USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the FREENIX Track:
1999 USENIX Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

The Design of the Dents DNS Server

Todd Lewis
MindSpring Enterprises

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

The Design of the Dents DNS Server

Todd Lewis
MindSpring Enterprises
1430 West Peachtree Street NW
Atlanta, GA 30306

tlewis@mindspring.com

Abstract

Dents is a server implementation of the Internet’s Do-
main name System. Dents main features are a modu-
lar driver architecture, a CORBA-based control facil-
ity, a replaceable tree system, a clean design and good
karma. Dents is free software, licensed under version
2 of the GPL. In this paper, I describe the design of
Dents, concentrating on the innovations and evolutions
it embodies, and including the future directions in
which we hope to take the server. I describe some of
the problems we’ve had. Finally, I summarize some
lessons about server design which Dents reflects.

1. What is Dents?

Dents is a server for the Domain Name System, the
system whereby information concerning host names,
including, most importantly, their IP address, is com-
municated through the Internet. DNS is a hierarchical
caching directory keyed by name, with an extensible
set of attributes which are associated with names.

Dents is free software, released under the terms of the
GNU project's General Public License, version 2. It is
coded in ANSI C, or as close thereto as we can come,
and is oriented towards POSIX-conformant and
POSIX-like systems. Dents uses POSIX threads, and
while it is possible to compile the server without
threads, it is not recommended, since several major
features do not work without threads. Dents has a
modular driver architecture, which permits various
means to be used to look up names, and it includes a
CORBA-based control facility, which allows adminis-
trators to control a running server. Dents should work
on any modern unix-like system which supports shared
libraries and threading; a win32 port is not out of the
realm of the possible, although such is not presently
planned. Primary development happens under the
Linux operating system.

Dents as a project was started by Todd Lewis in early
1997. Johannes Erdfelt wrote the majority of the code,

and following our first public release in late 1998,
Greg Rumple joined the team and has contributed sig-
nificantly since then.

Dents was inspired by some particularly unpleasant
experiences of the author in dealing with the DNS
systems built at MindSpring. Thanks to its virtual web
hosting product, MindSpring was then and is now one
of the largest registrars of domain names in the world,
and dealing with serving a large number of zones has
been and remains a trying problem.(*) Dents grew
from frustration with how unfriendly existing DNS
technology was to people trying to build higher-level
management systems on top of the basic server. Better
would be a server which you could reconfigure in a
serious way without restarting, one which would allow
the use of relational databases and other external sys-
tems to implement the underlying data management
and retrieval functions, and the ability to update zones
quickly and with a minimum of effort. Out of these
desires grew some evolutionarily new ideas for how
servers should be built. This paper describes some of
these ideas, our experiences implementing them in
Dents, and what we have learned from the experience.

2. The Driver Mechanism

One major feature of Dents is our modular driver
mechanism. Conventional name servers simply read
in all zone data at startup and store it in core memory.
In cases where one has a large number of rarely-read
records, this is a very sub-optimal use of resources.
We wanted to be able to use a relational database as
the underlying storage mechanism for DNS data,
translating DNS queries into SQL queries and the re-
verse for answers. Further, we wanted for this system
to be flexible enough that we could substitute _any_
underlying engine for answering DNS queries, and
clean enough that these engines would remain useful
through multiple revisions of Dents itself.

The conceptual model which we settled into was
similar to the notion of file system drivers within unix-

like operating systems. We decided that we wanted to
"mount” zones at certain mount points within the hier-
archical space, that each underlying zone would have a
type and that it would be handled by a driver corre-
sponding to that type. The driver serves to hide the
actual details of the implementation and adapt them to
a common interface, so that all instances have the
same behaviour, regardless of the underlying technol-

ogy.

It comes as no surprise, then, that Dents driver mod-
ules look fairly similar to file system drivers. There is
a finite and well-defined set of functions which a
driver must support. When a driver is loaded, these
functions are used to populate a structure full of func-
tion pointers; this common interface allows all zones
to behave identically, just as all file systems behave
identically. Certain features are optional, and so if a
driver does not support them, then the attempted use of
them simply returns an error. (Symbolic links in the
case of file systems, resource record addition and de-
letion in the case of Dents drivers.)

