The design of the portal mechanism presents the follow-
ing conflict: on one hand, in order to be efficient, the
argument transformation code in the portal may need to
have access to private data structures of a trusted server
(e.g., the virtual memory system); on the other hand,

trusted servers should be allowed to keep their internal
data representations private.

The solution we advocate is to allow trusted servers,
such as the virtual memory manager, to register argu-
ment transformation code templates with the portal
manager. (Portals registered by untrusted services would
be required to use the standard argument types.) When
the portal manager instantiates a portal that uses such an
argument, the appropriate type-specific code is gener-
ated as part of the portal. This technique allows portal
code to be both efficient (by inlining code that trans-
forms arguments) and encapsulated (by allowing servers
to keep their internal representations private). Although
portal code that runs in kernel mode has access to
server-specific data structures, these data structures can-
not be accessed by other servers. The portal manager
currently supports argument transformation code of a
single trusted server, the virtual memory server.

3.5 Scheduling and Synchronization

Because inter-thread synchronization is intrinsically a
scheduling activity, synchronization is managed entirely
by the user-level scheduler. When a thread creates a
semaphore, two portals (for P and V) are added to its
portal table that transfer control to the scheduler. When
a thread in the domain invokes P, the thread is trans-
ferred to the scheduler; if the P succeeds, the scheduler
returns. If the P fails, the scheduler marks the thread as
blocked and schedules another thread. A V operation
works analogously; if the operation unblocks a thread
that has higher priority than the invoker, the scheduler
can block the invoking thread and run the newly-awak-
ened one.

3.6 Device Drivers and Interrupt Handling

Each hardware device in the system has an associated
semaphore used to communicate between the interrupt
dispatcher component and the device driver component
for the specific device.

In the portal table of each protection domain there are
entries for the portals that corresponds to the machine’s
hardware interrupts. The Pebble nucleus includes a short
trampoline function that handles all exceptions and
interrupts. This code first determines the portal table of
the current thread and then transfers control to the
address that is taken from the corresponding entry in
this portal table. The nucleus is oblivious to the specific
semantics of the portal that is being invoked. The portal
that handles the interrupt starts by saving the processor
state on the invocation stack (see Section 5.1), then it
switches to the interrupt stack and jumps to the interrupt

dispatcher. In other words, this mechanism converts
interrupts to portal calls.

The interrupt dispatcher determines which device gener-
ated the interrupt and performs a V operation on the
device’s semaphore. Typically, the device driver would
have left a thread blocked on that semaphore. The V
operation unblocks this thread, and if the now-runnable
thread has higher priority than the currently running
thread, it gains control of the CPU, and the interrupt is
handled immediately. Typically, the priority of the inter-
rupt handling threads corresponds to the hardware inter-
rupt priority in order to support nested interrupts. The
priority of the interrupt handling threads is higher than
all other threads to ensure short handling latencies. In
this way, Pebble unifies interrupt priority with thread
priority, and handles both in the scheduler. A pictorial
example of this process is found in Figure 1.

Note that Pebble invokes the interrupt dispatcher
promptly for all interrupts, including low priority ones.
However, the interrupt handling thread is scheduled
only if its priority is higher than the currently running
thread.

Only a small portion of Pebble runs with interrupts dis-
abled, namely portal code, the interrupt dispatcher, and
the scheduler. This is necessary to avoid race conditions
due to nested exceptions.

3.7 Low and Consistent Interrupt Latency

Pebble provides low and consistent interrupt latency by
design, since most servers (except the interrupt dis-
patcher and the scheduler) run with interrupts enabled.
The interrupt-disabled execution path in Pebble is short,
since portal code contain no loops, and the interrupt dis-
patcher and the scheduler are optimized for speed. User
code cannot increase the length of the longest interrupt-
disabled path, and thus cannot increase the interrupt
latency. In previous work we included details on the
interrupt handling mechanism in Pebble, along with
measurements of the interrupt latency on machines with
differering memory hierarchies [Bruno99]. In particular,
the interrupt latency on the MIPS R5000 processor that
is used in this paper is typically 1200-1300 cycles from
the exception until the scheduling of the user-level han-
dling thread.

3.8 Non-Stop Systems

Non-stop (or high-availability) systems are character-
ized by the ability to run continuously over extended
periods of time and support dynamic updates. For exam-
ple, some systems, such as telephone switches, are

expected to run for years without unscheduled down
time. Pebble is especially suited for these systems, since
most system functionality may be replaced dynamically
by loading new servers and modifying portal tables. The
only component that cannot be replaced is the nucleus,
which provides only minimal functionality.

4 Portals and Their Uses

Portals are used for multiple purposes in Pebble. In this
section, we describe a few of their applications.

4.1 Interposition and Layering

One technique for building flexible system is to factor it
into components with orthogonal functionality that can
be composed in arbitrary ways. For example, distributed
shared memory or persistent virtual memory can be
implemented as a layer on top of a standard virtual
memory service. Or, altered semantics can be offered by
layering: the binary interface of one operating system
can be emulated on another operating system by inter-
cepting system calls made by an application written for
the emulated system and implementing them through
the use of native system calls.

The portal mechanism supports this development meth-
odology very nicely. Because the portal mechanism is
used uniformly throughout the system, and a portal per-
forms a user-level to user-level transfer, service compo-
nents can be designed to both accept and use the same
set of portals.

