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Abstr act

Pebble is a new operating system designed with the
goals of flexibility, safety, and performance. Its architec-
ture combines a set of features heretofore not found in a
single system, including (a) a minimal privileged mode
nucleus, responsible for switching between protection
domains, (b) implementation of all system services by
replaceable user-level components with minimal privi-
leges (including the scheduler and all device drivers)
that run in separate protection domains enforced by
hardware memory protection, and (c) generation of code
specialized for each possible cross-domain transfer. The
combination of these techniques resultsin a system with
extremely inexpensive cross-domain calls that makes it
well-suited for both efficiently specializing the operat-
ing system on a per-application basis and supporting
modern component-based applications.

1 Introduction

A new operating system project should address a real
problem that is not currently being addressed; construct-
ing yet another general purpose POSIX- or Windows32-
compliant system that runs standard applicationsis not a
worthwhile goal in and of itself. The Pebble operating
system was designed with the goal of providing flexibil-
ity, safety, and high performance to applicationsin ways
that are not addressed by standard desktop operating
systems.

Flexibility is important for specialized systems, often
referred to as embedded systems. The term is a misno-
mer, however, as embedded systems run not just on
microcontrollers in cars and microwaves, but also on
high-performance general purpose processors found in
routers, laser printers, and hand-held computing
devices.

Safety is important when living in today’s world of
mobile code and component-based applications.
Although safe languages such as Java [Gosling96] and
Limbo [Dorward97] can be used for many applications,
hardware memory protection is important when code is
written in unsafe languages such as C and C++.

High performance cannot be sacrificed to provide safety
and flexibility. History has shown us that systems are
chosen primarily for their performance characteristics;
safety and flexibility almost always come in second
place. Any system structure added to support flexibility
and safety cannot come at a significant decrease in per-
formance; if possible, a new system should offer better
performance than existing systems.

Early in the project, the designers of Pebble decided that
to maximize system flexibility Pebble would run as little
code as possible in its privileged mode nucleus. If a
piece of functionality could be run at user level, it was
removed from the nucleus. This approach makes it easy
to replace, layer, and offer alternative versions of operat-
ing system services.

Each user-level component runs in its opnotection
domain, isolated by means of hardware memory protec-
tion. All communication between protection domains is
done by means of a generalization of interrupt handlers,
termedportals. Only if a portal exists between protec-
tion domain A and protection domain B can A invoke a
service offered by B. Because each protection domain
has its owrportal table, by restricting the set of portals
available to a protection domain, threads in that domain
are efficiently isolated from services to which they
should not have access.

Portals are not only the basis for flexibility and safety in
Pebble, they are also the key to its high performance.
Specialized, tamper-proof code can be generated for
each portal, using a simple interface definition lan-
guage. Portal code can thus be optimized for its portal,



saving and restoring the minimum necessary state, or ~ operations such assad andwr i t e. The Fluke model

encapsulating and compiling out demultiplexing deci- requires that system functionality be replaced in groups;

sions and run-time checks. a memory management nester must implement all of the
functions in the virtual memory interface specification.

The remainder of this paper is structured as follows. In - pebble portals can be replaced piecemeal, which permits
Section 2 we discuss related work. In Section3 we  finer-grained extensibility.

describe the architecture of Pebble, and in Section 4 we

discuss the portal mechanism and its usesin more detail. The Exokernel model [Engler95, Kaashoek97] attempts
Section 5 covers severa key implementation issues of  to “exterminate all OS abstractions,” with the privileged
Pebble. Section 6 introduces the idea of implementinga  mode kernel in charge of protecting resources, but leav-
protected, application-transparent “sandbox” via portaing resource abstraction to user level application code.
interposition, and shows the performance overhead ohs with the Exokernel approach, Pebble moves the
such a sandbox. Section 7 compares the performance iofiplementation of resource abstractions to user level,
Pebble and OpenBSD on our test hardware, a MIP8ut unlike the Exokernel, Pebble provides a set of
R5000 processor. Section 8 reviews the current status abstractions, implemented by user-level operating sys-
Pebble and discusses our plans for future work. Wéem components. Pebble OS components can be added
summarize in Section 9, and include a short code exanor replaced, allowing alternate OS abstractions to coex-
ple that implements the sandbox discussed in Section 6st or override the default set.

Pebble can use the interposition technique discussed in
2 Related Work Section 6 to wrap a “sandbox” around untrusted code.

. . Several extensible operating system projects have stud-
Pebble has the same general structure as classical miciQy 1o use of software techniques, such as safe lan-

kernel operating systems such as Mach [Acetta86], Chq-

. "~ guages €g., Spin [Bershad95]) and software fault
rus [Rozer88], and Windows NT [Custer92], consistingig ) ~+ion €g. VINO [Seltzer96]), for this purpose.

IOf al pr|V|IegedP n;)tz)(lje kernel ar:jd a (;:ollecnlon O_f US€hwhere software techniques require faith in the safety of
evel servers. Pebble's protected mode nucleus is mu compiler, interpreter, or software fault isolation tool, a

smaller and has fewer_ responsibil?ties than the k.emelgandbox implemented by portal interposition and hard-
of the_se systems, ‘."‘”d in that way is much more like th are memory protection provides isolation at the hard-
L4 microkernel [Liedtke95]. L4 and Pebble share Qyare level which may be simpler to verify than
common philosophy of running as little code in privi- '

. . software techniques.
leged mode as possible. Where L4 implements IPC and d

minimal virtual memory management in privileged pjjosophically, the Pebble approach to sandboxing is
mode, Pebble’s nucleus includes only code to transfejyin to that provided by the Plan 9 operating system
threads from one protection domain to another and EpikeQO]. In Plan 9, nearly all resources are modeled as

mode. restricting the namespace of a process, it can be effec-

. . . ively isolated from resources to which it should not
Mach provides a facility to intercept system calls an

service them at user level [Golub90]. Pebble’'s portal
mechanism, which was designed for high-performance

cross-protection-domain transfer, can be used in a simpepple applies techniques developed by Bershad et al.
lar way, taking an existing application component aanershadgg]' Massalin [Massalin92], and Pu et al.
interposing one or more components between the appI[pu95] to improve the performance of IPC. Bershad's
cation component and the services it uses. results showed that IPC data size tends to be very small

Pebble’s architecture is closer in spirit to the nested pro(WhiCh fits into registers) or large (which is passed by
. : Sharing memory pages). Massalin’s work on the Synthe-
cess architecture of Fluke [Ford96]. Fluke provides a ng ry pages) ns W y

. X ) . . Lis project, and, more recently, work by Pu et al. on the
architecture in which virtual operating systems can b

Synthetix project, studied the use of generating special-
layered, with each layer only affecting the performancqz)éd coé)((a ?O ilmpr,ovcg plerformaunce g g spect

of the subset of the operating system interface it imple-

ments. For example, the presence of multiple vituabepple was inspired by the SPACE project [Probert91],
memory management “nesters’d, to provide demand  many of the concepts and much of the terminology of

paging, distributed shared memory, and persistencghe project come from Probert's wokkg., SPACE pro-
would have no effect on the cost of invoking file system

ave access. In contrast with Plan 9, Pebble can restrict
ccess to any service, not just those represented by files.



vided us with the idea of cross-domain communication - oo alles
as ageneralization of interrupt handling. % % g g g § -é 5’
The Spring kernel [Mitchell94] provided cross-protec- §> a ® Sl S '5,
. : - ! e o g ||
tion domain calls via doors, which are similar to Peb- 5 SN T

ble’s portals. However, Spring’s doors are used only for Lo v
implementing operations on objects, and do not include 1

general purpose parameter manipulations. 4 4 4

The Kea system [Veitch96] is very similar to Pebble. It nucleus

provides protection domains, inter-domain calls via por-Figure 1. Pebble ar chitecture. Arrows denote portal
tals and portal remapping. However, Kea’'s portals dotraversals. On the right, an interrupt causes a device

not perform general parameter manipulations like Pebdriver's semaphore to be incremented, unblocking the
ble. Parameter manipulations, such as sharing memor§fevice driver's thread (see Section ).
pages, are essential for efficient communication

between components. The functionality of the operating system is imple-

. . mented by trusted user-level components. The compo-
The MMLite system [Helander98] IS a gomponent-nems can be replaced, augmented, or layered.

based system that provides a wide selection of object-

oriented components that are assembled into an applicgne architecture of Pebble is based around the availabil-

tion system. MMLite’s components are space eﬁicigntity of hardware memory protection; Pebble, as described
However, MMLite does not use any memory protectionpere, requires a memory management unit.

and all components execute in the same protection
domain. The cost of transferring a thread from one protection
domain to another should be small enough that there is

the details of interrupts from higher level components

and uses only semaphores for synchronization. It has been demonstrated that the cost of using hardware
] ] ) ] memory protection on the Intel x86 can be made
Some CISC processors provide a single instruction thadytremely small [Liedtke97], and we believe that if it
performs a full context switch. A notable example is theszn be done on the x86, it could be done anywhere. Our
InFeI. x86 ta§k switch via a call gate [Intel9'4]. However, rasults bear us out—Pebble can perform a one-way IPC
this instruction takes more than 100 machine cycles. i, 114 machine cycles on a MIPS R5000 processor (see
Section 7 for detalils).

3 Philosophy and Architecture Transferring a thread between protection domains is

done by a generalization of hardware interrupt han-
dling, termed portal traversal. Portal code is generated
dynamically and performs portal-specific actions.

The Pebble philosophy consists of the following four
key ideas.

The privileged-mode nucleus is as small as possible. If

something can be run at user level, it is. Hardware interrupts, IPC, and the Pebble equivalent of

system calls are all handled by the portal mechanism.

The privileged-mode nucleus is only responsible forPebble generates specialized code for each portal to
switching between protection domains. In a perfecimprove run-time efficiency. Portals are discussed in
world, Pebble would include only one privileged-modemore detail in the following section.

instruction, which would transfer control from one pro-

tection domain to the next. By minimizing the work 3.1 Protection Domains, Portals and Threads

done in privileged mode, we reduce both the amount o%)

privileged code and the time needed to perform essenti ach component runs in its own protection domain
privileged mode services. D). A protection domain consists of a set of pages,

represented by a page table, and a set of portals, which

The operating system is built from fine-grained replace- ~ @re generalized interrupt handlers, stored in the protec-

able components, isolated through the use of hardware tion domain’s portal table. A protection domain may
memory protection. share both pages and portals with other protection

domains. Figure 1 illustrates the Pebble architecture.



Portals are used to handle both hardware interrupts and
software traps and exceptions. The existence of a portal
from PDp to PDg means that a thread running in PDy
can invoke a specific entry point of PDg (and then
return). Associated with each portal is code to transfer a
thread from the invoking domain to the invoked domain.
Portal code copies arguments, changes stacks, and maps
pages shared between the domains. Portal code is spe-
cific to its portal, which alows several important opti-
mizations to be performed (described below).

Portals are usually generated in pairs. The call portal
transfers control from domain PD, to PDg, and the

return portal allows PDg to return to PD . In the follow-
ing discussion we will omit the return portal for brevity.

Portals are generated when certain resources are created
(e.g. semaphores) and when clients connect to servers
(e.g. when files are opened). Some portals are created at
the system initiaization time (e.g. interrupt and excep-
tion handling portals).

A scheduling priority, a stack, and a machine context are
associated with each Pebble thread. When a thread
traverses a portal, no scheduling decision is made; the
thread continues to run, with the same priority, in the
invoked protection domain. Once the thread executesin
the invoked domain, it may access all of the resources
available in the invoked domain, while it can no longer
access the resources of the invoking domain. Several
threads may execute in the same protection domain at
the same time, which means that they share the same
portal table and all other resources.

As part of aportal traversal, the portal code can manipu-
late the page tables of the invoking and/or invoked pro-
tection domains. This most commonly occurs when a
thread wishes to map, for the duration of the IPC, a
region of memory belonging to the invoking protection
domain into the virtual address space of the invoked
protection domain; this gives the thread a window into
the address space of the invoking protection domain
while running in the invoked protection domain. When
the thread returns, the window is closed.

Such a memory window can be used to save the cost of
copying data between protection domains. Variations
include windows that remain open (to share pages
between protection domains), windows that transfer
pages from the invoking domain to the invoked domain
(to implement tear-away write) and windows that trans-
fer pages from the invoked domain to the invoker (to
implement tear-away read).

Note that although the portal code may modify VM data
structures, only the VM manager and the portal manager
(which generates portal code) share the knowledge
about these data structures. The Pebble nucleus itself is
oblivious to those data structures.

3.2 Safety

Pebble implements a safe execution environment by a
combination of hardware memory protection that pre-
vents access to memory outside the protection domain,

and by limiting the access to the domain’s portal table.
An protection domain may access only the portals it
inherited from its parent and new portals that were gen-
erated on its behalf by the portal manager. The portal
manager may restrict access to new portals in conjunc-
tion with the name server. A protection domain cannot
transfer a portal it has in its portal table to an unrelated
domain. Moreover, the parent domain may intercept all
of its child portal calls, including calls that indirectly
manipulate the child’s portal table, as described in
Section 6.