Dents uses the unix dlopen()/diclose() mechanism for
loading drivers. These drivers are identical to shared
libraries, but instead of being linked in by the loader at
start time, they are loaded by Dents when zones are
added; they are demand loaded, so no explicit load is
necessary, and they are reference counted and auto-
matically unloaded when all zones using them are re-
moved. The actual code was modeled after the GTK
widget set’s theming mechanism. To aid in robustness,
one can specify at compile time for certain modules to
be compiled statically into the server; the only differ-
ence internally is that statically-included drivers are
never unloaded.

All zones in Dents are served using this mechanism;
we rewrote both of our system components which
serve zone data into modules. They are:

mod_stddb: RFC-1035, section 5, specifies the format
for transferring zones between name servers. This
format has historically served as the native storage
medium for zone data with other name servers. This
module makes Dents behave just as traditional name
servers do, reading in zone files in this format and
storing them in an in-memory structure, looking up
records in this structure later to answer queries. Al-
though this is not our preferred method for running
servers, it is a popular choice, and so we feel com-
pelled to offer it, at least for migration purposes.

mod_recursive: The DNS system relies heavily on
local servers to perform DNS queries on a proxy basis
for local clients, in turn caching the results and using
that cache for future requests for the same name. This
module fills that role, allowing Dents to serve as a
recursive name server for the root (i.e., the entire
space with the exception of any local authoritative
zones) or for any other zone. Answers are stored in a
tree, which is then periodically purged. We hope to
turn mod_recursive into a very well-tuned cache; his-
torically, DNS caches have simply never purged data,
the system failing when system memory is exhausted.
We aim to do better.

Further, we have several other modules in develop-
ment by the Dents team:

mod_frl: One particular case where the behaviour of
traditional name servers is clearly suboptimal is in the
case of in-addr.arpa zones. Internet service providers
have large banks of modems, each of which usually
has an IP address associated with it; i.e., customers
who dial into that modem and negotiate a PPP session
will receive that IP address. These IP addresses must
be associated with names through the in-addr.arpa
zone, or else certain classes of internet services will
not work; e.g., certain FTP servers will not allow users
access unless their IP has both forward and reverse
name resolution.

At MindSpring, none of us in the Engineering depart-
ment volunteered to name our several tens of thou-
sands of modems individually, and so we came up
with another solution: we name them algorithmically.
If you look up the IP address 247.2.192.209.IN-
ADDR.ARPA, you will get back the name user-
38s00nn.dialup.mindspring.com. This is simply the
base-36 encoding of the IP address; the reverse of this
query, i.e., looking up this name and getting back the
IP address, works as well.

This is all very nice, but with a conventional name
server we must generate several tens of thousands of
these name/IP pairs and load them into the fairly ex-
pensive error-correcting system memory on our name
servers. This seems rather silly for names which are
generated algorithmically.

mod_frl performs this algorithmic translation on the
fly, allowing one to serve a very large number of zones
with a comparatively small amount of memory. (The
memory size of the module is constant; it doesn’t even
pay attention when you tell it that it is responsible for
a new zone, simply answering any and all queries the

server sends its way.) The code to perform this is 86
lines long, and the binary module takes a little over 4k
of memory. We think that this is a particularly good
example of how a modular approach to serving DNS
data can result in a significant advantage in metrics
which are important to administrators.

mod_bdb: Another fairly simple module is the Ber-
keley DB module, presently under development. The
Berkeley database is a very simple and well-tested
associative database, offering key=>value associations
using either hash tables or btrees. We simply prepend
the query type and a period to the record name to gain
our key; for requests for all records for a given name
(query type "*"), we store a record which contains
pointers to all other records for that name. This is a
god example of how a flexible mechanism allows you
easily to leverage the efforts of others; Berkeley DB is
very easy to program, and we get a very fast mecha-
nism which is well tested and which even supports
transactional updates. (More on transactional updates
below.)

mod_covert: Cheswick and Bellovin suggest, in their
book "Firewalls and Internet Security", that one could
use DNS as a covert channel for tunneling data
through supposedly secure environments. It would be
an interesting exercise to write a module to accomplish
this goal. Since many legacy DNS servers do not ex-
pire entries from their cache, this approach would have
the unfortunate effect of crashing many of these serv-
ers, and so it would have to be used with care.

