
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6–11, 1999

A Network File System over HTTP:
Remote Access and Modification of Files and files

Oleg Kiselyov

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

A network file system over HTTP:
remote access and modification of files and files

Oleg Kiselyov

oleg@pobox.com oleg@computer.org oleg@acm.org
http://pobox.com/~oleg/ftp/USENIX99/

Abstract

The goal of the present HTTPFS project is to enable access to remote files, directories, and other containers
through an HTTP pipe. HTTPFS system permits retrieval, creation and modification of these resources as if they
were regular files and directories on a local filesystem. The remote host can be any UNIX or Win9x/WinNT box that
is capable of running a Perl CGI script and accessible either directly or via a web proxy or a gateway. HTTPFS runs
entirely in user space. The current implementation fully supports reading as well as creating, writing, appending,
and truncating of files on a remote HTTP host. HTTPFS provides an isolation level for concurrent file access
stronger than the one mandated by POSIX file system semantics, closer to that of AFS. Both a programmatic
interface with familiar open(), read(), write(), close(), etc. calls, and an interactive interface, via the popular Midnight
Commander file browser, are provided.

Overview

Unlike NFS and AFS, HTTP is supported on
nearly all platforms, from IBM mainframes to
PalmPilots and cellular phones, with a widely deployed
infrastructure of proxies, gateways, and caches. It is also
regularly routed through firewalls. Using standard HTTP
GET, PUT, HEAD and DELETE request methods, a
rudimentary network file system can be created that runs
cross-platform (e.g., Linux, Solaris, HP-UX, and
Windows NT) on a variety of off-the-shelf HTTP
servers: Apache, Netscape, and IIS. The HTTPFS can
be used either programmatically or via an interactive
interface.

HTTPFS is a user-level file system, implemented
by a C++ class library on a client site, and a Perl CGI
script on a remote site. The C++ framework of VNode,
VNode_list, HTTPTransaction,
MIMEDiscreteEntity etc. classes may be
employed directly. Alternatively, HTTPFS functionality
can be extended to arbitrary applications by linking with
a library that transparently replaces standard file system
calls (e.g., open(), stat(), and close()). This operation
does not patch the kernel or system libraries, nor does it
require system administrator privileges. The interposed
functions invoke the default implementations, unless a
file with an "http://" prefix is accessed. The HTTPFS
client framework will handle the latter case. This
permits URLs being used whenever a regular file name
is expected, as an argument to open(), fopen(),
fstream(), or a command-line parameter to file
utilities. No source code needs to be modified, or even
recompiled.

An important feature of HTTPFS is that it can
provide a file-centric view of remote resources and
containers that are not necessarily files or directories on
a remote computer. Anything which an HTTPFS server
can apply GET, PUT, DELETE methods to, and has
timestamps and size attributes, may be accessed and
manipulated as if it were a file. With HTTPFS, an off-
the-shelf application may open(), read(), write() a "file"
that may in reality be a database table, an element in an
XML document, a property in the registry, an ARP
cache entry, or the input or output of a process.

Borrowing from database terminology, HTTPFS
provides an isolation level of "Repeatable Read" for
concurrent file transactions. Once a process opens a file,
it will not see changes to the file made by other
concurrently running processes. This isolation is
different from standard POSIX semantics, which
provides for a "Dirty Read" isolation – updates made to
the file by other processes are visible before the file is
closed. The difference in semantics is important, but
only when a file is being concurrently read and
modified. As was mentioned above, HTTPFS may
permit a file-type access to a table of a relational
database. In this particular case, the "Repeatable Read"
isolation level is appropriate as it is the default for an
ANSI-compliant database.

Hypertext Transfer Protocol

HTTP is an application-level protocol for
distributed, collaborative, hypermedia information
systems [1]. It is a request/response protocol, where the

client submits a request to the server, the server
processes the request, and sends a response to the client.
HTTP is open-ended, in that it allows new request/
response pairs to be defined. The message format is
similar to that used by Multipurpose Internet Mail
Extensions (MIME).

An HTTP transaction is in some sense a remote
procedure call. An HTTP message specifies both an
operation and the data on which to invoke the operation.
The protocol provides facilities for exchanging data
(arguments and results), and meta-data. The latter
specialize a request and a response, carry authentication
information and credentials, or annotate the content.
Most HTTP transactions are synchronous, although
HTTP/1.1 provides for asynchronous and batch modes.
Furthermore, HTTP allows intermediaries (caches,
proxies) to be inserted into the response-reply chain.

