USENIX

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1999 USENIX
Annual Technical Conference

Monterey, California, USA, June 6-11, 1999

Implementing Lottery Scheduling:
Matching the Specializations in Traditional Schedulers

David Petrou
Carnegie Mellon University

John W. Milford
NERSC

Garth A. Gibson

Carnegie Mellon University

© 1999 by The USENIX Association
All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial
reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.
USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org ~ WWW: http://www.usenix.org

Implementing Lottery Scheduling:
Matching the Specializations in Traditional Schedulers

David Petrou John W. Milford Garth A. Gibson
Carnegie Mellon University NERSC Carnegie Mellon University
dpetrou@cs.cmu.edu jwm@csua.berkeley.edu garth.gibson@cs.cmu.edu
Abstract sume CPU time at an equal rate, regardless of the number

We describe extensions to lottery scheduling, a propor® Processes they own. Such control is particularly use-
I%ul for Internet Service Providers (ISPs) which often have

tional-share resource management algorithm, to provid dreds of i . v 4 int
the performance assurances present in traditional no undreds ot competing users simuftaneously logged into

real time process schedulers. Lottery scheduling enabléd® machine. With conventional processor schedulers, it

flexible control over relative process execution rates with’S SImple for one user to monopolize the system with her
a ticket abstraction and provides load insulation amongown processes. Considering desktop workstations, another

groups of processes usiegrrencies We first show that a policy allows the console user to consume CPU time at a

straightforward implementation of lottery scheduling does/@Ster rate than remote users so that the console user's win-
not provide the responsiveness for a mixed interactive andoWing system is responsive. Naturally, this idea applies
CPU-bound workload offered by the decay usage priorit);ecurswely.so thaF individual users can control the r.elat|ve
scheduler of the FreeBSD operating system. Moreoverr,ates at which their own processes consume CPU time.
standard lottery scheduling ignores kernel priorities used Although proportional-share schedulers such as lottery
in the FreeBSD scheduler to reduce kernel lock contentionscheduling have powerful and desirable features, they are
In this paper, we show how to use dynamic ticket adjust-not in wide use. We set out in this research to see if there
ments to incorporate into a lottery scheduler the specializawere any technical obstacles to overcome in an implemen-
tions present in the FreeBSD scheduler to improve interactation of lottery scheduling on conventional time-sharing
tive response time and reduce kernel lock contention. Wéystems. We began with a straightforward implementa-
achieve this while maintaining lottery scheduling’s flexible tion of lottery scheduling on the FreeBSD 2.2.5R operating
control over relative execution rates and load insulationsystem. CPU-bound workloads performed as advertised.
In spite of added scheduling overhead, the throughput offowever, when running batch and interactive workloads
CPU-bound workloads under our scheduler is within onetogether, we experienced poorer responsiveness, or “chop-
percent of the FreeBSD scheduler for all but one test. We@iness,” with the interactive applications compared with the
describe our design, evaluate our implementation, and resame workload under the stock FreeBSD scheduler.

late our experience in deploying ohybrid lottery sched- The FreeBSD scheduler has features to dynamically fa-

uler on production machines. vor specific processes that lottery scheduling lacks. In
this work we show a variety of dynamic ticket adjustment

1 Introduction strategies that are harmless to the lottery scheduling goals

and that allow us to provide comparable specializations to

Lottery scheduling from Waldspurget al.is a recently in- ~ favor specific processes in specific conditions.

troduced proportional-share scheduler that enables flexible Ourhybrid lottery scheduleincludeskernel prioritiesto
control over the relative rates at which CPU-bound work-reduce kernel lock contention aatibreviated time quanta
loads consume processor time [21]. With a proportionalto increase responsiveness by preempting processes before
share scheduler, a user running several CPU-bound jobtheir quanta expire. Our primary contribution to achieve re-
such as those found in scientific environments, can easilgponsiveness comparable to the FreeBSD scheduler is with
control the share of CPU time that each job receives. Irwindowed ticket boosta scheme for dynamically identify-
time-sharing systems, proportional-share schedulers coliRrg interactive processes and boosting their ticket alloca-
trol the relative rates at which different users can use théion. We maketickets the priority abstraction in lottery
processor, enabling load insulation among users. One poscheduling, adaptively serve a dual purpose based on mea-
sible policy forces users with CPU-bound processes to corsured process behavior. If a process is using less CPU than