For example, the primary task of a virtual memory man-
ager is to accept requests for pages from its clients and
service them by obtaining the pages from the backing
store. When a client requests a page, the virtual memory
manager would read the page from the backing store
and return it to the client via a memory window opera-
tion. A standard virtual memory service implementation
would support just this protocol, and would typically be
configured with a user application as its client and the
file system as its backing store server.

However, the backing store could be replaced with a dis-
tributed shared memory (DSM) server, which would
have the same interface as the virtual memory manager:
it would accept page requests from its client, obtain the
pages from its backing store (although in this case the
backing store for a page might be the local disk or
another remote DSM server) and return the page to its
client via a memory window operation. By implement-
ing the DSM server using the standard virtual memory
interface, it can be layered between the VM and the file

system. Other services, such as persistent virtual mem-
ory and transactional memory, can be added this way as
well.

When a page fault takes place, the faulting address is
used to determine which portal to invoke. Typically a
single VM fault handler is registered for the entire range
of an application’s heap, but this need not be the case.
For example, a fault on a page in a shared memory
region should be handled differently than a fault on a
page in a private memory region. By assigning different
portals to subranges of a protection domain’s address
space, different virtual memory semantics can be sup-
ported for each range.

4.2 Portals Can Encapsulate State

Because portal code is trusted, is specific to its portal,
and can have private data, portal code can encapsulate
state associated with the portal that need not be exposed
to either endpoint. The state of the invoking thread is a
trivial example of this: portal code saves the thread’s
registers on the invocation stack (see Section 5.1), and
restores them when the thread returns. On the flip side,
data used only by the invoked protection domain can be
embedded in the portal where the invoker cannot view
or manipulate it. Because the portal code cannot be
modified by the invoking protection domain, the
invoked protection domain is ensured that the values
passed to it are valid. This technique frequently allows
run-time demultiplexing and data validation code to be
removed from the code path.

As an example, in Pebble, portals take the place of file
descriptors. An open() call creates four portals in the
invoking protection domain, one each for reading, writ-
ing, seeking and closing. The code for each portal has
embedded in it a pointer to the control block for the file.
To read the file, the client domain invokes the read
portal; the portal code loads the control block pointer
into a register and transfers control directly to the spe-
cific routine for reading the underlying object (disk file,
socket, etc.). No file handle verification needs to be
done, as the client is never given a file handle; nor does
any demultiplexing or branching based on the type of
the underlying object need to be done, as the appropriate
read routine for the underlying object is invoked directly
by the portal code. In this way, portals permit run-time
checks to be “compiled out,” shortening the code path.

To be more concrete, the open() call generates four
consecutive portals in the caller’s portal table. Open()
returns a file descriptor, which corresponds to the index
of the first of the four portals. The read(), write(),

seek() and close() calls are implemented by
library routines, which invoke the appropriate portals, as
seen in Figure 2. invoke_portal() invokes the
portal that is specified in its first argument. (Note that
the portal code of read and write may map the buffer
argument in a memory window to avoid data copying.)

4.3 Short-Circuit Portals

In some cases the amount of work done by portal tra-
versal to a server is so small that the portal code itself
can implement the service. A short-circuit portal is one
that does not actually transfer the invoking thread to a
new protection domain, but instead performs the
requested action inline, in the portal code. Examples
include simple “system calls” to get the current thread’s
ID and read the high resolution cycle counter. The TLB
miss handler (which is in software on the MIPS archi-
tecture, the current platform for Pebble) is also imple-
mented as a short-circuit portal.

Currently, semaphore synchronization primitives are
implemented by the scheduler and necessitate portal tra-
versals even if the operation does not block. However,
these primitives are good candidates for implementation
as hybrid portals. When a P operation is done, if the
semaphore’s value is positive (and thus the invoking
thread will not block), the only work done is to decre-
ment the semaphore, and so there is no need for the
thread to transfer to the scheduler. The portal code could
decrement the semaphore directly, and then return. Only
in the case where the semaphore’s value is zero and the
thread will block does the calling thread need to transfer
to the scheduler. Similarly, a V operation on a sema-
phore with a non-negative value (i.e., no threads are
blocked waiting for the semaphore) could be performed
in a handful of instructions in the portal code itself.

Although these optimizations are small ones (domain
transfer takes only a few hundred cycles), operations

Figure 2. Implementing file descriptors with portals

read(fd, buf, n)

invoke_portal(fd, buf, n)

write(fd, buf, n)

invoke_portal(fd+1, buf, n)

seek(fd, offset, whence)

invoke_portal(fd+2, offset, whence)

close(fd)

invoke_portal(fd+3)

that are on the critical path can benefit from even these
small savings.

4.4 Portal Specification

The portal specification is a string that describes the
behavior of the portal. It controls the generation of por-
tal code by the portal manager. The portal specification
includes the calling conventions of the portal, which
registers are saved, whether the invoking domain shares
a stack with the invoked domain, and how each argu-
ments is processed.