3.3 Server Components

As part of the Pebble philosophy, system services are
provided by operating system server components, which
run in user mode protection domains. Unlike applica-
tions, server components are trusted, so they may be
granted limited privileges not afforded to application
components. For example, the scheduler runs with inter-
rupts disabled, device drivers have device registers
mapped into their memory region, and the portal man-
ager may add portals to protection domains (a protection
domain cannot modify its portal table directly).

There are many advantages of implementing services at
user level. First, from a software engineering standpoint,
we are guaranteed that a server component will use only
the exported interface of other components. Second,
because each server component is only given the privi-
leges that it needs to do its job, a programming error in
one component will not directly affect other compo-
nents. If a critical component faile.g., VM) the system

as a whole will be affected—but a bug in console device
driver will not overwrite page tables.

Additionally, as user-level servers can be interrupted at
any time, this approach has the possibility of offering
lower interrupt latency time. Given that server compo-
nents run at user level (including interrupt-driven
threads), they can use blocking synchronization primi-
tives, which simplifies their design. This is in contrast
with handlers that run at interrupt level, which must not



block, and require careful coding to synchronize with
the upper parts of device drivers.

3.4 The Portal Manager

The Portal Manager is the operating system component
responsible for instantiating and managing portals. It is
privileged in that it is the only component that is permit-
ted to modify portal tables.

trusted servers should be allowed to keep their internal
data representations private.

The solution we advocate is to allow trusted servers,
such as the virtual memory manager, to register argu-
ment transformation code templates with the portal
manager. (Portals registered by untrusted services would
be required to use the standard argument types.) When
the portal manager instantiates a portal that uses such an

argument, the appropriate type-specific code is gener-
ated as part of the portal. This technique allows portal
code to be both efficient (by inlining code that trans-
forms arguments) and encapsulated (by allowing servers
to keep their internal representations private). Although
portal code that runs in kernel mode has access to
server-specific data structures, these data structures can-
not be accessed by other servers. The portal manager
currently supports argument transformation code of a
single trusted server, the virtual memory server.

Portal instantiation is a two-step process. First, the
server (which can be a Pebble system component or an
application component) registers the portal with the por-
tal manager, specifying the entrypoint, the interface def-
inition, and the name of the portal. Second, a client
component requests that a portal with a given name be
opened. The portal manager may call the name server to
identify the portal and to verify that the client is permit-
ted to open the portal. If the name server approves the
access, the portal manger generates the code for the por-
tal, and installs the portal in the client’s portal table. The3 5 scheduling and Synchronization
portal number of the newly generated portal is returned
to the client. A client may also inherit a portal from its Because inter-thread synchronization is intrinsically a
parent as the result of a@omain_fork(), as scheduling activity, synchronization is managed entirely
described in Section 4.5 by the user-level scheduler. When a thread creates a
semaphore, two portals (fét andV) are added to its
To invoke the portal, a thread running in the client loadsyortal table that transfer control to the scheduler. When
the portal number into a register and traps to the thread in the domain invokés the thread is trans-
nucleus. The trap handler uses the portal number as #red to the scheduler; if tHe succeeds, the scheduler
index into the portal table and jumps to the code associeturns. If theP fails, the scheduler marks the thread as
ated with the portal. The portal code transfers the threaﬂocked and schedules another threadV /Qperation
from the invoking protection domain to the invoked pro-works analogously; if the operation unblocks a thread
tection domain and returns to user level. As stateghat has higher priority than the invoker, the scheduler

above, a portal transfer does not involve the scheduler igan block the invoking thread and run the newly-awak-
any way. (Section 5.4 describes the only exception t@ned one.

this rule.)

. . . Lo 3.6 DeviceDriversand Interrupt Handling
Portal interfaces are written using a (tiny) interface defi-

nition language, as described in Section 4.4. Each port@ach hardware device in the system has an associated
argument may be processed or transformed by portaemaphore used to communicate between the interrupt
code. The argument transformation may involve a funceispatcher component and the device driver component
tion of the nucleus state, such as inserting the identity dbr the specific device.
the calling thread or the current time. The argument
transformation may also involve other servers. Forn the portal table of each protection domain there are
example, a portal argument may specify the address ofentries for the portals that corresponds to the machine’s
memory window to be mapped into the receiver'shardware interrupts. The Pebble nucleus includes a short
address space. This transformation requires the maniptrampoline function that handles all exceptions and
lation of data structures in the virtual memory server. interrupts. This code first determines the portal table of
the current thread and then transfers control to the
The design of the portal mechanism presents the followaddress that is taken from the corresponding entry in
ing conflict: on one hand, in order to be efficient, thethis portal table. The nucleus is oblivious to the specific
argument transformation code in the portal may need tgemantics of the portal that is being invoked. The portal
have access to private data structures of a trusted seritat handles the interrupt starts by saving the processor
(e.g., the virtual memory system); on the other handstate on the invocation stack (see Section 5.1), then it
switches to the interrupt stack and jumps to the interrupt



dispatcher. In other words, this mechanism converts  expected to run for years without unscheduled down
interrupts to portal calls. time. Pebble is especially suited for these systems, since
most system functionality may be replaced dynamically
Theinterrupt dispatcher determineswhich devicegener- by loading new servers and modifying portal tables. The
ated the interrupt and performs a V operation on the  only component that cannot be replaced is the nucleus,

device’s semaphore. Typically, the device driver wouldwhich provides only minimal functionality.
have left a thread blocked on that semaphore. The

operation unblocks this thread, and if the now-runnable .

thread has higher priority than the currently running® Portalsand Their Uses
thread, it gains control of the CPU, and the interrupt i
handled immediately. Typically, the priority of the inter-
rupt handling threads corresponds to the hardware inte
rupt priority in order to support nested interrupts. The . .
priority of the interrupt handling threads is higher than4'1 Interposition and L ayering

aII_ other threads to ensure short handlling Igtencies. 1Bne technique for building flexible system is to factor it
this way, Pebble unifies interrupt priority with thread i1 components with orthogonal functionality that can
priority, and handles both in the scheduler. A pictorialye composed in arbitrary ways. For example, distributed
example of this process is found in Figure 1. shared memory or persistent virtual memory can be

Note that Pebble invokes the interrupt dispatche}mplememEd as a layer on top of a standard virtual

. . ; _ memory service. Or, altered semantics can be offered by
promptly for all interrupts, including low priority ones. avering: the binary interface of one operating svstem
However, the interrupt handling thread is scheduleo\ yenng: y P g 5y

S o .~ “tan be emulated on another operating system by inter-
only if its priority is higher than the currently running . 2 .
thread. cepting system calls made by an application written for

the emulated system and implementing them through
the use of native system calls.

SPortals are used for multiple purposes in Pebble. In this
;_ection, we describe a few of their applications.

Only a small portion of Pebble runs with interrupts dis-

abled, namely portal code, the interrupt dispatcher, anﬁihe portal mechanism supports this development meth-

the scheduler. This is necessary to avoid race conditions . L
. odology very nicely. Because the portal mechanism is
due to nested exceptions.

used uniformly throughout the system, and a portal per-
forms a user-level to user-level transfer, service compo-
nents can be designed to both accept and use the same

Pebble provides low and consistent interrupt latency byet of portals.

design, since most servers (except the interrupt dis- le. the ori task of a virtual
patcher and the scheduler) run with interrupts enabled:.Or example, the primary task of a virtual memory man-

The interrupt-disabled execution path in Pebble is shorf’,‘ger. IS to accept rque;ts for pages from its clients -and
since portal code contain no loops, and the interrupt dig2ervice them by_ obtaining the pages from_ the backing

patcher and the scheduler are optimized for speed. usgfore: When a client requests a page, the V|rtua_l memory
code cannot increase the length of the longest interrupm"’lnwjer would read the page from the backing store

disabled path, and thus cannot increase the interru;?tnd return it to th_e client via a memlory_wmdow opera-
latency. In previous work we included details on the ion. A standard virtual memory service implementation

interrupt handling mechanism in Pebble, along withWOUId support just this protocol, and would typically be

measurements of the interrupt latency on machines wit onfigured With a user application as its client and the
differering memory hierarchies [Bruno99]. In particular, lle system as its backing store server.

the interrupt latency on the MIPS R5000 processor th"j\IIowever the backing store could be replaced with a dis-
is used in this paper is typically 1200-1300 cycles fromtributeol éhared memory (DSM) server, which would

th_e exception until the scheduling of the user-level haﬂﬁave the same interface as the virtual memory manager:
dling thread. it would accept page requests from its client, obtain the
pages from its backing store (although in this case the
backing store for a page might be the local disk or
Non-stop (or high-availability) systems are character2nother remote DSM server) and return the page to its
ized by the ability to run continuously over extendedCli€nt via @ memory window operation. By implement-

periods of time and support dynamic updates. For exani?d the DSM server using the standard virtual memory
ple, some systems, such as telephone switches, drgerface, it can be layered between the VM and the file

3.7 Low and Consistent Interrupt Latency

3.8 Non-Sop Systems



system. Other services, such as persistent virtual mem-
ory and transactional memory, can be added this way as read(fd, buf, n)

well. l: invoke_portal(fd, buf, n)

When a page fault takes place, the faulting address is write(fd, buf, n)

used to determine which portal to invoke. Typicaly a invok tal(fd+1. buf

single VM fault handler isregistered for the entire range invoke_portal(fd+1, buf, n)

of an application’s heap, but this need not be the case. seek(fd, offset, whence)

For example, a fault on a page in a shared memory .

region should be handled differently than a fault on a invoke_portal(fd+2, offset, whence)
page in a private memory region. By assigning different close(fd)

portals to subranges of a protection domain’s address invoke_portal(fd+3)

space, different virtual memory semantics can be sup- -

ported for each range. Figure 2. Implementing file descriptorswith portals

seek() and cl ose() calls are implemented by
library routines, which invoke the appropriate portals, as

Because portal code is trusted, is specific to its portag€en in Figure 2i nvoke_portal () invokes the
and can have private data, portal code can encapsuld@@rtal that is specified in its first argument. (Note that
state associated with the portal that need not be expos#t portal code afead andwr i t e may map the buffer
to either endpoint. The state of the invoking thread is &rgument in a memory window to avoid data copying. )
trivial example of this: portal code saves the thread’s

registers on the invocation stack (see Section 5.1), ari3 Short-Circuit Portals

restores them when the thread returns. On the flip side,

data used only by the invoked protection domain can b

embedded in the portal where the invoker cannot Vievyersal to a server is so small that the portal code itself
or manipulate it. Because the portal code cannot b an implement the service. A short-circuit portal is one

modified by the invoking protection domain, thet at does not actually transfer the invoking thread to a

invoked protection domain is ensured that the value§&W ptroéectlgn o!olr'n an, tf[lrj]t lnstte alld zerfoErms tlhe
passed to it are valid. This technique frequently allowg cduested ac |(3n ifing, In y € portal code. txamp ?S
run-time demultiplexing and data validation code to beInCILIde simple “system calls” to get the current thread’s
removed from the code path ID and read the high resolution cycle counter. The TLB

miss handler (which is in software on the MIPS archi-

As an example, in Pebble, portals take the place of filéecture, the current platform for Pebble) is also imple-
descriptors. Aropen() call creates four portals in the mented as a short-circuit portal.

invoking protection domain, one each for reading, writ-

ing, seeking and closing. The code for each portal hagurrently, semaphore synchronization primitives are
embedded in it a pointer to the control block for the ﬁle'|mplemented by the scheduler and necessitate portal tra-
To read the file. the client domain invokes thead versals even if the operation does not block. However,

portal; the portal code loads the control block pointerthese primitives are good candidates for implementation

into a register and transfers control directly to the spe‘:J‘S hybrid portals. When B operation is done, if the

cific routine for reading the underlying object (disk file, semaphore’s value is positive (and thus the invoking

socket, etc.). No file handle verification needs to bethread will not block), the only work done is to decre-

rﬁent the semaphore, and so there is no need for the

done, as the client is never given a file handle; nor doe diot for to th heduler. Th tal cod Id

any demultiplexing or branching based on the type ofnread to tratlkr:s erto ESC d? u ﬁr' Zﬁ?r a Cf € cgul

the underlying object need to be done, as the appropriafjeﬁcremen € semaphore direc y andthen return. 9nty
In the case where the semaphore’s value is zero and the

read routine for the underlying object is invoked directly ) .
by the portal code. In this way, portals permit run-timethread will block does the calling thread need to transfer

checks to be “compiled out,” shortening the code path. to the sgheduler. S|m|larly, ¥ operaﬂon on a sema-
phore with a non-negative valuée(, no threads are

returns a file descriptor, which corresponds to the inde
of the first of the four portals. Threead() ,write(),

4.2 Portals Can Encapsulate Sate

some cases the amount of work done by portal tra-

)Although these optimizations are small ones (domain
transfer takes only a few hundred cycles), operations



that are on the critical path can benefit from even these
small savings.