has been granted by its ticket allocation, we identify it asvents starvation by periodically raising the priority of pro-
currently interactive and give it an apparent boost in ticketcesses that have not recently run. FreeBSD’s scheduler also
allocation to influence scheduling order. We accomplishemploys higher priorities for processes holding kernel re-
this without impacting the ability of lottery scheduling to sources. These kernel priorities cause processes to release
control the relative CPU time used by CPU-bound pro-high-demand kernel resources quickly, reducing the con-
cesses. Further, while lottery scheduling gives users antkntion for these resources.
administrators flexible resource control, it does not easily The FreeBSD scheduler has several limitations. Heller-
offer the UNIXnice semantics in which a user (system ad- stein demonstrates the difficulty in constructing “fair-
ministrator) can downgrade (upgrade) one of its processeshare” systems based on decay usage schedulers [9]. These
relative to all others without downgrading (upgrading) thefair-share systems [12, 5] dynamically adjust the priori-
rest of its processes. We present an approximate emulatidres of running processes to obtain specific processor con-
of thenice semantics. Our hybrid lottery scheduler, which sumption rates over the long-term via nontrivial and po-
has been continually running on two production servergentially computationally expensive operations. Further,
and one personal machine for 1.5 years, provides compar&reeBSD provides only rudimentary inter-user load insu-
ble responsiveness and throughput relative to the FreeBSRtion by limiting the number of simultaneous processes
scheduler under the benchmarks we run. that one user may run, and by terminating processes that
The rest of the paper is organized as follows. In Section Zaccumulate more than a certain amount of processor time.
we describe both the FreeBSD and lottery schedulers. Sed-hese mechanisms prevent a user from starting many pro-
tion 3 explains our extensions to the lottery scheduler whilecesses that consume CPU time slowly and also from ex-
Section 4 details our implementation. We evaluate our hyecuting processes that consume a lot of CPU time over a
brid lottery scheduler and compare it with the FreeBSDlong duration.
scheduler in Section 5. In Section 6 we present our expe-
rience in deploying our scheduler on production machinesp 2 | ottery Scheduling
Section 7 summarizes related work, while Section 8 dis-

cusses work that we leave for the future. Finally, Section gRecently, proportional-share schedulers such as Wald-
concludes this paper. spurger’s lottery scheduling have been introduced which

strive for instantaneous fairness; that is, making fair

scheduling decisions against only the currently runnable
2 Background set of processes [21]. In lottery scheduling, each process

holds a number ofickets The scheduler selects which
A process scheduler has several conflicting goals. Th%rocess to run by picking a ticket from the runnable pro-
scheduler should ensure that interactive processes are rgasses at random and choosing the process that holds this
sponsive to user input despite not being able to alwaysyinning ticket. Users can set the ticket ratios among pro-
distinguish these processes from non-interactive processegesses to determine the expected ratios that their processes
Batch processes should be scheduled to maximize throughre selected to run. Only runnable processes (not sleep-
put despite potential lock contention between such proing, stopped, or swapped out) are eligible for this lottery.
cesses. While addressing these goals, the scheduler mysénce, if one process is always runnable while another
ensure that no process starves. In this paper we are n@fith equal tickets sleeps periodically, the first will consume

concerned with real-time schedulers [10]. more CPU time because it has a greater fraction of the sys-
tem’s tickets during the times that the second was sleeping.
2.1 Scheduling in FreeBSD Currenciesenableload insulationamong users, making

the rate that a user can consume CPU time independent of
FreeBSD [7] is a UNIX operating system for the Intel x86 the number of processes owned. While processes hold tick-
platform based on UC Berkeley's 4.4BSD-Lite [14] re- ets in per-user currencies, users hold tickets in a system-
lease. FreeBSD's scheduler is a typical decay usage priowide base currency. For simplicity, per-user currency tick-
ity scheduler [4] also used in System V [8] and Mach [2]. ets will be called “tickets,” and base currency tickets will be
The scheduler employs a multi-level feedback queue ircalled “base tickets.” The ticket distribution within a user’s
which processes with equal priority reside on the same runprocesses determines the relative rate of execution among
queue. The scheduler runs processes round-robin from tithese processes. To control the distribution of CPU time
highest priority non-empty runqueue. Long (100ms) timeamong users, the system administrator can vary the number
slices make TLB and cache state flushing infrequent, imof base tickets held by a user. This varies the total execu-
posing minimal overhead on CPU-bound processes. Thaon rate of all the user’s processes with respect to processes
scheduler favors interactive processes by lowering the priewned by other users. The scheduler accomplishes this by
ority of processes as they consume CPU time and by préfirst converting the ticketsT,, belonging a process into a
empting processes before their quanta expire if a highenumber of base ticket8,, and then performing a lottery
priority sleeping process wakes up. The scheduler prewith base tickets instead of tickets. In detdl, = ETp,