The first character in the specification encodes the por-
tal’s stack manipulation. For example, “s” denotes that
the invoking domain shares its stack with the invoked
domain. “n” denotes that the invoked domain allocated
a new stack. The second character specifies the amount
of processor state that is saved or restored. For example,
“m” denotes that only minimal state is saved, and that
the invoking domain trusts the invoked domain to obey
the C calling convention. “p” denotes that partial state
is saved, and that the invoking domain does not trust the
invoked domain to retain the values of the registers
required by the C calling convention. The rest of the
specification contains a sequence of single character
function codes, that specify handling of the correspond-
ing parameters. For example, the template “smcwi”
specifies a shared stack, saving minimal state, passing a
constant in the first parameter, passing a one-page mem-
ory window in the second parameter, and passing a word
without transformation in the third parameter. This tem-
plate is used by the read and write portals.

4.5 Portal Manipulations

As described earlier, portals are referred to by their
index in the local portal table. A portal that is available
in a particular portal table cannot be exported to other
protection domains using this index. A protection
domain may access only the portals in its portal table.
These properties are the basis for Pebble safety. When a
thread calls fork() , it creates a new thread that exe-
cutes in the same protection domain as the parent. When
a thread calls domain_fork() , it creates a new pro-
tection domain that has a copy of the parent domain’s
portal table. The parent may modify the child’s portal
table to allow portal interposition, which is described in
Section 6.

5 Implementation Issues

In this section we discuss some of the more interesting
implementation details of Pebble.

5.1 Nucleus Data Structures

The Pebble nucleus maintains only a handful of data
structures, which are illustrated in Figure 3. Each thread
is associated with a Thread data structure. It contains
pointer to the thread’s current portal table, user stack,
interrupt stack and invocation stack. The user stack is
the normal stack that is used by user mode code. The
interrupt stack is used whenever an interrupt or excep-
tion occurs while the thread is executing. The interrupt
portal switches to the interrupt stack, saves state on the
invocation stack and calls the interrupt dispatcher
server.

The invocation stack keeps track of portal traversals and
processor state. The portal call code saves the invoking
domain’s state on this stack. It also saves the address of
the corresponding return portal on the invocation stack.
The portal return code restores the state from this stack.

The portal table pointer in the Thread data structure is
portal table of the domain that the thread is currently
executing in. It is changed by the portal call and restored
by the portal return.

5.2 Virtual Memory and Cache

The virtual memory manager is responsible for main-
taining the page tables, which are accessed by the TLB
miss handler and by the memory window manipulation
code in portals. The virtual memory manager is the only
component that has access to the entire physical mem-
ory. The current implementation of Pebble does not sup-
port demand-paged virtual memory.

Pebble implementation takes advantage of the MIPS
tagged memory architecture. Each protection domain is

Figure 3. Pebble nucleus data structures

thread
currently
running
thread

user interrupt invocation portal
stack stack stack table

...

data structure

allocated a unique ASID (address space identifier),
which avoids TLB and cache flushes during context
switches. Portal calls and returns also load the mapping
of the current stack into TLB entry 0 to avoid a certain
TLB miss.

On the flip side, Pebble components run in separate pro-
tection domains in user mode, which necessitates care-
ful memory allocation and cache flushes whenever a
component must commit values to physical memory.
For example, the portal manager must generate portal
code so that it is placed in contiguous physical memory.

5.3 Memory Windows

The portal code that opens a memory window updates
an access data structure that contains a vector of
counters, one counter for each protection domain in the
system. The vector is addressed by the ASID of the cor-
responding domain. The counter keeps track of the num-
ber of portal traversals into the corresponding domain
that passed this page in a memory window. This counter
is incremented by one for each portal call, and is decre-
mented by one for each portal return. The page is acces-
sible if the counter that corresponds with the domain is
greater than zero. We must use counters and not bit val-
ues for maintaining page access rights, since the same
page may be handed to the same domain by multiple
concurrent threads.

The page table contains a pointer to the corresponding
access data structure, if any. Only shared pages have a
dedicated access data structure.

The portal code does not load the TLB with the mapping
of the memory window page. Rather, the TLB miss han-
dler consults this counter vector in order to verify the
access rights to this page. This arrangement saves time
if the shared window is passed to another domain with-
out being touched by the current domain. The portal
return code must remove the corresponding TLB entry
when the counter reaches zero.

5.4 Stack Manipulations

The portal call may implement stack sharing, which
does not require any stack manipulations. The invoked
domain just uses the current thread’s stack.

If the portal call requires a new stack, it obtains one
from the invoked domain’s stack queue. In this case, the
invoked protection domain must pre-allocate one or
more stacks and notify the portal manger to place them
in the domain’s stack queue. The portal call dequeues a
new stack from the invoked domain’s stack queue. If the

stacks queue is empty, the portal calls the scheduler and
waits until a stack becomes available. The portal return
enqueues the released stack back in the stack queue. If
there are any threads waiting for the stack, the portal
return calls the scheduler to pick the first waiting thread
and allow it to proceed in its portal code.

The portal that calls the interrupt dispatcher after an
interrupt switches the stack to the interrupt stack, which
is always available in every thread.

5.5 Footprint

The Pebble nucleus and the essential components (inter-
rupt dispatcher, scheduler, portal manager, real-time
clock, console driver and the idle task) can fit into about
70 pages (8KB each). Pebble does not support shared
libraries yet, which cause code duplication among com-
ponents. Each user thread has three stacks (user, inter-
rupt and invocation) which require three pages, although
the interrupt and invocation stacks could be placed on
the same page to reduce memory consumption. In addi-
tion, fixed size pages inherently waste memory. This
could be alleviated on segmented architectures.