Finally, several outsiders are developing modules for
Dents:

mysql: several people are working on implementing a
module which uses mysql, a relational database man-
agement system, to store DNS data. When the module
is passed a query, it communicates with the RDBMS
via SQL to discover enough information to answer the
query. It then formulates the answer.

The exciting thing about modules which use databases
as their functional substrate is that it takes a class of
tasks at which the DNS system is not very good and at
which databases are good, and it transfers responsibil-
ity for these tasks from the DNS system to the data-
base system. Specifically, large portions of the DNS
standard deal with how zones are replicated across

multiple servers. This replication happens wholesale
and is unauthenticated. Major effort has been put into
loading (I would call it overloading) the DNS system
to allow incremental zone updates and for updates to
be secure. Updates are still not transactional, and
there are at present no plans to make them so. (More
on transactional updates below.) There are a number
of commercial database systems which have long since
solved these problems to a degree of completeness and
reliability that DNS will never approach. This is yet
another reason I believe that most zone data is better
off being stored in a database rather than in the way
zone data is conventionally stored.

mysql is popular in certain circles, but I would very
much like to see other modules in this vein written:
one for PostgreSQL, which is the preeminent free re-
lational database, and some for the various commercial
relational databases now available under Linux and
other unices, including Oracle, DB2, Informix, Sybase,
and Interbase.

dhcp integration: One very popular feature of Micro-
soft’s DNS server for Windows NT is its integration
with the Microsoft DHCP server. One developer is
working on a driver module to integrate Dents with the
ISC DHCP server. This module will take updates that
happen in the DHCP server when a new DHCP lease is
issued or an old one expires, and populate the DNS
space with corresponding information on the machines
dropping into or out of view.

(As an aside, Johannes Erdfelt is convinced that Dents
can serve as a fairly generic server for associative data,
serving such protocols as DHCP and LDAP in addition
to DNS. This is why we segregate DNS-specific code
from other server code in the code base. This is so
remote a prospect at this point that I will mention it no
further.)

other modules: One user is investigating using Dents
to export a database of HAM radio operators via DNS.
Another set of users is looking to use Dents as part of a
project to adapt their DNS setup to use their own un-
derlying database to deal with bandwidth-constrained
links between their DNS servers. Others have ex-
pressed interest in Dents as part of various dynamic-IP
naming projects. Our goal was to produce a very
flexible system amenable to whatever tortuous uses
people wish to apply the Domain Name System, and
we seem to have succeeded with this.

3. The Tree System

After the driver module system, a second major archi-
tectural piece of Dents is our tree system. This com-
ponent actually snuck up on us; we did not plan for it
to be a major part of the Dents story.

Initially, Dents used a home-grown implementation of
red-black trees to store its hierarchical data. (Which
data is a lot for a hierarchical directory service.) We
also used it for several internal data structures. The
initial implementation dated from very early in the
project, and we had several problems with it: for one,
it was buggy, and for another, the caller managed all
of the memory for record structures, which was a big
mistake. Greg Rumple’s big contribution to the project
has been in working on this issue.

We realized that our initial code had problems and,
rather than simply rewrite it, we decided to segregate
it from the remainder of the server and make the red-
black tree engine replaceable. We decided also to
attempt this separation for several reasons.

First, we wanted completely to isolate the internals of
the tree system from the rest of the code, to enforce
good layering between server code and the tree code.
Isolating the routines would allow us, e.g., to mpro-
tect() internal memory upon leaving the tree code an
munprotect() it when reentering the tree code, allow-
ing very easy determination if any external code was
touching the internals of our tree system. Good coding
practice would accomplish this goal, but good pro-
gramming practice can sometimes be in short supply,
and mandatory discipline makes a fair substitute.