An HTTP request includes the name of the
operation to apply and the name of the resource.
Additional parameters if needed are communicated via
request headers, or a request body. The request body may
be an arbitrary stream of bytes. The HTTP/1.1 standard
defines methods GET, HEAD, POST, PUT, DELETE,
OPTIONS, and TRACE, which can be further extended
by a particular server.

• The GET method retrieves the requested data along
with some meta-information about the data.The data is
denoted by a URI (universal resource identifier). The
GET method can be conditional; if the resource has not
been modified since the specified date, no data is
returned. This form is useful when a cached copy of the
resource exists.

• The HEAD method works similarly to the GET
method, except that the server returns only the meta-data
describing the properties of a resource.

• The PUT method stores the supplied data in the
specified URI. Once PUT, the data will be available via
a later GET.
HTTPFS maps these methods to the corresponding file
access operations, while fully preserving the methods'
semantics defined in the HTTP/1.1 document.

Of particular interest is the extensibility of the
HTTP protocol. A client can submit arbitrary headers,
which are available to the corresponding web server.
The server may send arbitrary meta-data as response
headers as well. In addition, a client and a server may
exchange meta-information via "name=value" attribute
pairs of the standard Content-Type: header.

Implementation of HTTPFS: Client

HTTPFS is implemented by a C++ framework. It

carries out HTTP transactions with a server and
maintains a local cache of fetched files and directory
listings. A file being opened for reading or modification
is first fetched from a server in a GET transaction.
However, if the file is already in cache, a conditional
GET request is issued to verify that the cached copy is
up-to-date, and reload it if not. When a file is being
opened for writing, an additional Pragma: header is
included in the GET request to inform the server of the
open mode: O_RDWR, O_WRONLY, O_CREAT,
O_EXCL, O_TRUNC or O_APPEND. The server may
then create, truncate, or lock the resource. A response
from the server is translated into the result of the
open() call. Reads and writes to the opened file are
then directed to the local copy. On close(), if the
local copy has been modified, it is written back using
PUT.

Status inquiries, e.g., stat(), lstat(),
readlink(), etc., are implemented by submitting a
HEAD request. A Pragma: request header tells the
server which particular status information about the
resource is requested.

Scanning of a directory – opendir(),
readdir(), closedir() – is similar to accessing
a file: a GET request is issued for a directory URI, and
the resulting directory listing is locally cached.

Appendix A gives a detailed mapping between the
file system API and HTTP requests and responses.

Implementation of HTTPFS: Server

A MCHFS server is one particular HTTPFS server.
It is a Perl CGI script which executes HTTPFS requests
and provides access to resources and containers. In the
case of MCHFS, the resources and containers happen to
be regular files and directories of a computer that runs
this CGI script. The script thus lists directories on its
own server, sends files, and accepts new content for old
or newly created files.

According to a tradition, an HTTP server operates
in a "chroot"ed environment. For example, when
asked to retrieve a resource http://hostname/
README.html, the server sends a file located at
$DOCUMENT_ROOT/README.html (if exists), where
$DOCUMENT_ROOT is something like
/opt/apache/htdocs. MCHFS honors this
convention:
open("http://hostname/cgi-bin/admin/MCHFS-

server.pl/README.html", O_RDONLY)

will let you access the same $DOCUMENT_ROOT/
README.html file. Still MCHFS offers to escape the

"chroot"ed confines and access files anywhere in its
file system. This can be accomplished by using a
distinguished path component DeepestRoot, which
refers to the root of the server's file system. For
example:
open("http://hostname/cgi–bin/admin/MCHFS-

server.pl/DeepestRoot/etc/passwd",O_RDONLY);

open("http://hostname/cgi–bin/admin/MCHFS-

server.pl/DeepestRoot/WinNT/Profiles/Administ

rator/NTusers.dat",O_RDONLY);

This is discussed further in the section on security
considerations, below.

MCHFS allows any web browser to view directory
listings and files. A directory request is returned as plain
text, in a format similar to a 'ls -l' listing. Because
MCHFS understands regular GET requests, you can use
a web browser to verify that MCHFS is installed and
functioning properly. Any other user agent – Wget or
the plain telnet – may be employed as well.