6 Portal Interposition

An important aspect of component-based system is the
ability to interpose code between any client and its serv-
ers. The interposed code can modify the operation of the
server, enforce safety policies, enable logging and error
recovery services, or even implement protocol stacks
and other layered system services.

Pebble implements low-overhead interposition by modi-
fying the portal table of the controlled domain. Since all
interactions between the domain and its surroundings
are implemented by portal traversals, it is possible to
place the controlled domain in a comprehensive sand-
box by replacing the domain’s portal table. All of the
original portals are replaced with portal stubs, which
transfer to the interposed controlling domain. The con-
trolling domain intercepts each portal traversal that
takes place, performs whatever actions it deems neces-
sary, and then calls the original portal. Portal stubs pass
their parameters in the same way as the original portals,
which is necessary to maintain the semantics of the
parameter passing (e.g. windows). Actually, portal stubs
are regular portals that pass the corresponding portal
index in their first argument. The controlling domain
does not have to be aware of the particular semantics of
the intercepted portals; it can implement a transparent
sandbox by passing portal parameters verbatim.

The top diagram of Figure 4 illustrates the configuration
of the original portal table without interposition, where
the domain calls its servers directly. The bottom dia-
gram shows the operation of portal interposition. In this
case, all of the portals in the controlled domain call the
controlling domain, which makes the calls to the serv-
ers.

However, one-time modification of the controlled
domain’s portal table is not enough. Many servers create
new portals dynamically in their client’s portal table,
and then return an index to the newly created portal
back to the client. Since the controlling domain calls the
server, the server creates new portals in the controlling
domain’s table. The controlling domain is notified by
the portal manager that a new portal was created in its
portal table. The notification portal completes the pro-
cess by creating a portal stub in the controlled domain’s
table with the same index as in controlling domain table.

The portal stub calls the controlling domain and passes
the parameters in the same way as the original portal. In
this way, the controlling domain implements a robust
sandbox around the controlled domain, without actually
understanding the semantics of the controlled domain
portals.

There are a few comments about this interposition
mechanism. First, the controlled domain cannot detect
that its portals are diverted nor can it thwart the interpo-
sition in any way. This mechanism is similar to the Unix
I/O redirection, in which a child process accesses stan-
dard file descriptor (e.g., 0, 1 and 2), which are redi-
rected by the parent process. Second, portal
interposition is more comprehensive than Unix I/O redi-
rection, since we can control all interactions between
the controlled domain and its environment. Third, inter-
position can be recursive: a controlling domain inter-
poses the portals of a child domain, which does the same
to its child, ad infinitum. The last comment deals with
the semantics of certain system services, like fork()
and sbrk(), which change the internal state of the
calling domain; these are somewhat tricky to implement
in the face of transparent interposition. We have had to
make special accommodations to allow the controlling
domain to issue them on behalf of the controlled
domain.

6.1 Implementing a Transparent Sandbox by Portal
Interposition

The Appendix contains a code excerpt from a program
that implements a transparent sandbox around its child
domain. The program counts the number of times each
portal was called by the child domain, and completes all
child portal traversals by calling the appropriate server.
It is a fully functional program; we omitted only error
handling code, due to space constraints. When run on
our test hardware (see Section 7, below) the overhead of
this process is 1511 machine cycles for one iteration
(two sem_wait() and two sem_post()), which is
roughly twice the execution time of the original code
without interposition.

The program starts by calling portal_notify(),
which registers the routine notify() with the portal
manager. Any modification to the calling domain’s por-
tal table will call notify() immediately even before
the portal that caused it has returned.
Portal_notify() is necessary to handle any portal
call that the parent executed on behalf of the child which
created a new portal in the parent’s portal table. This
new portal should be replicated also in the child’s portal
table to ensure correct operation. The above situation

domain

portal
table

server A

server B

server C

server D

Figure 4. Original portal configuration (above)
and with portal interposition (below)

create portal

server A

server B

server C

server D

controlled
domain

portal
table

controlling
domain

portal table
notification

 intercept

create
portal

create
portal

occurs in the example when the parent executes
sem_create() on behalf of the child.

The notify() routine receives the template of the
newly created portal and its position in the portal table.
It creates a portal in the child’s portal table at the same
position. The portal’s template is modified to pass the
portal number as the first argument.

The program proceeds to create a child domain by
domain_fork(). The child starts with a copy of the
parent’s portal table. However, all of the entries in the
child’s portal table now point at the intercept()
routine in the parent domain. The first argument to the
intercept() routine is the index of the called portal
in the portal table. This routine increments the counters
and then performs the required action by invoking the
portal with the same index in the parent domain.
invoke_portal() let applications invoke a specific
portal in the caller’s portal table. The intercept()
routine assumes that portals have no more than five
parameters.

The child domain executes the measure() routine,
which measures the execution time of a semaphore
ping-pong between two threads in the same domain. The
hrtime() function returns the current value of the
high-resolution timer, which is incremented every two
machine cycles. Measure() creates two semaphores
by calling sem_create(). The scheduler creates two
new portals for each semaphore in the parent domain,
which calls notify() to create the corresponding
stubs in the child domain’s portal table.