4.4 Portal Specification

The portal specification is a string that describes the
behavior of the portal. It controls the generation of por-
tal code by the portal manager. The portal specification
includes the calling conventions of the portal, which
registers are saved, whether the invoking domain shares
a stack with the invoked domain, and how each argu-
ments is processed.

The first character in the specification encodes the por-
tal’'s stack manipulation. For exampfs; denotes that
the invoking domain shares its stack with the invoked
domain. “n” denotes that the invoked domain allocated
a new stack. The second character specifies the amount
of processor state that is saved or restored. For example,
“m” denotes that only minimal state is saved, and that
the invoking domain trusts the invoked domain to obey
the C calling convention. “p” denotes that partia state
is saved, and that the invoking domain does not trust the
invoked domain to retain the values of the registers
required by the C calling convention. The rest of the
specification contains a sequence of single character
function codes, that specify handling of the correspond-
ing parameters. For example, the template “smcwi”
specifies a shared stack, saving minimal state, passing a
constant in the first parameter, passing a one-page mem-
ory window in the second parameter, and passing aword
without transformation in the third parameter. This tem-
plateisused by theread and write portals.

4.5 Portal Manipulations

As described earlier, portals are referred to by their
index in the local portal table. A portal that is available
in a particular portal table cannot be exported to other
protection domains using this index. A protection
domain may access only the portals in its portal table.
These properties are the basis for Pebble safety. When a
thread calls fork() , it creates a new thread that exe-
cutesin the same protection domain as the parent. When

currently
thread running
data structure thread
L
|
user interrupt  invocation  portal
stack stack stack table

Figure 3. Pebble nucleus data structures

5.1 Nucleus Data Sructures

The Pebble nucleus maintains only a handful of data
structures, which are illustrated in Figure 3. Each thread
is associated with &hr ead data structure. It contains
pointer to the thread’s current portal table, user stack,
interrupt stack and invocation stack. The user stack is
the normal stack that is used by user mode code. The
interrupt stack is used whenever an interrupt or excep-
tion occurs while the thread is executing. The interrupt
portal switches to the interrupt stack, saves state on the
invocation stack and calls the interrupt dispatcher
server.

The invocation stack keeps track of portal traversals and
processor state. The portal call code saves the invoking
domain’s state on this stack. It also saves the address of
the corresponding return portal on the invocation stack.
The portal return code restores the state from this stack.

The portal table pointer in thehr ead data structure is
portal table of the domain that the thread is currently
executing in. It is changed by the portal call and restored
by the portal return.

5.2 Virtual Memory and Cache

athread calls domain_fork() , it creates a new pro- ] ) ) .
tection domain that has a copy of the parent domain’dn€ virtual memory manager is responsible for main-
portal table. The parent may modify the child’s portalt@ining the page tables, which are accessed by the TLB

table to allow portal interposition, which is described in™Miss handler and by the memory window manipulation
Section 6. code in portals. The virtual memory manager is the only

component that has access to the entire physical mem-
ory. The current implementation of Pebble does not sup-

5 Implementation Issues port demand-paged virtual memory.

In this section we discuss some of the more interestingebble implementation takes advantage of the MIPS
implementation details of Pebble. tagged memory architecture. Each protection domain is



allocated a unique ASID (address space identifier),
which avoids TLB and cache flushes during context
switches. Portal calls and returns also load the mapping
of the current stack into TLB entry 0 to avoid a certain
TLB miss.

On theflip side, Pebble components run in separate pro-
tection domains in user mode, which necessitates care-
ful memory allocation and cache flushes whenever a
component must commit values to physical memory.
For example, the portal manager must generate portal
code so that it is placed in contiguous physical memory.

5.3 Memory Windows

The portal code that opens a memory window updates
an access data structure that contains a vector of
counters, one counter for each protection domain in the
system. The vector is addressed by the ASID of the cor-
responding domain. The counter keepstrack of the num-
ber of portal traversals into the corresponding domain
that passed this page in a memory window. This counter
is incremented by one for each portal call, and is decre-
mented by one for each porta return. The page is acces-
sible if the counter that corresponds with the domain is
greater than zero. We must use counters and not bit val-
ues for maintaining page access rights, since the same
page may be handed to the same domain by multiple
concurrent threads.

The page table contains a pointer to the corresponding
access data structure, if any. Only shared pages have a
dedicated access data structure.

The portal code does not load the TLB with the mapping
of the memory window page. Rather, the TLB miss han-
dier consults this counter vector in order to verify the
access rights to this page. This arrangement saves time
if the shared window is passed to another domain with-
out being touched by the current domain. The portal
return code must remove the corresponding TLB entry
when the counter reaches zero.

5.4 Sack Manipulations

The portal call may implement stack sharing, which
does not require any stack manipulations. The invoked
domain just uses the current thread’s stack.

stacks queue is empty, the portal calls the scheduler and
waits until a stack becomes available. The portal return
enqueues the released stack back in the stack queue. If
there are any threads waiting for the stack, the portal
return calls the scheduler to pick the first waiting thread
and allow it to proceed in its portal code.

The portal that calls the interrupt dispatcher after an
interrupt switches the stack to the interrupt stack, which
is always available in every thread.

5.5 Footprint

The Pebble nucleus and the essential components (inter-
rupt dispatcher, scheduler, portal manager, real-time
clock, console driver and the idle task) can fit into about
70 pages (8KB each). Pebble does not support shared
libraries yet, which cause code duplication among com-
ponents. Each user thread has three stacks (user, inter-
rupt and invocation) which require three pages, although
the interrupt and invocation stacks could be placed on
the same page to reduce memory consumption. In addi-
tion, fixed size pages inherently waste memory. This
could be alleviated on segmented architectures.

6 Portal Interposition

An important aspect of component-based system is the
ability to interpose code between any client and its serv-
ers. The interposed code can modify the operation of the
server, enforce safety policies, enable logging and error
recovery services, or even implement protocol stacks
and other layered system services.

Pebble implements low-overhead interposition by modi-
fying the portal table of the controlled domain. Since all
interactions between the domain and its surroundings
are implemented by portal traversals, it is possible to
place the controlled domain in a comprehensive sand-
box by replacing the domain’s portal table. All of the
original portals are replaced with portal stubs, which
transfer to the interposed controlling domain. The con-
trolling domain intercepts each portal traversal that
takes place, performs whatever actions it deems neces-
sary, and then calls the original portal. Portal stubs pass
their parameters in the same way as the original portals,
which is necessary to maintain the semantics of the
parameter passing.¢. windows). Actually, portal stubs

If the portal call requires a new stack, it obtains oneare regular portals that pass the corresponding portal
from the invoked domain’s stack queue. In this case, thindex in their first argument. The controlling domain
invoked protection domain must pre-allocate one oroes not have to be aware of the particular semantics of
more stacks and notify the portal manger to place therthe intercepted portals; it can implement a transparent
in the domain’s stack queue. The portal call dequeuessandbox by passing portal parameters verbatim.

new stack from the invoked domain’s stack queue. If the



The portal stub calls the controlling domain and passes
the parameters in the same way as the original portal. In

domain server A this way, the controlling domain implements a robust
—] sandbox around the controlled domain, without actually
— understanding the semantics of the controlled domain

ol server B portals.

There are a few comments about this interposition
mechanism. First, the controlled domain cannot detect
— server C that its portals are diverted nor can it thwart the interpo-
+ sition in any way. This mechanism is similar to the Unix

\ I/O redirection, in which a child process accesses stan-
portal | create portal server D dard file descriptorgg., 0, 1 and 2), which are redi-

/
I——

[]

table rected by the parent process. Second, portal
Figure 4. Original portal configuration (above) interpositipn is more comprehen.sive tha}n Unix I/O redi-
and with portal interposition (below) rection, since we can contrall interactions between
the controlled domain and its environment. Third, inter-
controlled controlling position can be recursive: a controlling domain inter-
domain domain / server A poses the portals of a child domain, which does the same
_ to its child,ad infinitum. The last comment deals with
. the semantics of certain system services, flike k()
T server B and sbr k(), which change the internal state of the
=1 - | —P calling domain; these are somewhat tricky to implement
g in the face of transparent interposition. We have had to
ﬁ —_| make special accommodations to allow the controlling
T serverC domain to issue them on behalf of the controlled
NG J domain.
= N '\‘\ | dbox by Portal
6.1 Implementing a Transparent Sandbox by Port
portal portal table \ server D Interpopsition ’ ¥ g
table [Motfication)q———
Create create The Appendix contains a code excerpt from a program
portal portal that implements a transparent sandbox around its child

domain. The program counts the number of times each

portal was called by the child domain, and completes all
The top diagram of Figure 4 illustrates the configuration  child portal traversals by calling the appropriate server.
of the original portal table without interposition, where |t is a fully functional program; we omitted only error
the domain calls its servers directly. The bottom dia  handling code, due to space constraints. When run on
gram shows the operation of portal interposition. Inthis  our test hardware (see Section 7, below) the overhead of
case, al of the portals in the controlled domain call the  this process is 1511 machine cycles for one iteration
controlling domain, which makes the cals to the serv-  (two sem wai t () and twosem post () ), which is
ers. roughly twice the execution time of the original code

. L without interposition.
However, one-time modification of the controlled

domain’s portal table is not enough. Many servers creatghe program starts by callingortal _notify(),

new portals dynamically in their client's portal table, which registers the routineot i f y() with the portal
and then return an index to the newly created portahanager. Any modification to the calling domain’s por-
back to the client. Since the controlling domain calls thea| table will callnoti f y() immediately even before
server, the server creates new portals in the controllinghe  portal that caused it has returned.
domain’s table. The controlling domain is notified by port al _notify() is necessary to handle any portal
the portal manager that a new portal was created in itall that the parent executed on behalf of the child which
portal table. The notification portal completes the pro-created a new portal in the parent’s portal table. This
cess by creating a portal stub in the controlled domain'gew portal should be replicated also in the child’s portal
table with the same index as in controlling domain tabletable to ensure correct operation. The above situation



occurs in the example when the parent executes  As the code size of Pebble is very small, and the cache
sem cr eat e() on behalf of the child. associativity of the level one cache is low (two-way),
the performance of Pebble is very dependent on how
The noti fy() routine receives the template of the  code and data is placed in the cache. Out of a sense of
newly created portal and its position in the portal table.  fajrness, in our experiments we specifically do not make
It creates a portal in the child’s portal table at the samgny attempt to control cache layout. We believe that
position. The portal’s template is modified to pass theith careful tuning of the cache layout, we could reduce
portal number as the first argument. the number of cache misses and conflicts. Given the per-

) ) formance results we have seen to date, we have felt little
The program proceeds to create a child domain byaaq 1o go to this effort.

domai n_f or k() . The child starts with a copy of the

parent's portal table. However, all of the entries in theThe context switch, pipe latency, and semaphore latency
child’s portal table now point at thentercept ()  tests were adapted from the hBench:OS test suite
routine in the parent domain. The first argument to thgBrown98]. All tests on Pebble were run 10,000 times.
i ntercept () routine is the index of the called portal The context switch and pipe latency times presented for
in the portal table. This routine increments the counter®penBSD were the 80% trimmed mean (excluding the
and then performs the required action by invoking th&mallest 10% and largest 10% of the measurements) of
portal with the same index in the parent domaintwenty results of 10,000 iterations, as per the
i nvoke_portal () letapplications invoke a specific hBench:0S measurement methodology. In all cases the

portal in the caller’s portal table. Thent er cept () standard deviation for Pebble measurements was less
routine assumes that portals have no more than fivghan 1%.

parameters.

. . i 7.1 IPC
The child domain executes tmeasure() routine,

which measures the execution time of a semaphora naive implementation of inter-process communication
ping-pong between two threads in the same domain. Th@PC) will emulate the behavior of a remote procedure
hrtime() function returns the current value of the call (RPC), marshalling all arguments into a buffer,
high-resolution timer, which is incremented every twocopying the buffer from the invoking protection domain
machine cyclesMeasur e() creates two semaphores to the invoked protection domain, unmarshalling them,
by callingsem cr eat e() . The scheduler creates two and then calling the server function. Several common
new portals for each semaphore in the parent domaimptimizations can be performed that greatly improve the
which callsnotify() to create the corresponding performance of IPC.

stubs in the child domain’s portal table.