Transparent replacement of system
calls

An application accesses the file system API either
using low-level open/read/write/close calls, or via
abstract file system interfaces (e.g., standard I/O, stream
I/O, or ports). The latter are implemented, under the
covers, through the open/read/write/close. Once these
low-level functions are impersonated (and extended to
handle http:// "file names"), HTTPFS becomes
available to any application without modifying the
application's source code.

One does not need to patch the kernel or system
libraries to intercept the POSIX filesystem API calls.
One can do it safely, and without system administrator
privileges by linking the application with replacement
versions of these low-level API functions. The recipe
for doing so is as follows:

• compile a stub function with the name of the
replaced routine;

• partially and statically link the stub with default
implementations of the functions being intercepted;

• link the result with an application, the HTTPFS
client library, and necessary standard libraries; the link
mode may be either static, dynamic, or mixed.
Source code for an application is not required, only its
object (compiled) form; the application need not be
aware that it is using HTTPFS.

A web page [2] explains this technique in detail,
and discusses another use of this interception approach:
implementing processes-as-files.

HTTPFS and Midnight Commander

The Midnight Commander is a directory
browser/file manager for Unix-like operating systems
[3]. Its interface is similar to that of John Socha's
Norton Commander for DOS as well as to Microsoft
Windows' Explorer. The Midnight Commander (MC)
can show the contents of two directories at the same
time. Besides the file names, the views may display
size, type, modification date, and other file attributes.
The MC lets you select a group of files from the current
view, and perform a number of operations (copy,
rename, view, edit, etc) on the current file or selection
with one or few keystrokes or mouse clicks.

MC supports remote file access via MCFS, a
remote file access protocol that requires that an MCFS
server be running on a remote machine. I provide an
"adapter" – an MCFS server linked to a HTTPFS client
– that translates MCFS orders to HTTPFS requests.
Thus Midnight Commander gains an ability to access
remote files via HTTPFS for free, without any
modifications to its code.

The following sample session hopefully shows
what good the HTTPFS/MC alliance can do. This is a
transcript of an actual session, with only hostnames
changed.

• mc -d mc:sol-server/sol-
server:80/cgi-bin/admin/MCHFS-
server.pl/DeepestRoot/tmp

This command launches MC and has it display the
listing of a /tmp directory on a remote computer sol-
server (SunSparc/Solaris 2.6). The mc:sol-
server component in the "directory name" above
refers to the computer that executes the MC/HTTPFS
adapter. The adapter may run on the same computer
with MC, or alongside the HTTPFS server, or on some
other site.

• Select a file on the current pane, and press F3. A
built-in MC viewer shows the contents of that remote
file.

• With the selection bar still on that file, press F4.
A built-in editor is launched, which lets you alter the
remote file as if it were a local file.

• Press F5 to copy the file to a local directory listed
on the other MC's pane.

• Switch to that pane and type
cd mc:sol-server/winnt-server/cgi-

bin/admin/MCHFS-server.pl/wwwroot
The pane lists a remote directory

DocumentRoot/wwwroot on a WinNT host
winnt-server, which runs IIS. The first MC pane
still shows the contents of the /tmp directory on sol-
server. By selecting files and pressing F5, you may

copy files from one remote directory onto the other. In
this example, MC, MC/HTTPFS adapter, and HTTPFS
server are running on three different computers.

• You notice a file US98talk.tar.gz in the
sol-server:/tmp directory. If you highlight the
file and press F3, you can navigate this remote tar
archive as if it were a directory tree. You can select files
(members of that remote archive), view and copy them
as if they were on your local filesystem.

Pushing the envelope and security
holes

The MCHFS script obviously opens up the file
system of a host computer to the entire world.
Furthermore, if a particular HTTPFS server chooses to
interpret GET/PUT requests as output/input from an
application (sh in particular), the whole system
becomes exposed. Clearly this may not be desirable.
Therefore, one may want to restrict access to MCHFS
to trusted hosts or users. These authentication/
authorization policies are the responsibility of a web
server's administrator; MCHFS need not be aware of
them.

In addition, the MCHFS server may implement its
own resource restriction policies. For example, it can
refuse PUT requests, which effectively makes exported
file systems read-only. MCHFS could permit
modification or listing of only certain files, or disallow
use of DeepestRoot and ".." in file paths, thus
confining users to a limited part of the file system tree.