whereE, the exchange rate, is the number of base ticketa kernel such as FreeBSD to perform ticket transfers at
funding a user’s currency divided by the total number ofeach point where a process may block on a kernel resource
tickets across the user’s runnable processes. because of the number of places where new code would

Lottery scheduling employsompensation ticket® en- have to be added and validated. We cannot simply inter-
able a process which goes to sleep before exhausting ifsose ticket transfers within the kernel sleep and wakeup
time guantum its fair share of CPU time if it becomes functions, because the arguments to these functions do not
runnable before the next scheduling decision is made. Eaagbncapsulate enough information to know to which process
time a process uses only a fractidn,of its quantum, the tickets should be transferred. Further, this approach incurs
scheduler compensates the process by temporarily increasiore overhead than the FreeBSD scheduler. A process
ing its tickets until the next time the it is chosen by the that needs a locked kernel resource will find the resource
scheduler. When compensated, a process holdsfan- in use by another process, transfer its tickets to that pro-
tive number of tickets equal t@,(1/f). For example, a cess, block to enable a new lottery, and eventually recover
process with 10 tickets that yields the CPU after usifigy 1 its transferred tickets when it wakes up. Instead, by pref-
of a quantum will hold 20 effective tickets, enabling it to erentially scheduling processes that wake up holding ker-
be chosen twice as likely as it would be without compen-nel resources, kernel priorities reduce outright the chance
sation tickets. This type of technique—dynamic ticket ad-that resources are found locked. This reduces the number
justments to achieve specific behavior without sacrificingof context switches because processes contending for these
the overall goals of proportional-share scheduling—is theresources will block less often.

basis for the mechanisms described in this paper. Rather than introduce in-kernel ticket transfers to ad-
dress kernel resource contention, we preferentially sched-
ule processes holding kernel resources, similar to the
FreeBSD approach. In detail, we maintain a list of pro-

We extended lottery scheduling to be more responsive to inc€SSes that wake up after being blocked on a kernel re-
teractive applications and to reduce kernel lock contentiorp@Urce- This listis sorted by the kernel priority of the re-
using techniques borrowed from the FreeBSD scheduleSOUrce that each process was blocked on. When making a
Further, user feedback prompted us to provide semantic%Che‘,ju“ng dECIS.IOI’]', we run the standard lottery scheduler
similar to the UNIXnice utility. The challenge was to algorithm if the list is empty. If not, we choose the first

improve performance without squandering the desired feal©C€SS On this sorted list, emulating the behavior of the

3 Hybrid Lottery Scheduler Design

tures of proportional-share scheduling. We describe our ext '€€BSD scheduler.
tensions resulting in aybrid lottery schedulem the fol- We lose the probabilistic fairness of lottery schedul-
lowing sections. ing by choosing processes outside of the standard lottery

scheduling algorithm. We recover this fairness with a vari-
31 K | Prioriti ation of compensation tickets (see Section 2.2). We track
: ernel Fnoriues the total time that each process has run between two suc-