Second was the issue of memory usage. Unlike our
major competitor, we had no problems growing past
64k zones as of version 0.0.1 and subsequently. Fur-
ther, our implementation is plenty fast in the rough
tests we have run on it. However, it consumes a lot of
memory, almost twice as much as our competitor for
an identical configuration. While this might be ac-
ceptable for certain installations, some others may be
more memory sensitive. Rather than forcing one deci-
sion down our users throats, we thought that having a
pluggable tree system would allow them to chose the
tree engine which best suits their needs.

Third and most important was the issue of perform-
ance. The only real performance barrier in our main
competitor is its use of a single hash table to store all
DNS information. We believe that this is a design
mistake and a competitive vulnerability. If you were

to construct a histogram of DNS names and their hit
counts, you would see a very tall spike at one end,
representing a few names which receive a very, very
large number of queries, rapidly flattening out to a
very long, flat tail which represents the remainder of
the DNS space, records which are queried infrequently
if ever. Using a hash table to store data of this profile
guarantees that you will not gain the benefit of modern
computer hardware architectures, with their large
caches connected to (relatively) slow main memory.
One thing which we hope to accomplish once we can
plug in new tree engines is to implement a heavily
cached engine, which will use layered caches to utilize
the underlying hardware in the best possible way, al-
lowing frequently-asked-about names to sit very high
in the machine’s cache hierarchy. We believe that the
speed gain of this move will in the aggregate more
than offset the additional cost of maintaining the
cache, which can be accomplished mostly during idle
time on the server. This comprises the core of our
strategy for being the fastest name server.

Finally, almost as an afterthought, driver modules of-
ten have a need for the sort of functionality which our
tree engine exports. As a courtesy, we would like to
export this functionality to them, both to maximize
code reuse, but more importantly also to minimize
instruction cache invalidations as the server jumps
from server code to driver module code and back to
server code.

As I write this, we have just released version 0.0.3 of
Dents, which embodies our preparation for performing
this modification to the server. We are now embark-
ing in earnest on implementing this code separation in
the server. It will be reflected in our next release, and
at that point work will begin on building alternative
tree engines.

4. The Control Facility

One feature which we hoped to have from the first day
of the project was an administrative interface whereby
we could interact with a running server, query it in
detail concerning its state, and instruct it to perform
various actions. Specifically, we wanted to depart
from the stale convention of using configuration files
read at server start as the exclusive means of deter-
mining the server’s configuration. This convention
causes downtime for the sake of configuration changes
that do not themselves require downtime, and when
your servers are very large, i.e., they serve a large
number of zones, the cost of restarting the server is far
from negligible. Even with small servers, such unnec-

essary outages offend the sysadmin aesthetic; this is
another case where Dents reflects, we hope, the sensi-
bilities of a sysadmin instead of those of a developer.
We do not believe that restarting the server should be
required at all to make changes to the server’s configu-
ration, and we designed Dents with the goal of making
this the case. For this reason, we resolved to include
in Dents a control facility to serve this purpose.

4.1. Inspiration

This feature is far from an original one; many other
systems have allowed administrators to query and
control them while they are running. Of course, the all
time champions in this are commercial relational data-
base management systems; these usually let you tweak
any knob which is not inherently untweakable in a
running system. The database community may have
certain failings, but their attitude towards downtime is
sufficiently paranoid, and is therefore laudable.

Somewhat closer to the traditional backyard of Usenix,
two particular systems stand out as having inspired our
approach in Dents. The first is the XNTP suite from
the University of Deleware. Their xntpdc facility does
a very nice job of allowing an administrator to config-
ure a running xntpd daemon. However, it does this by
(ab)using the NTP protocol. We did not want to use
the DNS protocol to control Dents for several reasons,
which I discuss below.