First, the amount of data transmitted in an IPC follows a
bimodal distribution [Bershad89]; either a small number
of bytes are sent (in which case they can be passed in

In this section we measure the performance of Pebbl%eg'Sters) or a large number of bytes are sent (in which

and, where possible, compare it with OpenBSD runnin Case it may make more sense to transfer the data using

on the same hardware. The test hardware is an Algorit%—Irtuad memory mapping operations).

mics P-5064 board, which includes a 166 MHz MIPS;, yhis test we measure the cost of performing an IPC
R5000 processor with 32 KB instruction + 32 KB data, hen gl data fits into registers, when a one-page mem-
level one cache (two way set associative), one megaby;ﬁ.y window is passed to the invoked domain (but the

integrated level two cache and 64MB of memory. Wejnyoked domain does not access the page), and when the
ran version 2.4 of OpenBSD. one-page memory window is written by the invoked

.domain. Because virtual memory and the TLB are man-

Times were measured using the high-resolution on-chi .
. S ged in software on the MIPS, the memory management
timer, which is incremented every two clock cycles. All "2~ . . : ;

unit is not involved if when passing a memory window

results are presented in terms of elapsed machine cycles, . : .
) _ if the window is never used, although there is some
not elapsed time, as our tests generally fit into the leve

additional portal overhead. When the window is used in
one or level two cache. As long as cache memory spe . .
. e invoked domain, a TLB fault takes place, and the
scales with processor speed, cycle-based results will

. X memory management unit comes into play. Moreover,
remain meaningful. To convert cycle counts to elapse )
. ) : e portal code may have to remove the resulting TLB
time, multiply by the cycle time (6 ns).

entry on return.

7 Performance M easurements



Simply measuring the per-leg cost of an IPC between
two domains does not tell the entire story. In a system
that has been factored into components, we may find
that a client request to service A causes A to make a
request of A', A’ to make arequest of A", and so on, until
theinitial request isfinally satisfied. For example, acli-
ent page fault generates arequest to its VM service, then
makes a request of the file system, which then makes a
request the disk driver to bring the page into memory.
Although simple IPC between two protection domains
must be cheap, it is also critical that when a cascade of
IPCs takes place performance does not drop precipi-
tously.

In this test we measure the time to perform an |PC to the
same domain and return (A- A A), the time required
to perform an IPC to a second domain and return
(A-B-A), an IPC involving three domains
(A-B-C-B-A) and so on, up to a total of eight
domains. We used the portal specification “npciii”

(no window) and “npcwii”  (with memory window),
which means that a new stack was allocated on call and
reclaimed on the return. Also, all processor registers that
should be preserved across calls according to the C call-
ing convention were saved on cal and restored on
return. See Section 4.4 for a description of portal speci-
fication. The results are presented as the per-leg (one-

We see that the times per leg with no window and with
an unused window remains roughly constant as the
number of domains traversed increases, at about 114 and
135 cycles; the overhead of passing a window through a
portal is thus 21 machine cycles. The time per leg
increases above 4 domains due to cache contention.
When the memory window is used, the cost increases by
about 50 cycles, which is the time required to handle a
TLB fault and then remove the TLB entry on return
from the IPC. The one outlier is in the single domain
case, where there is no TLB fault at all; this is because
the page is already mapped in the domain (as there is
only one domain).

An optimization can be performed if the invoking
domain trusts the invoked domain (as would be the case
with an application invoking a system service). The two
can share a stack, saving the costs of allocating a stack
from a pool in the invoked protection domain and copy-
ing data to the new stack. Also, no additional processor
registered are saved on the call, since the invoking
domain trusts the invoked domain to save and restore
those registers. We used the portal specifications
“smciii” and “smcwii” . Even in the tested case,
where no data is passed on the stack, this optimization

has a significant performance benefit, as seenin Table 2.

way) time, in cycles. . no _ window +
n domains window window fault

Asapoint of comparison, we included the time required

to perform a “null” short-circuit portal traversal (user 1 95 115 118

level - nucleus— user level). This is the Pebble equiv- 5 95 116 168

alent to a “null” system call, and can be thought of as the

minimum time required to enter and leave the nucleus. 4 95 116 168

Results of these tests are found in Table 1. In all cases. 8 08 120 182

. no . window +
n domains . window
window fault

S'hOI't'- 45 _ _
circuit

1 114 133 135

2 114 134 185

4 118 139 190

8 133 153 209

Table 1. IPC in Pebble, new stack and partial save,
All times in CPU cycles, the mean of 10,000 runs.

Table 2. IPC in Pebble, shared stack and minimal
save. In CPU cycles, the mean of 10,000 runs

The savings of this optimization are measured here to be
about 20 cycles, which reduces the per-leg time by 17%.
In addition, by sharing stacks between invoking and
invoked protection domains, the number of stacks, and
hence amount of memory, needed by the system is
decreased, which is an absolute good.

Pebble IPC time is dlightly higher than Aegis, an exok-
ernel, on MIPS processors [Engler95]. Aegis performs a
minimal one-way protected control transfer in about 36
cycles on MIPS R2000 and R3000 processors, and per-

parameters are passed only in registers and not on thems a null system call without a stack in about 40

stack.

cycles. Pebble’'s IPC takes longer since it maintains an
invocation stack, which enables easy scheduling of the
thread.



7.2 Context Switch n domains Pebble pipe OpenBSD pipe

As described above, portal traversal does not involve a 2 1310 3088

scheduling decision. In this section we show the cost of

acontext switch in Pebble. 4 1914 3979
. _ 8 2061 4055

We measure Pebble context switch cost in two ways,

first using Pebble’s explicit yield primitive, and then by 120l€ 4. Pipe latency, Pebble vs. OpenBSD. In CPU

passing a one-byte token around a ring of pipes. The lagYcles, the mean of at least 10,000 runs.

ter test was derived from hBench:OS, and was used to

compare the performance of Pebble with OpenBSD. IWe see that, as with the context switch times, the Open-

both cases a number of protection domains, with a sifBSD pipe time increases up to five domains, and then

gle thread each, are arranged in a ring, and scheduledlgvels off. The difference between the numbers in

turn. Measurements are found in Table 3. Table 4 and Table 3 gives us the time required to trans-
fer data through a pipe on each system. On OpenBSD

Pebble Pebble OpenBSD the pipe overhead is roughly 2000 cycles; on Pebble it is
n domains yidd pipe pipe approximately half that.
2 425 411 1195 7.4 semaphore Acquire/Release
4 549 963 2093 This test is very similar to the test in Section 7.3, but
8 814 1162 2179 instead of using pipes we use semaphores. A number of

processes are arranged in a ring, and are synchronized
by means of n semaphores. Each process perfoivhs a
operation on its right semaphore and théha@peration

on its left semaphore. Each value in the table represents
We see that the cost of an EXp"Cit y|8|d increases With]he time to release a Semaphore in prop@]}j acquire

the number of protection domains, up to a certain poinfi in procesgp + 1) mod n around a ring of n processes,

and then levels off. As the work done by the schedulejhcluding the context switch time. Results are found in
in this case is independent of the number of processes fitble 5.

simply selects the next thread from the ready queue), the

Table 3. Context switch times, Pebble vs. OpenBSD.
In CPU cycles, the mean of at least 10,000 runs.

increase in time is due to cache effects: as we grow out
. Pebble OpenBSD

of the level one cache, we rely more on the level two n domains

. . . semaphore semaphore
cache, to the point where we are running almost entirely
out of the level two cache (at six protection domains). 2 781 2275
We would expect to see a similar jump at the point 942 3415
where we begin to overflow the one-megabyte level two
cache. 8 1198 5091

Table 5. Semaphore acquire/release, Pebble vs.

The OpenBSD pipe test shows similar behavior, level'OpenBSD. In CPU cycles, the mean of 10,000 runs.

ing off at four protection domains and roughly 2200
machine cycles.

When there are two processes the difference between
Pebble and OpenBSD is roughly 1500 cycles, 1000

cycles of which can be attributed to the difference in

This test measures the time required to pass a singl®ntext switch times. As the number of domains (and

byte through pipes connecting a ring of processes. Eadhus semaphores) increases, the difference widens;
value represents the time to transfer one byte betwedsecause Pebble’s semaphores are a highly optimized
two adjacent processes, and includes the context switddey system primitive, and OpenBSD’s semaphores are
time. By measuring the time required to transmit a sinnot, we believe that this is due to a restriction in the

gle byte, we capture the overhead associated with usingplementation of OpenBSD semaphores, and is not a
pipes; the more data that is sent, the more the data copyflection of the difference in system structure.

time will mask pipe costs. Results are found in Table 4.

7.3 PipeLatency



7.5 Portal Generation

Table 6 shows the portal generation time for two typical
portals. Thisis the time measured by an application pro-
gram, including all overheads incurred by the portal
manager. The first portal (with specification “smcii” )
istypically used to call atrusted server with only integer
arguments. The second portal (with specification
“npcwi” ) is typically used to call an untrusted server
with a memory window argument. See Section 4.4 for
additional explanations of portal specifications.

portal portal len time cyclesper
Spec. (instr.) (cycles) instr.

smcii 64 7282 114
npewi 112 8593 77

Table 6. Portal generation time.

Table 6 indicates that portal generation timeisrelatively
fast. An examination of the portal manager reveals that
portal generation time includes a large fixed overhead
for interpretation of the specification string and for
cache flushing. We can reduce this time by employing
various techniques used for run-time code generation,
e.g., the techniques used by VCODE [Engler96].

8 Satusand Future Work

The Pebble nucleus and a small set of servers (sched-
uler, portal manager, interrupt dispatcher, and minimal
VM) and devices (console and clock) currently run on
MI1PS-based single-board computers from Algorithmics.
We support both the P-4032 (with QED RM5230 pro-
cessor) and P-5064 (with IDT R5000 or QED RM 7000
processors). We are currently porting Ethernet and SCSI
device driversto Pebble.

Next we plan to port Pebble to the Intel x86 to verify
that Pebble mechanisms and performance advantages
are indeed architecture independent. We also plan to
implement a demand-paged virtual memory system.
Building a high-performance VM system for Pebbleis a
challenge, since the servers cannot (and should not)
share data structures freely. We also plan to port a TCP/
IP stack to Pebble and compare its performance with
similar user-level protocol stacks.

In addition to the Intel x86 port, we plan to port to a

9 Summary

Pebbl e provides a new engineering trade-off for the con-
struction of efficient component-based systems, using
hardware memory management to enforce protection
domain boundaries, and reducing the cross domain
transfer time by synthesizing custom portal code. Pebble
enhances flexibility by maintaining a private portal table
for each domain. This table can be used to provide dif-
ferent implementations of system services, servers and
portal interposition for each domain. In addition, portal
interposition allows running untrusted code in a robust
sandbox with an acceptable overhead while using
unsafe languages such as C.

Having a small nucleus with minima functionality
enhances system modularity, while it enables non-stop
systems to modify their behavior by integrating new
servers on-the-fly.

In this paper we showed that Pebble is much faster than
OpenBSD for a limited set of system-related micro-
benchmarks. Pebble efficiency does not stem from
clever low-level highly-optimized code; rather it is a
natural conseguence of custom portal synthesis, judi-
cious processor state manipulations at portal traversals,
encapsulating state in portal code, and direct transfer of
control from clients to their servers without scheduler
intervention.

Pebble can be used to build systems that are more flexi-
ble, as safe as, and have higher performance than con-
ventionally constructed systems.
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Appendix: Implementing a Transparent
Sandbox by Portal I nterposition

/* see Section 6.1 for explanations */
#i ncl ude <pebbl e. h>

#define N 10000

int child_ asid,
i nt count[ NPORTALS] ;

/[* child domain runs this routine */
voi d measure(voi d)

{

int code, i;
unsi gned long | ong start, el apsed;
int sem.idl, sem.id2;

/* create semaphores */

semidl = semcreate(0);

semid2 = semcreate(0);

/* create child thread in the sane
domai n */

if ((code = fork()) == 0) {
/* child thread wakes parent */
sem post (sem i d2);

for (i =0;; i++) {
semwait (sem.idl);
sem post (sem.i d2);

}

/* never reached */
exit(1);
}

/* parent thread waits until child
is active for accurate timng */
semwait(sem.i d2);

/* tinme semaphore ping-pong with
child */
start = hrtine();

for (i =0; i <N i++) {
sem post (sem.i dl);
semwait (sem.id2);
}
el apsed = 2*(hrtime() - start);

printf(*each iteration: %d \
cycles\n”, (int)(elapsed/N));

void dump_counters(void)

{

}

inti;

for (i=1; i < NPORTALS; i++)
if (count[i] '=0)
printf(*portal %d called %d\
times\n”, i, count[i]);

[* parent domain intercepts child por-
tal call */
int intercept(int id, int p1, int p2,

{

}

int p3, int p4, int p5)

count[id]++;
if (id == SYS_EXIT)
dump_counters();

return invoke_portal(id, p1, p2,
p3, p4, pS);

[* parent domain gets notification */
int notify(int asid, int id,

{

}

char *template)
char sSINAMELEN];

sprintf(s, “sm=%s", template+3);

portal_create_child(child_asid,
id, s, 0, intercept);

return O;

void main(void)

{

portal_notify(notify);

child_asid =
domain_fork(intercept);
if (child_asid == 0) {
/* child domain */
measure();
exit(0);
}

[* parent waits here until child
exits */
sem_wait(sem_create(0));

exit(0);
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Abstr act

Pebble is a new operating system designed with the
goals of flexibility, safety, and performance. Its architec-
ture combines a set of features heretofore not found in a
single system, including (a) a minimal privileged mode
nucleus, responsible for switching between protection
domains, (b) implementation of all system services by
replaceable user-level components with minimal privi-
leges (including the scheduler and all device drivers)
that run in separate protection domains enforced by
hardware memory protection, and (c) generation of code
specialized for each possible cross-domain transfer. The
combination of these techniques resultsin a system with
extremely inexpensive cross-domain calls that makes it
well-suited for both efficiently specializing the operat-
ing system on a per-application basis and supporting
modern component-based applications.