Processes that block in the kernel often hold shared kern&€Ssive selections by the standard lottery scheduling algo-
resources locked until they wake and leave the kernel, suciithm. During this period the process may go to sleep sev-
as when a process holds a buffer locked while it waits foreral times as it blocks in the kernel. When the process gets
disk I/0 to complete. FreeBSD schedules processes asle&§scheduled in user space by the time slice interrupt, the
in the kernel with a higher priority than processes whichscheduler computes its compensation tickets based on this
exhaust their quanta at user level so that they will releastotal time. If the process ran longer than one time quan-
these resources sooner, reducing the chance that other pf§m. an appropriate number pégativecompensation tick-
cesses will find these resources in use [14]. The FreeBSB!S is temporarily assigned until the process is chosen to
scheduler implements this by temporarily assigning stati¢Un again. These negative compensation tickets make the
kernel priorities to processes after blocking in the kernelProcessesslikely to be chosen by the scheduler. For ex-
so that they will be preferentially scheduled upon Waking_ample, consider a process with 10 tickets that overran its
These kernel priorities are ordered in importance of the relime quanta by 25%. The scheduler will negatively com-
source held. For example, a process holding a vnode lockggensate the process by 2 tickets so that it will hold only 8
will have a higher priority than a process holding a buffer €ffective tickets until the process is chosen by the lottery.
waiting for disk I/0O because vnodes have been deemed ¥ detalil, effective tickets= Ty(1/f) = 10(1/1.25) = 8.
more contended or important resource. Sometimes a process spends very little time in user space
In lottery scheduling, a blocked process could temporarbecause it continually makes blocking system calls, making
ily transfer its tickets to the process that holds the desiredt unlikely that the time slice interrupt will deschedule it.
resource, encouraging it to run and release the resourdss described, when the process is eventually descheduled
sooner. This technique was originally introduced to solveby the time slice interrupt, it will receive a large number
priority inversion [21]. However, it is complex to retrofit of negative compensation tickets, causing it to wait a long

sleep on vnode Under the FreeBSD scheduler, a process waking up af-

sendmail p sendmail ter blocking in the kernel (such as when a process waits for
a | | an 1/0 event) will preempt the running process before its
| | A quantum expires. The process which woke up has a ker-

L L o K K nel priority and will be chosen to run next unless multiple
sendmail V, - such ta_tsks arrive gt once. Thi_s behavior,. which we c_aII

a "B | P abbreviated quantais desirable if the sleeping process is

: | interactive, for example, asmacs process that has just re-

L L ceived a keystroke. Further, there are instances in which

FreeBSD will conditionally preempt the running process.
Figure 1: This figure shows processes being scheduled as tim@ne such instance is when a process receives a signal and
moves from left to right. L indicates a scheduling decision by has a higher priority than the running process. Lottery
the standard lottery scheduling algorithm wifleshows where a scheduling, however, does not preempt the running process
process holdlng a kernel priority runs without having been Chosemhen another process wakes up or receives an :bvent
by the standard lottery scheduling algorithm. Our hybrid lottery scheduler forces a context switch
when a sleeping process wakes up or when a process re-
ceives an event such as a signal. To ensure that the pre-

time before running again. To avoid this, we force the pro-€MPted process will receive the processor in proportion to
cess to relinquish the CPU in user level as soon as it had!® number of tickets that it holds, the scheduler awards
consumed more than one time quantum and is not execu}’® Preempted process compensation tickets based on the
ing in the kernel. This way the process will incur a small fraction of the time slice it used (see Se'ctl'o'n 2.2). .
number of negative compensation tickets more frequently. V& note a synergy between kernel priorities and abbrevi-
Figure 1 shows one way to think about kernel prioritiesat,ed guanta. W|thout kernel priorities, abbreviated quanta
in the hybrid lottery scheduler. On the top lisendmail will preempt running processes when a process wakes up,
is chosen by the lottery scheduler and aftetime goes but will not guarantee that processes that were blocked
to sleep waiting for locked vnode, perhaps for the mailin the kernel will be chosen ahead of processes executing
spool directory. Meanwhile, another process, denated user-level code. Without abbreviated quanta, kernel prior-
gets chosen b); the lottery scheduler. When the vnode bdties Will schedule processes blocked on kernel resources
comes availablesendmail is chosen from the kernel pri- ahead of t_hose s are not, but will not preempt processes
ority list (at K) and runs for some timdg, at which point before their quanta expire.
the time slice interrupt occurs. The hybrid lottery sched- _ _
uler grantssendmail compensation tickets at the endpf 3.3 Windowed Ticket Boost

exactly as ifsendmail was able to acquire the vnode lock _.
Since interactive processes generally use a fraction of their

without blocking and had run contiguously for tiraet 3 N .
as shown on the bottom line. The scheduler is in the sam uanta, compensation tickets make them more responsive
y temporarily boosting their effective tickets. Unfortu-

state at the end of both lines, showing that kernel prioritie .) :
9 P nately, compensation tickets cannot be relied on to pro-

only temporarily violate the proportional-share properties . . .
oflgttery[;che:j)tljl}/r:g proport propert vide adequate responsiveness. If a CPU-bound job gets

preempted by another process due to abbreviated quanta,

then it will also receive compensation tickets, putting it on
3.2 Abbreviated Quanta equal footing with interactive processes.