The second inspiration for the Dents control facility
was the kadmin interface of MIT’s Kerberos distribu-
tion. kadmin is really the closest thing to our control
facility of anything out there. kadmin uses ONC-RPC
to talk to the server, rather than overloading the Ker-
beros protocol. Because of this, it gains several ad-
vantages. First, it benefits from the IPC infrastructure,
and the IPC infrastructure benefits from it. Partially
thanks to kadmin, Kerberos-protected ONC-RPC ex-
ists and is available for others to use; if this work had
been done in a kadmin-specific way, then no one else
would have benefited from it. Second, because kad-
min uses ONC-RPC, they do not have to worry about
handling the underlying wire protocol; all they see is
an API, with the RPC package taking care of the de-
tails. Third, an RPC environment allows for much
more expressive administrative interfaces. Hand-
rolled protocols, because of the amount of work in-
volved, inherently limit the expressiveness which they
allow; the more expressive you are, the more work you
make for yourself to handle the protocol in your code.
RPC does not really suffer from this; the programming
cost you see is the cost inherent in your interface de-

sign and nothing more. These considerations weighed
heavily when we designed the Dents control facility.

4.2. Why administrative protocols should be di-
vorced from regular protocols

Before talking further about the Dents control facility,
I would like to explain why I think that shoehorning
these interfaces onto regular protocols is usually a
mistake. First, overloading the regular protocol can
damage the protocol. DNS has the interesting property
that the addition of new resource record types is dan-
gerous; because of the scheme used for compressing
data in DNS packets, new RR types can render packets
including that RR type undecipherable to older agents
which do not understand that type. Even worse, if
support for server control is included when the proto-
col is designed rather than added as an afterthought,
(the later usually being the case), then the protocol is
almost necessarily made more complex, introducing
cost on all users of the protocol for the benefit of a
few. Such additions can even be for the benefit of
none, if the needs of the administrative community
outstrip the ability of the protocols in question to han-
dle them. Administrative needs can change signifi-
cantly over time; one need merely compare sendmail
to gmail to understand the variations possible in con-
figuration needs among implementations of the same
protocol. However, the protocols themselves should
be timeless, or at least very slow moving, so as to get
the maximum benefit of the programming effort ex-
pended in implementing them.

Second, regular protocols should not be overloaded to
transform them into control protocols because they
often make really bad control protocols. A prime ex-
ample of this is updates in the Domain Name System.
DNS is a stateless protocol, and as such it is virtually
impossible, without butchering the protocol, to intro-
duce transactional semantics. However, certain groups
of domain updates (such as removing one machine
from a DNS rotor and introducing a new machine to
that rotor) _really_ need to happen atomically. There
is no middle ground here: either you perform all sorts
of gross changes to the fundamental nature of the pro-
tocol, or you settle for an inferior administrative inter-
face. Finally, the security semantics of the functional
and the administrative interfaces are usually radically
different from each other; services offered publicly or
semi-publicly usually need very little if any authenti-
cation, whereas administrative interfaces usually need
very stringent authentication and often privacy. This

is another case where an impedance mismatch between
the two divergent needs means that no system can
truly satisfy both.

4.3. Implementation

Initially, we implemented the Dents control facility
using a line-oriented protocol similar to POP or NNTP.
However, we soon decided to switch to some flavor of
RPC for the facility. We examined ONC-RPC, DCE-
RPC and CORBA, finally settling on CORBA.

Our decision to embrace CORBA for this function had
several reasons behind it. Most of the reasons apply to
any form of RPC.

- The details of the protocol are hidden from you,
along with all of the work required to handle them.

- When one considers the human factors involved,
from inaccurate documentation to imperfect imple-
mentations, they are much less error-prone than hand-
rolled protocols.

- They come with lots of free add-on services, such as
security and transactions, that are difficult and usually
unpleasant to implement yourself for a single project;
because this effort is shared across multiple projects,
the resulting code is usually much better.

- Finally, RPCs are much more expressive than hand-
rolled protocols, precisely because you are shielded
from the programming which has to occur to support a
complex client-server interaction.