1 Introduction

A new operating system project should address a real
problem that is not currently being addressed; construct-
ing yet another general purpose POSIX- or Windows32-
compliant system that runs standard applicationsis not a
worthwhile goal in and of itself. The Pebble operating
system was designed with the goal of providing flexibil-
ity, safety, and high performance to applicationsin ways
that are not addressed by standard desktop operating
systems.

Flexibility is important for specialized systems, often
referred to as embedded systems. The term is a misno-
mer, however, as embedded systems run not just on
microcontrollers in cars and microwaves, but also on
high-performance general purpose processors found in
routers, laser printers, and hand-held computing
devices.

Safety is important when living in today’s world of
mobile code and component-based applications.
Although safe languages such as Java [Gosling96] and
Limbo [Dorward97] can be used for many applications,
hardware memory protection is important when code is
written in unsafe languages such as C and C++.

High performance cannot be sacrificed to provide safety
and flexibility. History has shown us that systems are
chosen primarily for their performance characteristics;
safety and flexibility almost always come in second
place. Any system structure added to support flexibility
and safety cannot come at a significant decrease in per-
formance; if possible, a new system should offer better
performance than existing systems.

Early in the project, the designers of Pebble decided that
to maximize system flexibility Pebble would run as little
code as possible in its privileged mode nucleus. If a
piece of functionality could be run at user level, it was
removed from the nucleus. This approach makes it easy
to replace, layer, and offer alternative versions of operat-
ing system services.

Each user-level component runs in its opnotection
domain, isolated by means of hardware memory protec-
tion. All communication between protection domains is
done by means of a generalization of interrupt handlers,
termedportals. Only if a portal exists between protec-
tion domain A and protection domain B can A invoke a
service offered by B. Because each protection domain
has its owrportal table, by restricting the set of portals
available to a protection domain, threads in that domain
are efficiently isolated from services to which they
should not have access.

Portals are not only the basis for flexibility and safety in
Pebble, they are also the key to its high performance.
Specialized, tamper-proof code can be generated for
each portal, using a simple interface definition lan-
guage. Portal code can thus be optimized for its portal,



saving and restoring the minimum necessary state, or ~ operations such assad andwr i t e. The Fluke model

encapsulating and compiling out demultiplexing deci- requires that system functionality be replaced in groups;

sions and run-time checks. a memory management nester must implement all of the
functions in the virtual memory interface specification.

The remainder of this paper is structured as follows. In - pebble portals can be replaced piecemeal, which permits
Section 2 we discuss related work. In Section3 we  finer-grained extensibility.

describe the architecture of Pebble, and in Section 4 we

discuss the portal mechanism and its usesin more detail. The Exokernel model [Engler95, Kaashoek97] attempts
Section 5 covers severa key implementation issues of  to “exterminate all OS abstractions,” with the privileged
Pebble. Section 6 introduces the idea of implementinga  mode kernel in charge of protecting resources, but leav-
protected, application-transparent “sandbox” via portaing resource abstraction to user level application code.
interposition, and shows the performance overhead ohs with the Exokernel approach, Pebble moves the
such a sandbox. Section 7 compares the performance iofiplementation of resource abstractions to user level,
Pebble and OpenBSD on our test hardware, a MIP8ut unlike the Exokernel, Pebble provides a set of
R5000 processor. Section 8 reviews the current status abstractions, implemented by user-level operating sys-
Pebble and discusses our plans for future work. Wéem components. Pebble OS components can be added
summarize in Section 9, and include a short code exanor replaced, allowing alternate OS abstractions to coex-
ple that implements the sandbox discussed in Section 6st or override the default set.

Pebble can use the interposition technique discussed in
2 Related Work Section 6 to wrap a “sandbox” around untrusted code.

. . Several extensible operating system projects have stud-
Pebble has the same general structure as classical miciQy 1o use of software techniques, such as safe lan-

kernel operating systems such as Mach [Acetta86], Chq-

. "~ guages €g., Spin [Bershad95]) and software fault
rus [Rozer88], and Windows NT [Custer92], consistingig ) ~+ion €g. VINO [Seltzer96]), for this purpose.

IOf al pr|V|IegedP n;)tz)(lje kernel ar:jd a (;:ollecnlon O_f US€hwhere software techniques require faith in the safety of
evel servers. Pebble's protected mode nucleus is mu compiler, interpreter, or software fault isolation tool, a

smaller and has fewer_ responsibil?ties than the k.emelgandbox implemented by portal interposition and hard-
of the_se systems, ‘."‘”d in that way is much more like th are memory protection provides isolation at the hard-
L4 microkernel [Liedtke95]. L4 and Pebble share Qyare level which may be simpler to verify than
common philosophy of running as little code in privi- '

. . software techniques.
leged mode as possible. Where L4 implements IPC and d

minimal virtual memory management in privileged pjjosophically, the Pebble approach to sandboxing is
mode, Pebble’s nucleus includes only code to transfejyin to that provided by the Plan 9 operating system
threads from one protection domain to another and EpikeQO]. In Plan 9, nearly all resources are modeled as

mode. restricting the namespace of a process, it can be effec-

. . . ively isolated from resources to which it should not
Mach provides a facility to intercept system calls an

service them at user level [Golub90]. Pebble’'s portal
mechanism, which was designed for high-performance

cross-protection-domain transfer, can be used in a simpepple applies techniques developed by Bershad et al.
lar way, taking an existing application component aanershadgg]' Massalin [Massalin92], and Pu et al.
interposing one or more components between the appI[pu95] to improve the performance of IPC. Bershad's
cation component and the services it uses. results showed that IPC data size tends to be very small

Pebble’s architecture is closer in spirit to the nested pro(WhiCh fits into registers) or large (which is passed by
. : Sharing memory pages). Massalin’s work on the Synthe-
cess architecture of Fluke [Ford96]. Fluke provides a ng ry pages) ns W y

. X ) . . Lis project, and, more recently, work by Pu et al. on the
architecture in which virtual operating systems can b

Synthetix project, studied the use of generating special-
layered, with each layer only affecting the performancqz)éd coé)((a ?O ilmpr,ovcg plerformaunce g g spect

of the subset of the operating system interface it imple-

ments. For example, the presence of multiple vituabepple was inspired by the SPACE project [Probert91],
memory management “nesters’d, to provide demand  many of the concepts and much of the terminology of

paging, distributed shared memory, and persistencghe project come from Probert's wokkg., SPACE pro-
would have no effect on the cost of invoking file system

ave access. In contrast with Plan 9, Pebble can restrict
ccess to any service, not just those represented by files.



vided us with the idea of cross-domain communication - oo alles
as ageneralization of interrupt handling. % % g g g § -é 5’
The Spring kernel [Mitchell94] provided cross-protec- §> a ® Sl S '5,
. : - ! e o g ||
tion domain calls via doors, which are similar to Peb- 5 SN T

ble’s portals. However, Spring’s doors are used only for Lo v
implementing operations on objects, and do not include 1

general purpose parameter manipulations. 4 4 4

The Kea system [Veitch96] is very similar to Pebble. It nucleus

provides protection domains, inter-domain calls via por-Figure 1. Pebble ar chitecture. Arrows denote portal
tals and portal remapping. However, Kea’'s portals dotraversals. On the right, an interrupt causes a device

not perform general parameter manipulations like Pebdriver's semaphore to be incremented, unblocking the
ble. Parameter manipulations, such as sharing memor§fevice driver's thread (see Section ).
pages, are essential for efficient communication

between components. The functionality of the operating system is imple-

. . mented by trusted user-level components. The compo-
The MMLite system [Helander98] IS a gomponent-nems can be replaced, augmented, or layered.

based system that provides a wide selection of object-

oriented components that are assembled into an applicgne architecture of Pebble is based around the availabil-

tion system. MMLite’s components are space eﬁicigntity of hardware memory protection; Pebble, as described
However, MMLite does not use any memory protectionpere, requires a memory management unit.

and all components execute in the same protection
domain. The cost of transferring a thread from one protection
domain to another should be small enough that there is

the details of interrupts from higher level components

and uses only semaphores for synchronization. It has been demonstrated that the cost of using hardware
] ] ) ] memory protection on the Intel x86 can be made
Some CISC processors provide a single instruction thadytremely small [Liedtke97], and we believe that if it
performs a full context switch. A notable example is theszn be done on the x86, it could be done anywhere. Our
InFeI. x86 ta§k switch via a call gate [Intel9'4]. However, rasults bear us out—Pebble can perform a one-way IPC
this instruction takes more than 100 machine cycles. i, 114 machine cycles on a MIPS R5000 processor (see
Section 7 for detalils).

3 Philosophy and Architecture Transferring a thread between protection domains is

done by a generalization of hardware interrupt han-
dling, termed portal traversal. Portal code is generated
dynamically and performs portal-specific actions.

The Pebble philosophy consists of the following four
key ideas.

The privileged-mode nucleus is as small as possible. If

something can be run at user level, it is. Hardware interrupts, IPC, and the Pebble equivalent of

system calls are all handled by the portal mechanism.

The privileged-mode nucleus is only responsible forPebble generates specialized code for each portal to
switching between protection domains. In a perfecimprove run-time efficiency. Portals are discussed in
world, Pebble would include only one privileged-modemore detail in the following section.

instruction, which would transfer control from one pro-

tection domain to the next. By minimizing the work 3.1 Protection Domains, Portals and Threads

done in privileged mode, we reduce both the amount o%)

privileged code and the time needed to perform essenti ach component runs in its own protection domain
privileged mode services. D). A protection domain consists of a set of pages,

represented by a page table, and a set of portals, which

The operating system is built from fine-grained replace- ~ @re generalized interrupt handlers, stored in the protec-

able components, isolated through the use of hardware tion domain’s portal table. A protection domain may
memory protection. share both pages and portals with other protection

domains. Figure 1 illustrates the Pebble architecture.



Portals are used to handle both hardware interrupts and
software traps and exceptions. The existence of a portal
from PDp to PDg means that a thread running in PDy
can invoke a specific entry point of PDg (and then
return). Associated with each portal is code to transfer a
thread from the invoking domain to the invoked domain.
Portal code copies arguments, changes stacks, and maps
pages shared between the domains. Portal code is spe-
cific to its portal, which alows several important opti-
mizations to be performed (described below).

Portals are usually generated in pairs. The call portal
transfers control from domain PD, to PDg, and the

return portal allows PDg to return to PD . In the follow-
ing discussion we will omit the return portal for brevity.

Portals are generated when certain resources are created
(e.g. semaphores) and when clients connect to servers
(e.g. when files are opened). Some portals are created at
the system initiaization time (e.g. interrupt and excep-
tion handling portals).

A scheduling priority, a stack, and a machine context are
associated with each Pebble thread. When a thread
traverses a portal, no scheduling decision is made; the
thread continues to run, with the same priority, in the
invoked protection domain. Once the thread executesin
the invoked domain, it may access all of the resources
available in the invoked domain, while it can no longer
access the resources of the invoking domain. Several
threads may execute in the same protection domain at
the same time, which means that they share the same
portal table and all other resources.

As part of aportal traversal, the portal code can manipu-
late the page tables of the invoking and/or invoked pro-
tection domains. This most commonly occurs when a
thread wishes to map, for the duration of the IPC, a
region of memory belonging to the invoking protection
domain into the virtual address space of the invoked
protection domain; this gives the thread a window into
the address space of the invoking protection domain
while running in the invoked protection domain. When
the thread returns, the window is closed.

Such a memory window can be used to save the cost of
copying data between protection domains. Variations
include windows that remain open (to share pages
between protection domains), windows that transfer
pages from the invoking domain to the invoked domain
(to implement tear-away write) and windows that trans-
fer pages from the invoked domain to the invoker (to
implement tear-away read).

Note that although the portal code may modify VM data
structures, only the VM manager and the portal manager
(which generates portal code) share the knowledge
about these data structures. The Pebble nucleus itself is
oblivious to those data structures.

3.2 Safety

Pebble implements a safe execution environment by a
combination of hardware memory protection that pre-
vents access to memory outside the protection domain,

and by limiting the access to the domain’s portal table.
An protection domain may access only the portals it
inherited from its parent and new portals that were gen-
erated on its behalf by the portal manager. The portal
manager may restrict access to new portals in conjunc-
tion with the name server. A protection domain cannot
transfer a portal it has in its portal table to an unrelated
domain. Moreover, the parent domain may intercept all
of its child portal calls, including calls that indirectly
manipulate the child’s portal table, as described in
Section 6.