7 Performance Measurements

In this section we measure the performance of Pebble
and, where possible, compare it with OpenBSD running
on the same hardware. The test hardware is an Algorith-
mics P-5064 board, which includes a 166 MHz MIPS
R5000 processor with 32 KB instruction + 32 KB data
level one cache (two way set associative), one megabyte
integrated level two cache and 64MB of memory. We
ran version 2.4 of OpenBSD.

Times were measured using the high-resolution on-chip
timer, which is incremented every two clock cycles. All
results are presented in terms of elapsed machine cycles,
not elapsed time, as our tests generally fit into the level
one or level two cache. As long as cache memory speed
scales with processor speed, cycle-based results will
remain meaningful. To convert cycle counts to elapsed
time, multiply by the cycle time (6 ns).

As the code size of Pebble is very small, and the cache
associativity of the level one cache is low (two-way),
the performance of Pebble is very dependent on how
code and data is placed in the cache. Out of a sense of
fairness, in our experiments we specifically do not make
any attempt to control cache layout. We believe that
with careful tuning of the cache layout, we could reduce
the number of cache misses and conflicts. Given the per-
formance results we have seen to date, we have felt little
need to go to this effort.

The context switch, pipe latency, and semaphore latency
tests were adapted from the hBench:OS test suite
[Brown98]. All tests on Pebble were run 10,000 times.
The context switch and pipe latency times presented for
OpenBSD were the 80% trimmed mean (excluding the
smallest 10% and largest 10% of the measurements) of
twenty results of 10,000 iterations, as per the
hBench:OS measurement methodology. In all cases the
standard deviation for Pebble measurements was less
than 1%.

7.1 IPC

A naive implementation of inter-process communication
(IPC) will emulate the behavior of a remote procedure
call (RPC), marshalling all arguments into a buffer,
copying the buffer from the invoking protection domain
to the invoked protection domain, unmarshalling them,
and then calling the server function. Several common
optimizations can be performed that greatly improve the
performance of IPC.

First, the amount of data transmitted in an IPC follows a
bimodal distribution [Bershad89]; either a small number
of bytes are sent (in which case they can be passed in
registers) or a large number of bytes are sent (in which
case it may make more sense to transfer the data using
virtual memory mapping operations).

In this test we measure the cost of performing an IPC
when all data fits into registers, when a one-page mem-
ory window is passed to the invoked domain (but the
invoked domain does not access the page), and when the
one-page memory window is written by the invoked
domain. Because virtual memory and the TLB are man-
aged in software on the MIPS, the memory management
unit is not involved if when passing a memory window
if the window is never used, although there is some
additional portal overhead. When the window is used in
the invoked domain, a TLB fault takes place, and the
memory management unit comes into play. Moreover,
the portal code may have to remove the resulting TLB
entry on return.

Simply measuring the per-leg cost of an IPC between
two domains does not tell the entire story. In a system
that has been factored into components, we may find
that a client request to service A causes A to make a
request of A′, A′ to make a request of A′′, and so on, until
the initial request is finally satisfied. For example, a cli-
ent page fault generates a request to its VM service, then
makes a request of the file system, which then makes a
request the disk driver to bring the page into memory.
Although simple IPC between two protection domains
must be cheap, it is also critical that when a cascade of
IPCs takes place performance does not drop precipi-
tously.

In this test we measure the time to perform an IPC to the
same domain and return (A→A→A), the time required
to perform an IPC to a second domain and return
(A→B→A), an IPC involving three domains
(A→B→C→B→A) and so on, up to a total of eight
domains. We used the portal specification “npciii”
(no window) and “npcwii” (with memory window),
which means that a new stack was allocated on call and
reclaimed on the return. Also, all processor registers that
should be preserved across calls according to the C call-
ing convention were saved on call and restored on
return. See Section 4.4 for a description of portal speci-
fication. The results are presented as the per-leg (one-
way) time, in cycles.

As a point of comparison, we included the time required
to perform a “null” short-circuit portal traversal (user
level → nucleus → user level). This is the Pebble equiv-
alent to a “null” system call, and can be thought of as the
minimum time required to enter and leave the nucleus.
Results of these tests are found in Table 1. In all cases.

parameters are passed only in registers and not on the
stack.

We see that the times per leg with no window and with
an unused window remains roughly constant as the
number of domains traversed increases, at about 114 and
135 cycles; the overhead of passing a window through a
portal is thus 21 machine cycles. The time per leg
increases above 4 domains due to cache contention.
When the memory window is used, the cost increases by
about 50 cycles, which is the time required to handle a
TLB fault and then remove the TLB entry on return
from the IPC. The one outlier is in the single domain
case, where there is no TLB fault at all; this is because
the page is already mapped in the domain (as there is
only one domain).

An optimization can be performed if the invoking
domain trusts the invoked domain (as would be the case
with an application invoking a system service). The two
can share a stack, saving the costs of allocating a stack
from a pool in the invoked protection domain and copy-
ing data to the new stack. Also, no additional processor
registered are saved on the call, since the invoking
domain trusts the invoked domain to save and restore
those registers. We used the portal specifications
“smciii” and “smcwii” . Even in the tested case,
where no data is passed on the stack, this optimization
has a significant performance benefit, as seen in Table 2.