Consider the interactive applicatiamacs running in

Lottery scheduling succeeds at scheduling processes whigth X window while a CPU-bound job runs in the back-
never voluntarily relinquish the CPU in proportion to the ground. At the outset, X runs whikenacs sleeps waiting
number of tickets that they hold. Interactive jobs, suchfor a keystroke. Earlier, the CPU-bound job was preempted
as editors and shells, spend most of their time idle, anénd received compensation tickets. When we press a key,
thus for them we are not concerned with the rate at whichemacs preempts X and runs immediately because we have
they consume CPU time, but instead with how responsivémplemented abbreviated quanta amchcs holds a kernel
they are to user input. Upon becoming runnable from repriority. After processing the keystrokeacs goes back to
ceiving input, we desire the time it takes for the scheduless|eep. Both X and the CPU-bound process are runnable and
to choose the process, known as thispatch latencyto neither have a kernel priority because they were both pre-

be small. Since lottery scheduling does not distinguishempted running user-level code. Up to this point, both the
between CPU-bound and interactive jobs, it often fails to

schedule interactive jobs first, causing noticeable “choppi- _Other implementations of lottery scheduling may have implicitly
leveraged abbreviated quanta on the operating systems they were imple-

ness.” This and the fO”PWing_SeCtions descripe enhancesented on. However, we know of no work demonstrating the importance
ments to lottery scheduling to improve responsiveness. of using abbreviated quanta with lottery scheduling.

FreeBSD and hybrid lottery schedulers behave the samehance by influencing the scheduling order of multiple in-
The FreeBSD scheduler will almost certainly pick X to teractive jobs to minimize their average dispatch latency. It
run because, having accrued less CPU time than the CPUk well known that response time is minimized by schedul-
bound process (which always runs when X aadcs are ing tasks via shortest-processing-time first (SPT) [3]. If we
sleeping), it resides in a higher priority runqueue. Becaus&new how much processing time would be used by the in-
neither X nor the CPU-bound process have kernel priorteractive jobs in handling an event (such as a keystroke) be-
ities, the lottery scheduler will perform the standard lot-fore going back to sleep, we could schedule them optimally
tery algorithm against them. Sometimes the CPU-boundo minimize dispatch latency. Since we do not have this in-
process will be chosen and run for one quantum (100 ms¥ormation, we approximate SPT by using history. We make
When this occurs, X delays in updating theacs window, the ticket boost inversely related to the fraction of deserved
resulting in choppiness. CPU time used. Specifically, we boost the effective tickets
We have experienced this scenario on a workstation runef a job that used almost none of its allotted CPU time by
ning a preliminary version of our hybrid lottery scheduler a large factor, such as 10,000, making it many times more
with only abbreviated quanta and kernel priorities imple-likely to be chosen as before. A job that used its deserved
mented. When holding a key down (equivalent to pressinghare receives no boost. Finally, we use interpolation to
120keyg's) over approximately 7s, we generated 825 keyderive the boost of a job whose fraction of deserved CPU
events, of which 23 where delayed when the CPU-boundime was between these extremes. Hence, interactive jobs
process was chosen to run before X, perceptibly delayinghat barely use the CPU are more likely to be scheduled be-
window updates. In summary, delayed dispatching of arfore interactive jobs that use a moderate, but still less than
interactive process is likely to happen if it does not holddeserved, amount of CPU, approximating SPT.
a kernel priority (because it was preempted at user level) . . .
and a CPU-bound process was preempted and granted Com_Jobs are rarely continuously interactive or CPU-bound.

pensation tickets. This will also occur in deterministic {:hor szamglet,tﬁnmabcs procecs:IsDLrT?)y bedlr}teractlve tr_nost of .
proportional-share schedulers like stride scheduling. € time, but then become -bound for some ime as 1

To solve this problem we make tickets serve a dual pur-e xecutes elisp code. To adapt to these types of processes,