3.3 Server Components

As part of the Pebble philosophy, system services are
provided by operating system server components, which
run in user mode protection domains. Unlike applica-
tions, server components are trusted, so they may be
granted limited privileges not afforded to application
components. For example, the scheduler runs with inter-
rupts disabled, device drivers have device registers
mapped into their memory region, and the portal man-
ager may add portals to protection domains (a protection
domain cannot modify its portal table directly).

There are many advantages of implementing services at
user level. First, from a software engineering standpoint,
we are guaranteed that a server component will use only
the exported interface of other components. Second,
because each server component is only given the privi-
leges that it needs to do its job, a programming error in
one component will not directly affect other compo-
nents. If a critical component faile.g., VM) the system

as a whole will be affected—but a bug in console device
driver will not overwrite page tables.

Additionally, as user-level servers can be interrupted at
any time, this approach has the possibility of offering
lower interrupt latency time. Given that server compo-
nents run at user level (including interrupt-driven
threads), they can use blocking synchronization primi-
tives, which simplifies their design. This is in contrast
with handlers that run at interrupt level, which must not



block, and require careful coding to synchronize with
the upper parts of device drivers.

3.4 The Portal Manager

The Portal Manager is the operating system component
responsible for instantiating and managing portals. It is
privileged in that it is the only component that is permit-
ted to modify portal tables.

trusted servers should be allowed to keep their internal
data representations private.

The solution we advocate is to allow trusted servers,
such as the virtual memory manager, to register argu-
ment transformation code templates with the portal
manager. (Portals registered by untrusted services would
be required to use the standard argument types.) When
the portal manager instantiates a portal that uses such an

argument, the appropriate type-specific code is gener-
ated as part of the portal. This technique allows portal
code to be both efficient (by inlining code that trans-
forms arguments) and encapsulated (by allowing servers
to keep their internal representations private). Although
portal code that runs in kernel mode has access to
server-specific data structures, these data structures can-
not be accessed by other servers. The portal manager
currently supports argument transformation code of a
single trusted server, the virtual memory server.

Portal instantiation is a two-step process. First, the
server (which can be a Pebble system component or an
application component) registers the portal with the por-
tal manager, specifying the entrypoint, the interface def-
inition, and the name of the portal. Second, a client
component requests that a portal with a given name be
opened. The portal manager may call the name server to
identify the portal and to verify that the client is permit-
ted to open the portal. If the name server approves the
access, the portal manger generates the code for the por-
tal, and installs the portal in the client’s portal table. The3 5 scheduling and Synchronization
portal number of the newly generated portal is returned
to the client. A client may also inherit a portal from its Because inter-thread synchronization is intrinsically a
parent as the result of a@omain_fork(), as scheduling activity, synchronization is managed entirely
described in Section 4.5 by the user-level scheduler. When a thread creates a
semaphore, two portals (fét andV) are added to its
To invoke the portal, a thread running in the client loadsyortal table that transfer control to the scheduler. When
the portal number into a register and traps to the thread in the domain invokés the thread is trans-
nucleus. The trap handler uses the portal number as #red to the scheduler; if tHe succeeds, the scheduler
index into the portal table and jumps to the code associeturns. If theP fails, the scheduler marks the thread as
ated with the portal. The portal code transfers the threaﬂocked and schedules another threadV /Qperation
from the invoking protection domain to the invoked pro-works analogously; if the operation unblocks a thread
tection domain and returns to user level. As stateghat has higher priority than the invoker, the scheduler

above, a portal transfer does not involve the scheduler igan block the invoking thread and run the newly-awak-
any way. (Section 5.4 describes the only exception t@ned one.

this rule.)

. . . Lo 3.6 DeviceDriversand Interrupt Handling
Portal interfaces are written using a (tiny) interface defi-

nition language, as described in Section 4.4. Each port@ach hardware device in the system has an associated
argument may be processed or transformed by portaemaphore used to communicate between the interrupt
code. The argument transformation may involve a funceispatcher component and the device driver component
tion of the nucleus state, such as inserting the identity dbr the specific device.
the calling thread or the current time. The argument
transformation may also involve other servers. Forn the portal table of each protection domain there are
example, a portal argument may specify the address ofentries for the portals that corresponds to the machine’s
memory window to be mapped into the receiver'shardware interrupts. The Pebble nucleus includes a short
address space. This transformation requires the maniptrampoline function that handles all exceptions and
lation of data structures in the virtual memory server. interrupts. This code first determines the portal table of
the current thread and then transfers control to the
The design of the portal mechanism presents the followaddress that is taken from the corresponding entry in
ing conflict: on one hand, in order to be efficient, thethis portal table. The nucleus is oblivious to the specific
argument transformation code in the portal may need tgemantics of the portal that is being invoked. The portal
have access to private data structures of a trusted seritat handles the interrupt starts by saving the processor
(e.g., the virtual memory system); on the other handstate on the invocation stack (see Section 5.1), then it
switches to the interrupt stack and jumps to the interrupt



dispatcher. In other words, this mechanism converts  expected to run for years without unscheduled down
interrupts to portal calls. time. Pebble is especially suited for these systems, since
most system functionality may be replaced dynamically
Theinterrupt dispatcher determineswhich devicegener- by loading new servers and modifying portal tables. The
ated the interrupt and performs a V operation on the  only component that cannot be replaced is the nucleus,

device’s semaphore. Typically, the device driver wouldwhich provides only minimal functionality.
have left a thread blocked on that semaphore. The

operation unblocks this thread, and if the now-runnable .

thread has higher priority than the currently running® Portalsand Their Uses
thread, it gains control of the CPU, and the interrupt i
handled immediately. Typically, the priority of the inter-
rupt handling threads corresponds to the hardware inte
rupt priority in order to support nested interrupts. The . .
priority of the interrupt handling threads is higher than4'1 Interposition and L ayering

aII_ other threads to ensure short handlling Igtencies. 1Bne technique for building flexible system is to factor it
this way, Pebble unifies interrupt priority with thread i1 components with orthogonal functionality that can
priority, and handles both in the scheduler. A pictorialye composed in arbitrary ways. For example, distributed
example of this process is found in Figure 1. shared memory or persistent virtual memory can be

Note that Pebble invokes the interrupt dispatche}mplememEd as a layer on top of a standard virtual

. . ; _ memory service. Or, altered semantics can be offered by
promptly for all interrupts, including low priority ones. avering: the binary interface of one operating svstem
However, the interrupt handling thread is scheduleo\ yenng: y P g 5y

S o .~ “tan be emulated on another operating system by inter-
only if its priority is higher than the currently running . 2 .
thread. cepting system calls made by an application written for

the emulated system and implementing them through
the use of native system calls.

SPortals are used for multiple purposes in Pebble. In this
;_ection, we describe a few of their applications.

Only a small portion of Pebble runs with interrupts dis-

abled, namely portal code, the interrupt dispatcher, anﬁihe portal mechanism supports this development meth-

the scheduler. This is necessary to avoid race conditions . L
. odology very nicely. Because the portal mechanism is
due to nested exceptions.

used uniformly throughout the system, and a portal per-
forms a user-level to user-level transfer, service compo-
nents can be designed to both accept and use the same

Pebble provides low and consistent interrupt latency byet of portals.

design, since most servers (except the interrupt dis- le. the ori task of a virtual
patcher and the scheduler) run with interrupts enabled:.Or example, the primary task of a virtual memory man-

The interrupt-disabled execution path in Pebble is shorf’,‘ger. IS to accept rque;ts for pages from its clients -and
since portal code contain no loops, and the interrupt dig2ervice them by_ obtaining the pages from_ the backing

patcher and the scheduler are optimized for speed. usgfore: When a client requests a page, the V|rtua_l memory
code cannot increase the length of the longest interrupm"’lnwjer would read the page from the backing store

disabled path, and thus cannot increase the interru;?tnd return it to th_e client via a memlory_wmdow opera-
latency. In previous work we included details on the ion. A standard virtual memory service implementation

interrupt handling mechanism in Pebble, along withWOUId support just this protocol, and would typically be

measurements of the interrupt latency on machines wit onfigured With a user application as its client and the
differering memory hierarchies [Bruno99]. In particular, lle system as its backing store server.

the interrupt latency on the MIPS R5000 processor th"j\IIowever the backing store could be replaced with a dis-
is used in this paper is typically 1200-1300 cycles fromtributeol éhared memory (DSM) server, which would

th_e exception until the scheduling of the user-level haﬂﬁave the same interface as the virtual memory manager:
dling thread. it would accept page requests from its client, obtain the
pages from its backing store (although in this case the
backing store for a page might be the local disk or
Non-stop (or high-availability) systems are character2nother remote DSM server) and return the page to its
ized by the ability to run continuously over extendedCli€nt via @ memory window operation. By implement-

periods of time and support dynamic updates. For exani?d the DSM server using the standard virtual memory
ple, some systems, such as telephone switches, drgerface, it can be layered between the VM and the file

3.7 Low and Consistent Interrupt Latency

3.8 Non-Sop Systems



system. Other services, such as persistent virtual mem-
ory and transactional memory, can be added this way as read(fd, buf, n)

well. l: invoke_portal(fd, buf, n)

When a page fault takes place, the faulting address is write(fd, buf, n)

used to determine which portal to invoke. Typicaly a invok tal(fd+1. buf

single VM fault handler isregistered for the entire range invoke_portal(fd+1, buf, n)

of an application’s heap, but this need not be the case. seek(fd, offset, whence)

For example, a fault on a page in a shared memory .

region should be handled differently than a fault on a invoke_portal(fd+2, offset, whence)
page in a private memory region. By assigning different close(fd)

portals to subranges of a protection domain’s address invoke_portal(fd+3)

space, different virtual memory semantics can be sup- -

ported for each range. Figure 2. Implementing file descriptorswith portals

seek() and cl ose() calls are implemented by
library routines, which invoke the appropriate portals, as

Because portal code is trusted, is specific to its portag€en in Figure 2i nvoke_portal () invokes the
and can have private data, portal code can encapsuld@@rtal that is specified in its first argument. (Note that
state associated with the portal that need not be expos#t portal code afead andwr i t e may map the buffer
to either endpoint. The state of the invoking thread is &rgument in a memory window to avoid data copying. )
trivial example of this: portal code saves the thread’s

registers on the invocation stack (see Section 5.1), ari3 Short-Circuit Portals

restores them when the thread returns. On the flip side,

data used only by the invoked protection domain can b

embedded in the portal where the invoker cannot Vievyersal to a server is so small that the portal code itself
or manipulate it. Because the portal code cannot b an implement the service. A short-circuit portal is one

modified by the invoking protection domain, thet at does not actually transfer the invoking thread to a

invoked protection domain is ensured that the value§&W ptroéectlgn o!olr'n an, tf[lrj]t lnstte alld zerfoErms tlhe
passed to it are valid. This technique frequently allowg cduested ac |(3n ifing, In y € portal code. txamp ?S
run-time demultiplexing and data validation code to beInCILIde simple “system calls” to get the current thread’s
removed from the code path ID and read the high resolution cycle counter. The TLB

miss handler (which is in software on the MIPS archi-

As an example, in Pebble, portals take the place of filéecture, the current platform for Pebble) is also imple-
descriptors. Aropen() call creates four portals in the mented as a short-circuit portal.

invoking protection domain, one each for reading, writ-

ing, seeking and closing. The code for each portal hagurrently, semaphore synchronization primitives are
embedded in it a pointer to the control block for the ﬁle'|mplemented by the scheduler and necessitate portal tra-
To read the file. the client domain invokes thead versals even if the operation does not block. However,

portal; the portal code loads the control block pointerthese primitives are good candidates for implementation

into a register and transfers control directly to the spe‘:J‘S hybrid portals. When B operation is done, if the

cific routine for reading the underlying object (disk file, semaphore’s value is positive (and thus the invoking

socket, etc.). No file handle verification needs to bethread will not block), the only work done is to decre-

rﬁent the semaphore, and so there is no need for the

done, as the client is never given a file handle; nor doe diot for to th heduler. Th tal cod Id

any demultiplexing or branching based on the type ofnread to tratlkr:s erto ESC d? u ﬁr' Zﬁ?r a Cf € cgul

the underlying object need to be done, as the appropriafjeﬁcremen € semaphore direc y andthen return. 9nty
In the case where the semaphore’s value is zero and the

read routine for the underlying object is invoked directly ) .
by the portal code. In this way, portals permit run-timethread will block does the calling thread need to transfer

checks to be “compiled out,” shortening the code path. to the sgheduler. S|m|larly, ¥ operaﬂon on a sema-
phore with a non-negative valuée(, no threads are

returns a file descriptor, which corresponds to the inde
of the first of the four portals. Threead() ,write(),

4.2 Portals Can Encapsulate Sate

some cases the amount of work done by portal tra-

)Although these optimizations are small ones (domain
transfer takes only a few hundred cycles), operations



that are on the critical path can benefit from even these
small savings.