The savings of this optimization are measured here to be
about 20 cycles, which reduces the per-leg time by 17%.
In addition, by sharing stacks between invoking and
invoked protection domains, the number of stacks, and
hence amount of memory, needed by the system is
decreased, which is an absolute good.

Pebble IPC time is slightly higher than Aegis, an exok-
ernel, on MIPS processors [Engler95]. Aegis performs a
minimal one-way protected control transfer in about 36
cycles on MIPS R2000 and R3000 processors, and per-
forms a null system call without a stack in about 40
cycles. Pebble’s IPC takes longer since it maintains an
invocation stack, which enables easy scheduling of the
thread.

n domains
no

window
window

window +
fault

short-
circuit

45 — —

1 114 133 135

2 114 134 185

4 118 139 190

8 133 153 209

Table 1. IPC in Pebble, new stack and partial save,
All times in CPU cycles, the mean of 10,000 runs.

n domains
no

window
window

window +
fault

1 95 115 118

2 95 116 168

4 95 116 168

8 98 120 182

Table 2. IPC in Pebble, shared stack and minimal
save. In CPU cycles, the mean of 10,000 runs

7.2 Context Switch

As described above, portal traversal does not involve a
scheduling decision. In this section we show the cost of
a context switch in Pebble.

We measure Pebble context switch cost in two ways,
first using Pebble’s explicit yield primitive, and then by
passing a one-byte token around a ring of pipes. The lat-
ter test was derived from hBench:OS, and was used to
compare the performance of Pebble with OpenBSD. In
both cases a number of protection domains, with a sin-
gle thread each, are arranged in a ring, and scheduled in
turn. Measurements are found in Table 3.

We see that the cost of an explicit yield increases with
the number of protection domains, up to a certain point,
and then levels off. As the work done by the scheduler
in this case is independent of the number of processes (it
simply selects the next thread from the ready queue), the
increase in time is due to cache effects: as we grow out
of the level one cache, we rely more on the level two
cache, to the point where we are running almost entirely
out of the level two cache (at six protection domains).
We would expect to see a similar jump at the point
where we begin to overflow the one-megabyte level two
cache.

The OpenBSD pipe test shows similar behavior, level-
ing off at four protection domains and roughly 2200
machine cycles.

7.3 Pipe Latency

This test measures the time required to pass a single
byte through pipes connecting a ring of processes. Each
value represents the time to transfer one byte between
two adjacent processes, and includes the context switch
time. By measuring the time required to transmit a sin-
gle byte, we capture the overhead associated with using
pipes; the more data that is sent, the more the data copy
time will mask pipe costs. Results are found in Table 4.

We see that, as with the context switch times, the Open-
BSD pipe time increases up to five domains, and then
levels off. The difference between the numbers in
Table 4 and Table 3 gives us the time required to trans-
fer data through a pipe on each system. On OpenBSD
the pipe overhead is roughly 2000 cycles; on Pebble it is
approximately half that.

7.4 Semaphore Acquire/Release

This test is very similar to the test in Section 7.3, but
instead of using pipes we use semaphores. A number of
processes are arranged in a ring, and are synchronized
by means of n semaphores. Each process performs a V
operation on its right semaphore and then a P operation
on its left semaphore. Each value in the table represents
the time to release a semaphore in process p and acquire
it in process (p + 1) mod n around a ring of n processes,
including the context switch time. Results are found in
Table 5.

When there are two processes the difference between
Pebble and OpenBSD is roughly 1500 cycles, 1000
cycles of which can be attributed to the difference in
context switch times. As the number of domains (and
thus semaphores) increases, the difference widens;
because Pebble’s semaphores are a highly optimized
key system primitive, and OpenBSD’s semaphores are
not, we believe that this is due to a restriction in the
implementation of OpenBSD semaphores, and is not a
reflection of the difference in system structure.

n domains
Pebble
yield

Pebble
pipe

OpenBSD
pipe

2 425 411 1195

4 549 963 2093

8 814 1162 2179

Table 3. Context switch times, Pebble vs. OpenBSD.
In CPU cycles, the mean of at least 10,000 runs.

n domains Pebble pipe OpenBSD pipe

2 1310 3088

4 1914 3979

8 2061 4055

Table 4. Pipe latency, Pebble vs. OpenBSD. In CPU
cycles, the mean of at least 10,000 runs.

n domains
Pebble

semaphore
OpenBSD
semaphore

2 781 2275

4 942 3415

8 1198 5091

Table 5. Semaphore acquire/release, Pebble vs.
OpenBSD. In CPU cycles, the mean of 10,000 runs.

7.5 Portal Generation

Table 6 shows the portal generation time for two typical
portals. This is the time measured by an application pro-
gram, including all overheads incurred by the portal
manager. The first portal (with specification “smcii”)
is typically used to call a trusted server with only integer
arguments. The second portal (with specification
“npcwi”) is typically used to call an untrusted server
with a memory window argument. See Section 4.4 for
additional explanations of portal specifications.