We finally chose CORBA over the other forms of RPC
because:

- it supported exceptions, rather than the more restric-
tive, conventional C style of signaling error condi-
tions;

- its associated services were much broader, offering
more value to us than ONC RPC, which sometimes
has security associated with it and nothing else;

- there are free CORBA implementations which are
being very actively developed, unlike wither ONC or
DCE RPC;

- finally, CORBA itself is undergoing active develop-
ment, from the core protocol to the CORBA services,

whereas DCE RPC is, so far as I can tell, dead, and
ONC RPC is developing very slowly.

With our recent public release of version 0.0.3 of
Dents, we included this new CORBA-based control
facility. During the upcoming release cycle, we hope
dramatically to increase the range of functionality
available through the control facility, now that the
infrastructure is in place and working.

4.4.What a control facility makes possible

The control facility made an initial project feasible:
SNMP support. RFCs 1611 and 1612 specify the DNS
server and client MIBs. For the past few years, no
DNS server to my knowledge has supported these
MIBs. Because of the control facility, adding support
for these MIBs to the University of California, Davis
SNMP server was a very easy task. I simply added a
new module to the server, as the UCD docs describe
how to do, and had that module make a connection to
Dents through the control facility. When requests for
statistics come in, the SNMP server simply makes
control facility calls and returns the results to the
SNMP clients. I am an inexperienced C programmer,
I had this scheme working and answering queries in an
afternoon; this is a good indication of how powerful
CORBA is as an easy way for doing IPC. This com-
pares favorably in many respects with alternate
schemes for IPC between SNMP servers and other
system servers.

The second goal we have for the control facility is that
users (i.e., administrators) be able to control their
servers through automated scripts. A good example of
this is, again, MindSpring’s web hosting environment.
When web hosting accounts are set up, often times
there is no human intervention. Customers sign up on
a web page; the billing system validates their credit
card; the billing system then informs the web hosting
system to create an account; the web hosting system
creates both the WWW part and the DNS part of the
account, and then informs the user via email that his
account is ready to be used. It would be nice if these
scripts could contact a running server and tell it to add
a new zone, immediately, without having to restart it.
The time to restart the DNS servers is, right now, the
single biggest source of delay in creating web hosting
accounts at MindSpring, by far. Similarly, when cus-
tomers do not pay or exceed their bandwidth limits, it
should be possible to turn them off immediately, rather
than having to wait for the next scheduled server re-
start. These operations should be strongly authenti-
cated.

The final goal for the control facility is to enable
graphical administrative clients. Ironically, automated
interfaces and graphical interfaces have the same re-
quirements, and textfile-based interfaces are hostile to
both. (For some reason, many people think that
textfile-interfaces are friendly to automated environ-
ments; of course, nothing could be farther from the
truth.) It should be possible through a graphical client,
using the control facility, to set up a new server, to add
or delete zones, to populate those zones, to examine
the change logs for a zone, to set up primary and sec-
ondary servers, and all of the other things that admins
need to do to

5. Future Directions

Transactional updates: One particular area where the
approach of using an out-of-band control facility really
shines is in the area of updates. Many users have the
need for several related updates to DNS to be batched
together and processed atomically; they need transac-
tional semantics for updates. The DNS protocol itself,
being stateless, is singularly unsuited for providing
transactional semantics. We plan on offering users
atomic updates to DNS data using the control facility
and CORBA Transaction Service; this is another case,
in addition to security, where having a rich suite of
services available within the context of CORBA really
pays off.

More Drivers: We will be working hard during the
coming months to assist people other than the core
developers in writing modules. We hope to use the
driver system to allow developers to develop systems
to meet their own needs with a minimum of develop-
ment effort. We have talked about embedding inter-
preted languages as modules, so that less experienced
programmers can write scripts to formulate answers
instead of having to program in a compiled language
which is compatible with our binary interface.

Tree Code: The separation of our tree code from the
rest of the server and the ability to plug replacement
tree engines into the server will allow a good deal of
experimentation with different performance profiles
for the server. Specifically, it would be good to have
both a low-memory engine and a high-performance
engine available for users to select as their needs dic-
tate.