4.4 Portal Specification

The portal specification is a string that describes the
behavior of the portal. It controls the generation of por-
tal code by the portal manager. The portal specification
includes the calling conventions of the portal, which
registers are saved, whether the invoking domain shares
a stack with the invoked domain, and how each argu-
ments is processed.

The first character in the specification encodes the por-
tal’'s stack manipulation. For exampfs; denotes that
the invoking domain shares its stack with the invoked
domain. “n” denotes that the invoked domain allocated
a new stack. The second character specifies the amount
of processor state that is saved or restored. For example,
“m” denotes that only minimal state is saved, and that
the invoking domain trusts the invoked domain to obey
the C calling convention. “p” denotes that partia state
is saved, and that the invoking domain does not trust the
invoked domain to retain the values of the registers
required by the C calling convention. The rest of the
specification contains a sequence of single character
function codes, that specify handling of the correspond-
ing parameters. For example, the template “smcwi”
specifies a shared stack, saving minimal state, passing a
constant in the first parameter, passing a one-page mem-
ory window in the second parameter, and passing aword
without transformation in the third parameter. This tem-
plateisused by theread and write portals.

4.5 Portal Manipulations

As described earlier, portals are referred to by their
index in the local portal table. A portal that is available
in a particular portal table cannot be exported to other
protection domains using this index. A protection
domain may access only the portals in its portal table.
These properties are the basis for Pebble safety. When a
thread calls fork() , it creates a new thread that exe-
cutesin the same protection domain as the parent. When

currently
thread running
data structure thread
L
|
user interrupt  invocation  portal
stack stack stack table

Figure 3. Pebble nucleus data structures

5.1 Nucleus Data Sructures

The Pebble nucleus maintains only a handful of data
structures, which are illustrated in Figure 3. Each thread
is associated with &hr ead data structure. It contains
pointer to the thread’s current portal table, user stack,
interrupt stack and invocation stack. The user stack is
the normal stack that is used by user mode code. The
interrupt stack is used whenever an interrupt or excep-
tion occurs while the thread is executing. The interrupt
portal switches to the interrupt stack, saves state on the
invocation stack and calls the interrupt dispatcher
server.

The invocation stack keeps track of portal traversals and
processor state. The portal call code saves the invoking
domain’s state on this stack. It also saves the address of
the corresponding return portal on the invocation stack.
The portal return code restores the state from this stack.

The portal table pointer in thehr ead data structure is
portal table of the domain that the thread is currently
executing in. It is changed by the portal call and restored
by the portal return.

5.2 Virtual Memory and Cache

athread calls domain_fork() , it creates a new pro- ] ) ) .
tection domain that has a copy of the parent domain’dn€ virtual memory manager is responsible for main-
portal table. The parent may modify the child’s portalt@ining the page tables, which are accessed by the TLB

table to allow portal interposition, which is described in™Miss handler and by the memory window manipulation
Section 6. code in portals. The virtual memory manager is the only

component that has access to the entire physical mem-
ory. The current implementation of Pebble does not sup-

5 Implementation Issues port demand-paged virtual memory.

In this section we discuss some of the more interestingebble implementation takes advantage of the MIPS
implementation details of Pebble. tagged memory architecture. Each protection domain is



allocated a unique ASID (address space identifier),
which avoids TLB and cache flushes during context
switches. Portal calls and returns also load the mapping
of the current stack into TLB entry 0 to avoid a certain
TLB miss.

On theflip side, Pebble components run in separate pro-
tection domains in user mode, which necessitates care-
ful memory allocation and cache flushes whenever a
component must commit values to physical memory.
For example, the portal manager must generate portal
code so that it is placed in contiguous physical memory.

5.3 Memory Windows

The portal code that opens a memory window updates
an access data structure that contains a vector of
counters, one counter for each protection domain in the
system. The vector is addressed by the ASID of the cor-
responding domain. The counter keepstrack of the num-
ber of portal traversals into the corresponding domain
that passed this page in a memory window. This counter
is incremented by one for each portal call, and is decre-
mented by one for each porta return. The page is acces-
sible if the counter that corresponds with the domain is
greater than zero. We must use counters and not bit val-
ues for maintaining page access rights, since the same
page may be handed to the same domain by multiple
concurrent threads.

The page table contains a pointer to the corresponding
access data structure, if any. Only shared pages have a
dedicated access data structure.

The portal code does not load the TLB with the mapping
of the memory window page. Rather, the TLB miss han-
dier consults this counter vector in order to verify the
access rights to this page. This arrangement saves time
if the shared window is passed to another domain with-
out being touched by the current domain. The portal
return code must remove the corresponding TLB entry
when the counter reaches zero.

5.4 Sack Manipulations

The portal call may implement stack sharing, which
does not require any stack manipulations. The invoked
domain just uses the current thread’s stack.

stacks queue is empty, the portal calls the scheduler and
waits until a stack becomes available. The portal return
enqueues the released stack back in the stack queue. If
there are any threads waiting for the stack, the portal
return calls the scheduler to pick the first waiting thread
and allow it to proceed in its portal code.

The portal that calls the interrupt dispatcher after an
interrupt switches the stack to the interrupt stack, which
is always available in every thread.

5.5 Footprint

The Pebble nucleus and the essential components (inter-
rupt dispatcher, scheduler, portal manager, real-time
clock, console driver and the idle task) can fit into about
70 pages (8KB each). Pebble does not support shared
libraries yet, which cause code duplication among com-
ponents. Each user thread has three stacks (user, inter-
rupt and invocation) which require three pages, although
the interrupt and invocation stacks could be placed on
the same page to reduce memory consumption. In addi-
tion, fixed size pages inherently waste memory. This
could be alleviated on segmented architectures.

6 Portal Interposition

An important aspect of component-based system is the
ability to interpose code between any client and its serv-
ers. The interposed code can modify the operation of the
server, enforce safety policies, enable logging and error
recovery services, or even implement protocol stacks
and other layered system services.

Pebble implements low-overhead interposition by modi-
fying the portal table of the controlled domain. Since all
interactions between the domain and its surroundings
are implemented by portal traversals, it is possible to
place the controlled domain in a comprehensive sand-
box by replacing the domain’s portal table. All of the
original portals are replaced with portal stubs, which
transfer to the interposed controlling domain. The con-
trolling domain intercepts each portal traversal that
takes place, performs whatever actions it deems neces-
sary, and then calls the original portal. Portal stubs pass
their parameters in the same way as the original portals,
which is necessary to maintain the semantics of the
parameter passing.¢. windows). Actually, portal stubs

If the portal call requires a new stack, it obtains oneare regular portals that pass the corresponding portal
from the invoked domain’s stack queue. In this case, thindex in their first argument. The controlling domain
invoked protection domain must pre-allocate one oroes not have to be aware of the particular semantics of
more stacks and notify the portal manger to place therthe intercepted portals; it can implement a transparent
in the domain’s stack queue. The portal call dequeuessandbox by passing portal parameters verbatim.

new stack from the invoked domain’s stack queue. If the



The portal stub calls the controlling domain and passes
the parameters in the same way as the original portal. In

domain server A this way, the controlling domain implements a robust
—] sandbox around the controlled domain, without actually
— understanding the semantics of the controlled domain

ol server B portals.

There are a few comments about this interposition
mechanism. First, the controlled domain cannot detect
— server C that its portals are diverted nor can it thwart the interpo-
+ sition in any way. This mechanism is similar to the Unix

\ I/O redirection, in which a child process accesses stan-
portal | create portal server D dard file descriptorgg., 0, 1 and 2), which are redi-

/
I——

[]

table rected by the parent process. Second, portal
Figure 4. Original portal configuration (above) interpositipn is more comprehen.sive tha}n Unix I/O redi-
and with portal interposition (below) rection, since we can contrall interactions between
the controlled domain and its environment. Third, inter-
controlled controlling position can be recursive: a controlling domain inter-
domain domain / server A poses the portals of a child domain, which does the same
_ to its child,ad infinitum. The last comment deals with
. the semantics of certain system services, flike k()
T server B and sbr k(), which change the internal state of the
=1 - | —P calling domain; these are somewhat tricky to implement
g in the face of transparent interposition. We have had to
ﬁ —_| make special accommodations to allow the controlling
T serverC domain to issue them on behalf of the controlled
NG J domain.
= N '\‘\ | dbox by Portal
6.1 Implementing a Transparent Sandbox by Port
portal portal table \ server D Interpopsition ’ ¥ g
table [Motfication)q———
Create create The Appendix contains a code excerpt from a program
portal portal that implements a transparent sandbox around its child

domain. The program counts the number of times each

portal was called by the child domain, and completes all
The top diagram of Figure 4 illustrates the configuration  child portal traversals by calling the appropriate server.
of the original portal table without interposition, where |t is a fully functional program; we omitted only error
the domain calls its servers directly. The bottom dia  handling code, due to space constraints. When run on
gram shows the operation of portal interposition. Inthis  our test hardware (see Section 7, below) the overhead of
case, al of the portals in the controlled domain call the  this process is 1511 machine cycles for one iteration
controlling domain, which makes the cals to the serv-  (two sem wai t () and twosem post () ), which is
ers. roughly twice the execution time of the original code

. L without interposition.
However, one-time modification of the controlled

domain’s portal table is not enough. Many servers creatghe program starts by callingortal _notify(),

new portals dynamically in their client's portal table, which registers the routineot i f y() with the portal
and then return an index to the newly created portahanager. Any modification to the calling domain’s por-
back to the client. Since the controlling domain calls thea| table will callnoti f y() immediately even before
server, the server creates new portals in the controllinghe  portal that caused it has returned.
domain’s table. The controlling domain is notified by port al _notify() is necessary to handle any portal
the portal manager that a new portal was created in itall that the parent executed on behalf of the child which
portal table. The notification portal completes the pro-created a new portal in the parent’s portal table. This
cess by creating a portal stub in the controlled domain'gew portal should be replicated also in the child’s portal
table with the same index as in controlling domain tabletable to ensure correct operation. The above situation



occurs in the example when the parent executes  As the code size of Pebble is very small, and the cache
sem cr eat e() on behalf of the child. associativity of the level one cache is low (two-way),
the performance of Pebble is very dependent on how
The noti fy() routine receives the template of the  code and data is placed in the cache. Out of a sense of
newly created portal and its position in the portal table.  fajrness, in our experiments we specifically do not make
It creates a portal in the child’s portal table at the samgny attempt to control cache layout. We believe that
position. The portal’s template is modified to pass theith careful tuning of the cache layout, we could reduce
portal number as the first argument. the number of cache misses and conflicts. Given the per-

) ) formance results we have seen to date, we have felt little
The program proceeds to create a child domain byaaq 1o go to this effort.

domai n_f or k() . The child starts with a copy of the

parent's portal table. However, all of the entries in theThe context switch, pipe latency, and semaphore latency
child’s portal table now point at thentercept ()  tests were adapted from the hBench:OS test suite
routine in the parent domain. The first argument to thgBrown98]. All tests on Pebble were run 10,000 times.
i ntercept () routine is the index of the called portal The context switch and pipe latency times presented for
in the portal table. This routine increments the counter®penBSD were the 80% trimmed mean (excluding the
and then performs the required action by invoking th&mallest 10% and largest 10% of the measurements) of
portal with the same index in the parent domaintwenty results of 10,000 iterations, as per the
i nvoke_portal () letapplications invoke a specific hBench:0S measurement methodology. In all cases the

portal in the caller’s portal table. Thent er cept () standard deviation for Pebble measurements was less
routine assumes that portals have no more than fivghan 1%.

parameters.

. . i 7.1 IPC
The child domain executes tmeasure() routine,

which measures the execution time of a semaphora naive implementation of inter-process communication
ping-pong between two threads in the same domain. Th@PC) will emulate the behavior of a remote procedure
hrtime() function returns the current value of the call (RPC), marshalling all arguments into a buffer,
high-resolution timer, which is incremented every twocopying the buffer from the invoking protection domain
machine cyclesMeasur e() creates two semaphores to the invoked protection domain, unmarshalling them,
by callingsem cr eat e() . The scheduler creates two and then calling the server function. Several common
new portals for each semaphore in the parent domaimptimizations can be performed that greatly improve the
which callsnotify() to create the corresponding performance of IPC.

stubs in the child domain’s portal table.