Related work

HTTPFS is similar to FTPFS, a virtual file
system used by Midnight Commander, Emacs and KDE
to access remote FTP sites. There is also a similarity to
NFS. There are, however, a number of differences:

• HTTPFS operates through TCP channels using
HTTP, a simple stateless reliable protocol. HTTP is
less resource-hungry than FTP.

• HTTPFS can talk to any host that runs an HTTP
server and capable of executing a Perl CGI script.

• HTTPFS works transparently through firewalls,
HTTP proxies and Web caches.

• HTTPFS also stands to benefit from various
caching, load-balancing and replication facilities that
web gateways offer.

• HTTPFS can rely on authentication mechanisms
already built into Web servers, in addition to its own
access control.

• HTTPFS can serve "files" and list "directories"

that are created on the fly. In particular, HTTPFS
permits browsing of a remote database as if it were a
local filesystem.

• Whenever a remote file or directory get accessed or
modified, HTTPFS can synchronously fire up triggers
and run hooks. This is very difficult to accomplish with
FTP.

See [4] for a description of another data-distribution
service that builds upon HTTP riches. Design of a
Linux-specific HTTP-based filesystem, in the context of
WebDAV, userfs and perlfs, is discussed in [5].

Availability and installation

The MCFS/HTTPFS adapter distribution is freely
available from a HTTPFS web page

http://pobox.com/~oleg/ftp/HTTP-VFS.html
The distribution archive contains the complete and self-
contained source code for the server and the adapter, and
an INSTALL document. A manifest file tells what all
the other files are for.

I have personally run the MCHFS on HP-UX and
SunSparc/Solaris with Netscape and Apache HTTP
servers, and on Windows NT running IIS. The HTTPFS
client – the MC/HTTPFS adapter in particular – ran on
Sun/Solaris, HP-UX, and Linux platforms. The adapter
successfully communicated with a Midnight
Commander on a Linux host (MC version 4.1.36, as
found in S.u.S.E. Linux distribution, versions 5 and 6).

I have not yet implemented the unlink(),
rename(), mkdir(), and chmod() file system
calls. I should also look into persistent HTTP
connections and an option of transmitting only selected
pieces of a requested file, which HTTP 1.1 allows (and
encourages).

Summary: the OS is the browser

This article presents a poor-man's network file
system, which is simple, very portable, and requires the
least privileges to set up and run. HTTPFS offers a
glimpse of one of Plan9's jewels – a uniform file-
centric naming of disparate resources – but without
Plan9. This file system showcases HTTP, which is
capable of far more than merely carrying web pages.
HTTP can aspire to be the kingpin protocol that glues
computing, storage, etc. resources together to form a
distributed system – the role 9P plays in Plan9 [6].

The design of HTTPFS suggests that, contrary to a
cliche, it is the OS that is the browser. While Active
Desktop lets you view local files and directories as if

they were web pages, HTTPFS allows access to remote
web pages and other resources as if they were local files.
HTTPFS has all the attributes of an OS component: it
implements (a broad subset of) the filesystem API; it
maintains "vnodes" and "buffer caches"; it interacts with
a persistent store and offers a uniform file-centric view
of various remote resources. On the other hand,
HTTPFS provides a superset of remote access services
every Web browser has to implement on its own. The
HTTPFS and other local and network filesystems
manage storage and distribution of content, while an
HTML formatter along with xv, ghostscript and
similar applications provide interpretation and rendering
of particular kinds of data. Thus as far as the OS is
concerned, viewing a web page is to be thought similar
to displaying an image file off an NFS-mounted disk,
and searching the Web is no different than executing
find/grep on a local filesystem.

References

[1] "HTTP Version 1.1," R. Fielding, J. Gettys, J.
Mogul, H. Frystyk Nielsen, and T. Berners-Lee,
January 1997. RFC-2068

[2] "Patch-free User-level Link-time intercepting of

system calls and interposing on library functions," Oleg
Kiselyov <http://pobox.com/~oleg/ftp/syscall-
interpose.html>

[3] “The Midnight Commander”
<http://www.gnome.org/mc/>

[4] "Pushing Weather Products via an HTTP pipe.
Introduction to Metcast," Oleg Kiselyov
<http://zowie.metnet.navy.mil/~spawar/JMV-
TNG/>

[5] "An HTTP filesystem for Linux?"
<http://rufus.w3.org/linux/httpfs/>

[6] "Plan 9 from Bell Labs," Rob Pike, Dave
Presotto, Sean Dorward, Bob Flandrena, Ken
Thompson, Howard Trickey, Phil Winterbottom
<http://plan9.bell-
labs.com/plan9/doc/9.html>

Acknowledgement

Comments, suggestions, and shepherding by Chris
Small are greatly appreciated.