, e look at a sliding window interval of history when check-
pose depending on the nature of the process. For CPLIng to see if a process is using its fair share of the CPU. We

bound jobs, tickets correspond to the rate of CPU time €O ould like the scheduler to be “agile,” in the sense that if a

sumed, as before. For interactive jobs, tickets determing . . o
. . : reviously interactive job became CPU-bound, we restore
how responsive the processes are. If we increase the tickefs)
X S , itS ticket allocation quickly, and contrariwise, if a previ-
held by interactive jobs, then we increase the chance tha . . , .
. . ously CPU-bound job became interactive, we quickly boost
they will be chosen to run before CPU-bound jobs, short-, . : ; . .
;) . : . its ticket allocation. This argues for a small window size,
ening dispatch latency. Hence, if we can identify processes . .
: : I €.g.,0n the order of one second. However, if the window
as interactive, we can boost their tickets to make them morg; >’ : .
responsive Size is too small, there is a chance that a CPU-bound job

L . . will not run during this window simply because the ma-
Our central observation is that most interactive processe

S . o °SSCehine is heavily loaded. If this were to occur, we would
do not use CPU time in proportion tq thelrtlgket allocat'or,‘smistakenly label such a process as interactive. While this
be;:auBs € ttheykloftetnhblct)ctk Ifor Ionbg tlmfe bperlo?skor: u,se:r:nbarameter may require tuning for different environments,
put. By fracking the total number of base UCKeLS In the, q 514 that a window interval of ten seconds works ade-
system and total number of tickets per currency at reg\L%l;ately for making a bimodal process sucheascs re-

lar interval;, we can find the processes that have receivegd, ' i\ o \vithin a few seconds after going from a CPU-
less QPU time than deserveq. Transparently to the USer, Weound to interactive stage, when competing against com-
classify these processes as interactive and boost their eﬁeﬁfetely CPU-bound processes.
tive tickets to make them more responsive. There is no fear
that they will use more than their allotted share because we We call this extensiowindowed ticket boosDur moti-
only boost the tickets of exactly those processes using lesgtion was the priority decay present in the stock FreeBSD
than their share. scheduler. Rather than lower the priority of processes con-
We desire the dispatch latency of interactive jobs tosuming CPU time, we raise the priority of those that do not.
be below the minimum latency that humans can discernSince we only boost the priorities of only those processes
When only one interactive job is runnable, abbreviatedthat are not receiving their deserved CPU time, we do not
quanta and an arbitrarily high ticket boost will ensure this.violate the proportional-share semantics. The combination
However, when multiple interactive jobs are simultane-of the abbreviated quanta and windowed ticket boost ex-
ously runnable, there is a chance that the dispatch latendgnsions together provide the responsiveness of the stock
of some of them will be noticeable. We can reduce thisFreeBSD scheduler.