First, the amount of data transmitted in an IPC follows a
bimodal distribution [Bershad89]; either a small number
of bytes are sent (in which case they can be passed in

In this section we measure the performance of Pebbl%eg'Sters) or a large number of bytes are sent (in which

and, where possible, compare it with OpenBSD runnin Case it may make more sense to transfer the data using

on the same hardware. The test hardware is an Algorit%—Irtuad memory mapping operations).

mics P-5064 board, which includes a 166 MHz MIPS;, yhis test we measure the cost of performing an IPC
R5000 processor with 32 KB instruction + 32 KB data, hen gl data fits into registers, when a one-page mem-
level one cache (two way set associative), one megaby;ﬁ.y window is passed to the invoked domain (but the

integrated level two cache and 64MB of memory. Wejnyoked domain does not access the page), and when the
ran version 2.4 of OpenBSD. one-page memory window is written by the invoked

.domain. Because virtual memory and the TLB are man-

Times were measured using the high-resolution on-chi .
. S ged in software on the MIPS, the memory management
timer, which is incremented every two clock cycles. All "2~ . . : ;

unit is not involved if when passing a memory window

results are presented in terms of elapsed machine cycles, . : .
) _ if the window is never used, although there is some
not elapsed time, as our tests generally fit into the leve

additional portal overhead. When the window is used in
one or level two cache. As long as cache memory spe . .
. e invoked domain, a TLB fault takes place, and the
scales with processor speed, cycle-based results will

. X memory management unit comes into play. Moreover,
remain meaningful. To convert cycle counts to elapse )
. ) : e portal code may have to remove the resulting TLB
time, multiply by the cycle time (6 ns).

entry on return.

7 Performance M easurements



Simply measuring the per-leg cost of an IPC between
two domains does not tell the entire story. In a system
that has been factored into components, we may find
that a client request to service A causes A to make a
request of A', A’ to make arequest of A", and so on, until
theinitial request isfinally satisfied. For example, acli-
ent page fault generates arequest to its VM service, then
makes a request of the file system, which then makes a
request the disk driver to bring the page into memory.
Although simple IPC between two protection domains
must be cheap, it is also critical that when a cascade of
IPCs takes place performance does not drop precipi-
tously.

In this test we measure the time to perform an |PC to the
same domain and return (A- A A), the time required
to perform an IPC to a second domain and return
(A-B-A), an IPC involving three domains
(A-B-C-B-A) and so on, up to a total of eight
domains. We used the portal specification “npciii”

(no window) and “npcwii”  (with memory window),
which means that a new stack was allocated on call and
reclaimed on the return. Also, all processor registers that
should be preserved across calls according to the C call-
ing convention were saved on cal and restored on
return. See Section 4.4 for a description of portal speci-
fication. The results are presented as the per-leg (one-

We see that the times per leg with no window and with
an unused window remains roughly constant as the
number of domains traversed increases, at about 114 and
135 cycles; the overhead of passing a window through a
portal is thus 21 machine cycles. The time per leg
increases above 4 domains due to cache contention.
When the memory window is used, the cost increases by
about 50 cycles, which is the time required to handle a
TLB fault and then remove the TLB entry on return
from the IPC. The one outlier is in the single domain
case, where there is no TLB fault at all; this is because
the page is already mapped in the domain (as there is
only one domain).

An optimization can be performed if the invoking
domain trusts the invoked domain (as would be the case
with an application invoking a system service). The two
can share a stack, saving the costs of allocating a stack
from a pool in the invoked protection domain and copy-
ing data to the new stack. Also, no additional processor
registered are saved on the call, since the invoking
domain trusts the invoked domain to save and restore
those registers. We used the portal specifications
“smciii” and “smcwii” . Even in the tested case,
where no data is passed on the stack, this optimization

has a significant performance benefit, as seenin Table 2.

way) time, in cycles. . no _ window +
n domains window window fault

Asapoint of comparison, we included the time required

to perform a “null” short-circuit portal traversal (user 1 95 115 118

level - nucleus— user level). This is the Pebble equiv- 5 95 116 168

alent to a “null” system call, and can be thought of as the

minimum time required to enter and leave the nucleus. 4 95 116 168

Results of these tests are found in Table 1. In all cases. 8 08 120 182

. no . window +
n domains . window
window fault

S'hOI't'- 45 _ _
circuit

1 114 133 135

2 114 134 185

4 118 139 190

8 133 153 209

Table 1. IPC in Pebble, new stack and partial save,
All times in CPU cycles, the mean of 10,000 runs.

Table 2. IPC in Pebble, shared stack and minimal
save. In CPU cycles, the mean of 10,000 runs

The savings of this optimization are measured here to be
about 20 cycles, which reduces the per-leg time by 17%.
In addition, by sharing stacks between invoking and
invoked protection domains, the number of stacks, and
hence amount of memory, needed by the system is
decreased, which is an absolute good.

Pebble IPC time is dlightly higher than Aegis, an exok-
ernel, on MIPS processors [Engler95]. Aegis performs a
minimal one-way protected control transfer in about 36
cycles on MIPS R2000 and R3000 processors, and per-

parameters are passed only in registers and not on thems a null system call without a stack in about 40

stack.

cycles. Pebble’'s IPC takes longer since it maintains an
invocation stack, which enables easy scheduling of the
thread.



7.2 Context Switch n domains Pebble pipe OpenBSD pipe

As described above, portal traversal does not involve a 2 1310 3088

scheduling decision. In this section we show the cost of

acontext switch in Pebble. 4 1914 3979
. _ 8 2061 4055

We measure Pebble context switch cost in two ways,

first using Pebble’s explicit yield primitive, and then by 120l€ 4. Pipe latency, Pebble vs. OpenBSD. In CPU

passing a one-byte token around a ring of pipes. The lagYcles, the mean of at least 10,000 runs.

ter test was derived from hBench:OS, and was used to

compare the performance of Pebble with OpenBSD. IWe see that, as with the context switch times, the Open-

both cases a number of protection domains, with a sifBSD pipe time increases up to five domains, and then

gle thread each, are arranged in a ring, and scheduledlgvels off. The difference between the numbers in

turn. Measurements are found in Table 3. Table 4 and Table 3 gives us the time required to trans-
fer data through a pipe on each system. On OpenBSD

Pebble Pebble OpenBSD the pipe overhead is roughly 2000 cycles; on Pebble it is
n domains yidd pipe pipe approximately half that.
2 425 411 1195 7.4 semaphore Acquire/Release
4 549 963 2093 This test is very similar to the test in Section 7.3, but
8 814 1162 2179 instead of using pipes we use semaphores. A number of

processes are arranged in a ring, and are synchronized
by means of n semaphores. Each process perfoivhs a
operation on its right semaphore and théha@peration

on its left semaphore. Each value in the table represents
We see that the cost of an EXp"Cit y|8|d increases With]he time to release a Semaphore in prop@]}j acquire

the number of protection domains, up to a certain poinfi in procesgp + 1) mod n around a ring of n processes,

and then levels off. As the work done by the schedulejhcluding the context switch time. Results are found in
in this case is independent of the number of processes fitble 5.

simply selects the next thread from the ready queue), the

Table 3. Context switch times, Pebble vs. OpenBSD.
In CPU cycles, the mean of at least 10,000 runs.

increase in time is due to cache effects: as we grow out
. Pebble OpenBSD

of the level one cache, we rely more on the level two n domains

. . . semaphore semaphore
cache, to the point where we are running almost entirely
out of the level two cache (at six protection domains). 2 781 2275
We would expect to see a similar jump at the point 942 3415
where we begin to overflow the one-megabyte level two
cache. 8 1198 5091

Table 5. Semaphore acquire/release, Pebble vs.

The OpenBSD pipe test shows similar behavior, level'OpenBSD. In CPU cycles, the mean of 10,000 runs.

ing off at four protection domains and roughly 2200
machine cycles.

When there are two processes the difference between
Pebble and OpenBSD is roughly 1500 cycles, 1000

cycles of which can be attributed to the difference in

This test measures the time required to pass a singl®ntext switch times. As the number of domains (and

byte through pipes connecting a ring of processes. Eadhus semaphores) increases, the difference widens;
value represents the time to transfer one byte betwedsecause Pebble’s semaphores are a highly optimized
two adjacent processes, and includes the context switddey system primitive, and OpenBSD’s semaphores are
time. By measuring the time required to transmit a sinnot, we believe that this is due to a restriction in the

gle byte, we capture the overhead associated with usingplementation of OpenBSD semaphores, and is not a
pipes; the more data that is sent, the more the data copyflection of the difference in system structure.

time will mask pipe costs. Results are found in Table 4.

7.3 PipeLatency



7.5 Portal Generation

Table 6 shows the portal generation time for two typical
portals. Thisis the time measured by an application pro-
gram, including all overheads incurred by the portal
manager. The first portal (with specification “smcii” )
istypically used to call atrusted server with only integer
arguments. The second portal (with specification
“npcwi” ) is typically used to call an untrusted server
with a memory window argument. See Section 4.4 for
additional explanations of portal specifications.

portal portal len time cyclesper
Spec. (instr.) (cycles) instr.

smcii 64 7282 114
npewi 112 8593 77

Table 6. Portal generation time.

Table 6 indicates that portal generation timeisrelatively
fast. An examination of the portal manager reveals that
portal generation time includes a large fixed overhead
for interpretation of the specification string and for
cache flushing. We can reduce this time by employing
various techniques used for run-time code generation,
e.g., the techniques used by VCODE [Engler96].

8 Satusand Future Work

The Pebble nucleus and a small set of servers (sched-
uler, portal manager, interrupt dispatcher, and minimal
VM) and devices (console and clock) currently run on
MI1PS-based single-board computers from Algorithmics.
We support both the P-4032 (with QED RM5230 pro-
cessor) and P-5064 (with IDT R5000 or QED RM 7000
processors). We are currently porting Ethernet and SCSI
device driversto Pebble.

Next we plan to port Pebble to the Intel x86 to verify
that Pebble mechanisms and performance advantages
are indeed architecture independent. We also plan to
implement a demand-paged virtual memory system.
Building a high-performance VM system for Pebbleis a
challenge, since the servers cannot (and should not)
share data structures freely. We also plan to port a TCP/
IP stack to Pebble and compare its performance with
similar user-level protocol stacks.

In addition to the Intel x86 port, we plan to port to a

9 Summary

Pebbl e provides a new engineering trade-off for the con-
struction of efficient component-based systems, using
hardware memory management to enforce protection
domain boundaries, and reducing the cross domain
transfer time by synthesizing custom portal code. Pebble
enhances flexibility by maintaining a private portal table
for each domain. This table can be used to provide dif-
ferent implementations of system services, servers and
portal interposition for each domain. In addition, portal
interposition allows running untrusted code in a robust
sandbox with an acceptable overhead while using
unsafe languages such as C.

Having a small nucleus with minima functionality
enhances system modularity, while it enables non-stop
systems to modify their behavior by integrating new
servers on-the-fly.

In this paper we showed that Pebble is much faster than
OpenBSD for a limited set of system-related micro-
benchmarks. Pebble efficiency does not stem from
clever low-level highly-optimized code; rather it is a
natural conseguence of custom portal synthesis, judi-
cious processor state manipulations at portal traversals,
encapsulating state in portal code, and direct transfer of
control from clients to their servers without scheduler
intervention.

Pebble can be used to build systems that are more flexi-
ble, as safe as, and have higher performance than con-
ventionally constructed systems.
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Appendix: Implementing a Transparent
Sandbox by Portal I nterposition

/* see Section 6.1 for explanations */
#i ncl ude <pebbl e. h>

#define N 10000

int child_ asid,
i nt count[ NPORTALS] ;

/[* child domain runs this routine */
voi d measure(voi d)

{

int code, i;
unsi gned long | ong start, el apsed;
int sem.idl, sem.id2;

/* create semaphores */

semidl = semcreate(0);

semid2 = semcreate(0);

/* create child thread in the sane
domai n */

if ((code = fork()) == 0) {
/* child thread wakes parent */
sem post (sem i d2);

for (i =0;; i++) {
semwait (sem.idl);
sem post (sem.i d2);

}

/* never reached */
exit(1);
}

/* parent thread waits until child
is active for accurate timng */
semwait(sem.i d2);

/* tinme semaphore ping-pong with
child */
start = hrtine();

for (i =0; i <N i++) {
sem post (sem.i dl);
semwait (sem.id2);
}
el apsed = 2*(hrtime() - start);

printf(*each iteration: %d \
cycles\n”, (int)(elapsed/N));

void dump_counters(void)

{

}

inti;

for (i=1; i < NPORTALS; i++)
if (count[i] '=0)
printf(*portal %d called %d\
times\n”, i, count[i]);

[* parent domain intercepts child por-
tal call */
int intercept(int id, int p1, int p2,

{

}

int p3, int p4, int p5)

count[id]++;
if (id == SYS_EXIT)
dump_counters();

return invoke_portal(id, p1, p2,
p3, p4, pS);

[* parent domain gets notification */
int notify(int asid, int id,

{

}

char *template)
char sSINAMELEN];

sprintf(s, “sm=%s", template+3);

portal_create_child(child_asid,
id, s, 0, intercept);

return O;

void main(void)

{

portal_notify(notify);

child_asid =
domain_fork(intercept);
if (child_asid == 0) {
/* child domain */
measure();
exit(0);
}

[* parent waits here until child
exits */
sem_wait(sem_create(0));

exit(0);