Table 6 indicates that portal generation time is relatively
fast. An examination of the portal manager reveals that
portal generation time includes a large fixed overhead
for interpretation of the specification string and for
cache flushing. We can reduce this time by employing
various techniques used for run-time code generation,
e.g., the techniques used by VCODE [Engler96].

8 Status and Future Work

The Pebble nucleus and a small set of servers (sched-
uler, portal manager, interrupt dispatcher, and minimal
VM) and devices (console and clock) currently run on
MIPS-based single-board computers from Algorithmics.
We support both the P-4032 (with QED RM5230 pro-
cessor) and P-5064 (with IDT R5000 or QED RM7000
processors). We are currently porting Ethernet and SCSI
device drivers to Pebble.

Next we plan to port Pebble to the Intel x86 to verify
that Pebble mechanisms and performance advantages
are indeed architecture independent. We also plan to
implement a demand-paged virtual memory system.
Building a high-performance VM system for Pebble is a
challenge, since the servers cannot (and should not)
share data structures freely. We also plan to port a TCP/
IP stack to Pebble and compare its performance with
similar user-level protocol stacks.

In addition to the Intel x86 port, we plan to port to a
symmetric multiprocessor and to an embedded proces-
sor such as the StrongARM. We also plan to investigate
the various processor architecture support for compo-
nent-based systems such as Pebble.

9 Summary

Pebble provides a new engineering trade-off for the con-
struction of efficient component-based systems, using
hardware memory management to enforce protection
domain boundaries, and reducing the cross domain
transfer time by synthesizing custom portal code. Pebble
enhances flexibility by maintaining a private portal table
for each domain. This table can be used to provide dif-
ferent implementations of system services, servers and
portal interposition for each domain. In addition, portal
interposition allows running untrusted code in a robust
sandbox with an acceptable overhead while using
unsafe languages such as C.

Having a small nucleus with minimal functionality
enhances system modularity, while it enables non-stop
systems to modify their behavior by integrating new
servers on-the-fly.

In this paper we showed that Pebble is much faster than
OpenBSD for a limited set of system-related micro-
benchmarks. Pebble efficiency does not stem from
clever low-level highly-optimized code; rather it is a
natural consequence of custom portal synthesis, judi-
cious processor state manipulations at portal traversals,
encapsulating state in portal code, and direct transfer of
control from clients to their servers without scheduler
intervention.

Pebble can be used to build systems that are more flexi-
ble, as safe as, and have higher performance than con-
ventionally constructed systems.

Acknowledgments

The authors would like to thank the anonymous referees
for their insightful comments.

References

[Accetta86] M. Accetta, R. Baron, W. Bolosky, D. Golub, R.
Rashid, A. Tevanian, M. Young, “Mach: A New Kernel Foun-
dation for UNIX Development,” Proc. Summer 1986 USENIX
Conf., pp. 93–112 (1986).

[Bershad89] B. Bershad, T. Anderson, E. Lazowska, H. Levy,
“Lightweight Remote Procedure Call,” Proc. 12th SOSP, pp.
102–113 (1989).

[Bershad95] B. Bershad, S. Savage, P. Pardyak, E. Sirer, M.
Fiuczynski, D. Becker, C. Chambers, S. Eggers, “Extensibility,
Safety, and Performance in the SPIN Operating System,”
Proc. 15th SOSP, pp. 267–284 (1995).

portal
spec.

portal len
(instr.)

time
(cycles)

cycles per
instr.

smcii 64 7282 114

npcwi 112 8593 77

Table 6. Portal generation time.

[Brown98] A. Brown, M. Seltzer, “Operating System Bench-
marking in the Wake of lmbench: A Case Study of the Perfor-
mance of NetBSD on the Intel x86 Architecture,” Proc. 1997
SIGMETRICS, pp. 214–224 (1997).

[Bruno99] J. Bruno, J. Brustoloni, E. Gabber, A. Silberschatz,
C. Small, “Pebble: A Component-Based Operating System for
Embedded Applications,” Proc. USENIX Workshop on
Embedded Systems, Cambridge, MA (1999).

[Custer92] H. Custer, Inside Windows NT, Microsoft Press,
Redmond, WA (1992).

[Dijkstra68] E. W. Dijkstra, “The Structure of “THE” Multi-
programming System,” CACM, Volume 11, Number 5, pp.
341-346 (1968).

[Dorward97] S. Dorward, R. Pike, D. Presotto, D. Ritchie, H.
Trickey, P. Winterbottom, “Inferno,” Proc. IEEE Compcon 97,
pp. 241–244 (1997).

[Engler95] D. Engler, M. Frans Kaashoek, J. O’Toole Jr.,
“Exokernel: An Operating System Architecture for Applica-
tion-Level Resource Management”, Proc. 15th SOSP, pp. 251-
266 (1995).

[Engler96] D. Engler, “VCODE: A Retargetable, Extensible,
Very Fast Dynamic Code Generation System”, Proc. Confer-
ence on Programming Language Design and Implementation
(PLDI’96), pp. 160-170 (1996).

[Ford96] B. Ford, M. Hibler, J,. Lepreau, P. Tullmann, G.
Back, S. Clawson, “Microkernels Meet Recursive Virtual
Machines,” Proc. 2nd OSDI, pp. 137–151 (1996).