5. Problems we’ve encountered

We use the GNU project’s automation tools for man-
aging our build environment, specifically automake,

autoconf, and libtool. We have decided to use the
latest versions of these tools; this has caused a good
deal of difficulty for non-experts trying to compile the
system. As project lead, I feel torn between the devel-
opers who say that the tools really help them and the
users who say that the tools really hurt them. As we
get closer to a final rollout of v1.0 of the code, we will
lean more towards helping users and away from fa-
voring the developers.

We encountered a problem where certain of our sys-
tem structs, which were included in modules, had cer-
tain portions #ifdefd out if the server was not com-
piled with POSIX threads enabled. If the modules and
the server were not compiled with the same setting for
POSIX threads, then they were binarily incompatible.
We solved this problem by declaring that POSIX
threads need to be enabled as the standard, and that
non-POSIX-thread-enabled builds were only for de-
bugging and were aberrant.

Finally, we have simply taken too long to get Dents
out the door. Sometimes we had good reasons and
sometimes we didnt. Once we did the public release,
then things really started moving with the development
effort. We should have made a public release much
sooner.

5. Lessons Learned
Divorce functional from administrative interfaces

Mixing functional and administrative interfaces dam-
ages your functional interface and cripples your ad-
ministrative interface. Server designers should have
the courage to divorce the two, and use the resulting
freedom to deliver full-featured interfaces which allow
admins control over their servers. Kerberos and rela-
tional databases are a good model to follow here.

Use CORBA

The difference between rolling your own protocol and
using CORBA is like the difference between writing
programs in assembly and writing them in a higher-
level language. Just like the later case, surprises lurk
when it comes to performance. Just as compiled pro-
grams are often more efficient than hand-programmed
assembly, CORBA, by virtue of its pass-by-reference
nature, can often achieve network efficiencies that
hand-rolled network protocols can not. The goal the
designer is trying to accomplish is usually something
very close to a remote procedure call anyway and can

be adapted to the RPC paradigm without problem.
CORBA makes many great things possible.

Servers as machines

Here I speak speculatively and very explicitly for my-
self and not for my fellow Dents developers, some of
whom might not agree with me on this issue. In-
creasingly, I come to the conclusion that a good model
for servers is that they be machines, in the formal
sense. Servers should not be responsible for config-
uring themselves, just as operating systems are tradi-
tionally not responsible for configuring themselves.
Rather, like operating systems, servers should simply
export functionality and bootstrap themselves only as
much as it takes to allow outsiders to utilize their
functionality, and they should allow their state to be
read completely. In this way, the start and stop of the
system are simply temporal holes in the provision of
service, not configuration points. Under this rule,
downtime need not be unnecessarily spent on configu-
ration changes. Today, functional requirements about
configuration needs, which should properly be embed-
ded in the source code as assertions regarding the state
of the system’s configuration, are instead "enforced"
by opportunistic order of configuration routines in the
bootstrap section of the server. This is a horrible area
of unfixed and unfixable bugs, as often these require-
ments are never documented. These requirements
should be properly reflected in the code, ala:
"ERROR: can not load new zone until system module
path set; can’t find modules!"

The conservatism of the unix community in the design
of system servers has led to outright stagnation; new
ideas are very far between these days in how servers
are designed, and this is a real shame. Our real hope
with Dents is not so much to take over the DNS space
as it is to introduce and promote some new ideas about
how servers should be written. It is our hope that they
will be successful for us, and that our success will in-
spire others, not only to emulate our techniques, but to
emulate our innovation.

Acknowledgements

Thanks, of course, to Johannes Erdfelt and to Greg
Rumple for doing all of the hard work on Dents.
Throughout the life of this project, MindSpring Enter-
prises has employed each of the three major authors of
this project. While MindSpring has never officially
supported the project, they have made project re-

sources available to us and been very understanding of
those few times when Dents has come first and work
second. Additionally, our coworkers at MindSpring
have been a great, unlauded help to us as we struggle
to learn how to build servers. I am grateful for their
support. Finally, I’d like to thank Paul Vixie and all of
the other contributors to the DNS standardization pro-
cess for creating such a fun protocol to work on; the
entire Internet owes them a debt for such a functional
name system.