Appendix A

Mapping between file system API and HTTP requests and responses

File System API call HTTP request issued

open filename-URL oflags mode GET filename-URL
Pragma: httpfs="preopen-xxxx"
If-modified-since: yyyyy

where xxxx encodes the file status flags and file access modes as given by oflags: O_RDONLY, O_RDWR,
O_WRONLY, O_CREAT, O_EXCL and O_TRUNC. The HTTPFS server delivers the file if needed, and verifies that
the resource can indeed be retrieved, modified, created or truncated. A VNodeFile is created to describe the opened
resource and point to a local file that holds the (cached) copy of the resource. This local file is then opened, and the
corresponding handle is returned to the caller.
If the file is being opened for modification, a dirty bit of the VNodeFile is set.
A VNodeFile corresponding to the filename-URL might have already existed in a VNode cache. In that case,
the GET request will include an If-modified-since: yyyyy header, where yyyyy is the value of a
VNode::last_checked field in HTTP date format.

close cached-file-handle PUT filename-URL
Locate a VNode whose opened cache file has a handle equal to the cached-file-handle.
If the filename-URL has been opened for writing (that is, VNodeFile::dirty is set), upload the contents of
the cache file to the HTTPFS server. The VNode and its cached content are not immediately disposed of, but rather
stay around until "garbage-collected".

read cached-file-handle buffer count None
Perform a regular read(2) operation on the cached-file-handle.

write cached-file-handle buffer count None

Perform a regular write(2) operation on the cached-file-handle.

lseek cached-file-handle offset whence None
Perform a regular lseek(2) operation on the cached-file-handle.

stat filename-URL struct-stat-buffer HEAD filename-URL
Pragma: httpfs="stat"

First we check to see if there is a valid VNode for the given filename-URL (possibly with a '/' appended, in case
it turns out to be a directory). If such a VNode is found, its cached status information is immediately returned and a
HTTPFS server is not bothered. Otherwise, we issue the HEAD request and fill in the struct-stat-buffer
from the status-info* in a Etag: response header.

lstat filename-URL struct-stat-buffer HEAD filename-URL
Pragma: httpfs="lstat"

Similar to the stat API call above.

readlink filename-URL filename-buffer HEAD file-name
Pragma: httpfs="readlink"

Fill in the filename-buffer with the response from the server.

opendir dirname-URL GET dirname-URL
If-modified-since: yyyyy

A new VNodeDir is created for the dirname-URL, unless the corresponding valid VNodeDir happens to exist
in the VNode cache. In the latter case, the GET request will carry the If-modified-since: yyyyy header
with yyyyy being the value of a VNode::last_checked field.
The server returns the listing of the directory: for each directory entry (including . and ..) the server writes a line

name/status-info*

This listing is written as it is into a cache file of the VNodeDir. The VHandle of this VNodeDir is returned as
the result of the opendir() call.

readdir VNodeDir-handle None
The dir-handle is supposed to be a VHandle of a VNodeDir. This VNode is located, its cache file is parsed
and sent to a MCFS client (as a sequence of name, stat-for-the-name pairs).

closedir VNodeDir-handle None
The VNodeDir-handle is supposed to be a VHandle of a VNodeDir, which is thus closed.

rmdir dirname-URL DELETE dirname-URL

mkdir dirname-URL mode PUT dirname-URL

unlink filename-URL DELETE filename-URL

* status-info, the status information for a remote resource, is a string of 11 numbers separated by a single
space: "dev ino mode nlink uid gid size atime mtime ctime blocks". All numbers are in
decimal notation, except mode which is octal. The meaning of the numbers is the same as that of the corresponding
fields in a stat structure. See also a stat entry in Perl documentation. The status-info is a "hard validator"
of a resource – resource's unique identification. Indeed, should the file be altered, at least its modification timestamp
will change. The status-info is delivered in a ETag: response header, a field designated by the HTTP standard
to carry (unique) resource identifiers.