[Golub90] D. Golub, R. Dean, A. Forin, R. Rashid, “UNIX as
an Application Program,” Proc. 1990 Summer USENIX, pp.
87–96 (1990).

[Gosling96] J. Gosling, B. Joy, G. Steele, The Java Lan-
guage Specification, Addison-Wesley, Reading, MA (1996).

[Helander98] J. Helander and A. Forin, “MMLite: A Highly
Componentized System Architecture”, Proc. 8th ACM
SIGOPS European Workshop, Sintra, Portugal (1998).

[Intel94] Intel Corp., Pentium Family User’s Manual Volume
3: Architecture and Programming Manual (1994).

[Kaashoek97] M. F. Kaashoek, D. Engler, G. Ganger, H.
Briceño, R. Hunt, D. Mazières, T. Pinckney, “Application Per-
formance and Flexibility on Exokernel Systems,” Proc. 16th
SOSP, pp. 52–65 (1997).

[Liedtke95] J. Liedtke, “On Micro-Kernel Construction,”
Proc. 15th SOSP, pp. 237–250 (1995).

[Liedtke97] J. Liedtke, K. Elphinstone, S. Schönberg, H. Här-
tig, G. Heiser, N. Islam, T. Jager, “Achieved IPC Perfor-
mance,” Proc. 6th HotOS, pp. 28–3 (1997).

[Massalin92] H. Massalin, Synthesis: An Efficient Implemen-
tation of Fundamental Operating System Services, Ph.D. the-
sis, Columbia University Department of Computer Science,
New York, NY (1992).

[Mitchell94] J. G. Mitchel et al, “An Overview of the Spring
System”, Proc. Compcon Spring 1994, pp. 122-131 (1994).

[Pike90] R. Pike, D. Presotto, K. Thompson, H. Trickey, “Plan
9 from Bell Labs,” Proc. Summer 1990 UKUUG Conf., pp. 1–
9 (1990).

[Probert91] D. Probert, J. Bruno, M. Karaorman, “SPACE: A
New Approach to Operating System Abstractions,” Proc. Intl.
Workshop on Object Orientation in Operating Systems
(IWOOS), pp. 133–137 (1991), Also available on-line at
ftp.cs.ucsb.edu/pub/papers/space/iwooos91.ps.gz

[Pu95] C. Pu, T. Autrey, A. Black, C. Consel, C. Cowan, J.
Inouye, L. Kethana, J. Walpole, K. Zhang, “Optimistic Incre-
mental Specialization: Streamlining a Commercial Operating
System,” Proc. 15th SOSP, pp. 314–324, (1995).

[Rozier88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M.
Gien, M. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P.
Leonard, W. Neuhauser. “Chorus Distributed Operating Sys-
tem.” Computing Systems 1(4), pp. 305–370 (1988).

[Seltzer96] M. Seltzer, Y. Endo, C. Small, K. Smith, “Dealing
With Disaster: Surviving Misbehaved Kernel Extensions,”
Proc. 2nd OSDI, pp. 213–227 (1996).

[Veitch96] A. C. Veitch and N. C. Hutchinson, “Kea - A
Dynamically Extensible and Configurable Operating System
Kernel”, Proc. 3rd Conference on Configurable and Distrib-
uted Systems (ICCDS’96), Annapolis, Mariland (1996).

Appendix: Implementing a Transparent
Sandbox by Portal Interposition

/* see Section 6.1 for explanations */
#include <pebble.h>

#define N 10000

int child_asid;
int count[NPORTALS];

/* child domain runs this routine */
void measure(void)
{

int code, i;
unsigned long long start, elapsed;
int sem_id1, sem_id2;

/* create semaphores */
sem_id1 = sem_create(0);
sem_id2 = sem_create(0);

/* create child thread in the same
domain */

if ((code = fork()) == 0) {
/* child thread wakes parent */
sem_post(sem_id2);

for (i = 0;; i++) {
sem_wait(sem_id1);
sem_post(sem_id2);

}

/* never reached */
exit(1);

}

/* parent thread waits until child
is active for accurate timing */

sem_wait(sem_id2);

/* time semaphore ping-pong with
child */

start = hrtime();

for (i = 0; i < N; i++) {
sem_post(sem_id1);
sem_wait(sem_id2);

}
elapsed = 2*(hrtime() - start);

printf(“each iteration: %d \
cycles\n”, (int)(elapsed/N));

}

void dump_counters(void)
{

int i;

for (i = 1; i < NPORTALS; i++)
if (count[i] != 0)

printf(“portal %d called %d\
times\n”, i, count[i]);

}

/* parent domain intercepts child por-
tal call */
int intercept(int id, int p1, int p2,

int p3, int p4, int p5)
{

count[id]++;
if (id == SYS_EXIT)

dump_counters();

return invoke_portal(id, p1, p2,
p3, p4, p5);

}

/* parent domain gets notification */
int notify(int asid, int id,

char *template)
{

char s[NAMELEN];

sprintf(s, “sm=%s”, template+3);
portal_create_child(child_asid,

id, s, 0, intercept);
return 0;

}

void main(void)
{

portal_notify(notify);

child_asid =
domain_fork(intercept);

if (child_asid == 0) {
/* child domain */
measure();
exit(0);

}

/* parent waits here until child
exits */

sem_wait(sem_create(0));

exit(0);
}