3.4 nice Emulation 4 Implementation

All UNIX variants have a utility callechice that enablesa oOur system is divided into two parts. Most of the code
user to vary the priority of her processes frer0 (high- resides in the kernel files implementing the hybrid lottery
est) to+20 (lowest) relative to all other processes in thescheduler. The rest of the system consists of small user-
system. After deploying our hybrid lottery scheduler onlevel programs that make a ndett_sched()system call to
production systems, users complained that ticket adjustadjust or query scheduling parameters.
ments alone did not give them the type of control pro-
vided bynice. Sincenice priority adjustments only allow 4
a general favoring or shunning of process priority and do ™"
not provide absolute, or even predictable guarantees [18}\e first describe critical pieces of the FreeBSD scheduler
we do not attempt to exactly emulaiéce semantics, but necessary for understanding our scheduler implementation
rather we approximate the aspects of its behavior relied oand for understanding the benchmarks in Section 5. After
by its users; specifically, that a user (system administratorhecoming runnable, processes are put onto the appropriate
can downgrade (upgrade) one of her processes relative f@anqueue by the assembly language rousieiunqueue()
all others without downgrading (upgrading) the rest of herProcesses are removed from runqueues when chosen by
processes. Of course, the targeted process will no longehe scheduler. The assembly language routmeswitch()
receive the CPU utilization allocated by its tickets. saves process context, chooses the next process to run,
A naive approach to emulatingice semanticsisto only and switches to that process (or idles if no processes are
modify the tickets of the target process according to a maprunnable).
ping of nice values to tickets. This fails because only the We decoupled the scheduling policy from mechanism
relative execution rate of a user's own processes are aby placing a function call from withincpuswitch() to
fected. If a user has only one CPU-bound process runnintptt_choosenextrunner(), a C function which implements
that isnice’d to lowest priority (-20), the exchange rate the hybrid lottery scheduling algorithm. We assign pro-
will still assign the process all of the base tickets fundingcesses a default number of tickets when they are created
the user’s processes (see Section 2.2). Another incorrebly fork1(). Thesetuid()system call ¢f., Login) was mod-
approach adjusts only the base tickets funding a user’s prafied to create a new user currency funded with a default
cesses with a mapping afice values to base tickets. In number of base tickets. Naturally, we do not create a new
this instance, if a user lowers the priority of one processurrency if the user is already logged onto the machine. We
with nice, all of the user’s processes will have lower prior- reference count the processes owned by a user so that we
ity relative to the rest of the processes on the system. Onean garbage collect her currency when all of her processes
could instead create a new currency for eaéhe’'d pro- terminate. Although Waldspurger’s original framework al-
cess, funded with a number of base tickets reflecting théows currencies to be nested indefinitely, our implementa-
nice value. Unfortunately, a user can run a large numbetion only distinguishes between the base and per-user cur-
of nice'd processes and get an unfair share of CPU timerencies.
We could not take that many base tickets from her normal Any lottery scheduler with compensation tickets and cur-
currency, because then her normal processes would not gegncies will be more computationally expensive than the
their share of CPU time if angice'd process momentar- FreeBSD scheduler. A FreeBSD scheduling decision is a
ily went to sleep. Further, without adding more complexity, fastO(1) operation because the scheduler simply removes
we would run out of base tickets to take from the user’s cur-a process from the head of the first non-empty runqueue.
rency if the user started mamy ce'd processes. Our hybrid lottery scheduler implementation employs an
Our solution adjusts both tickets and base tickets tdO(n) algorithm, wheren is the number of runnable pro-
achieve thenice function. We raise (lower) a process’s cesse& As we sought to achieve performance compara-
number of tickets according to the processise value, ble to the FreeBSD scheduler, we expended much effort in
ensuring that the process will have more (less) priority relaoptimizing our implementation. Since floating point op-
tive to other processes owned by the user. When a schedugfations are not permitted while running in the FreeBSD
ing decision is made, we convert the tickets held by the prokernel, we do nearly all of our computations with fixed-
cess into base tickets and make the following adjustmentgoint integers. We use 32-bit integers so that we can utilize
to the allocated base tickets. If the process has heesld ~ hardware instructions for most of the arithmetic. When we
to have a lower priority, we force the number of base ticketsneeded to use 64-bit integers, we wrote an in-line assem-
held by the process to lz& mosta threshold determined by bly routine which issues the “32-bit times 32-bit to 64-bit”
thenice value. Likewise, if the process has been assignedhardware instruction after discovering tigat inefficiently
a higher priority withnice, we force the number of base compiled this operation. We also defer work, use in-line
tICk.etS held to bat le?Sta specific thl’f—:‘ShoId. This thresh- 2An O(Ign) lottery scheduling algorithm exists, but as we rarely see
olding ensures thati ce'd process will have more or [ess |argen, we believe its extra overhead outweighs its lower computational
priority relative to processes outside of the user’s currencycomplexity.

1 Kernel Functionality

lott_choose_next_runner() {

if (empty (kernel_pri_list && lottery_list))
return 0; /* idle */
if (!empty (kernel_pri_list))
return head(kernel_pri_list);
foreach(process on lottery_list) {
compute effective tickets based on
ticket_boost or frac. of quanta used;
convert effective tickets to base tickets
based on user’s exchange rate;
use threshold if process is nice’d;
update our running count of base tickets;

and derive a scaling factor calledcket_boost which we
later multiply against the process’s effective tickets. While
ticket_boost can simply be set to/if, raising this to a
power will dramatically increase our system'’s ability to en-
sure SPT ordering for interactive jobs while still using a
probabilistic scheduler. Although this parameter may re-
quire tuning for different environments, our current imple-
mentation use¢l/f)* To prevent an overflow in a later
computation, we clipicket_boost at 10,000.

If a process has been asleep for more than ten seconds,
we discount it from the above measurements because it

}

pick random number from 1 to total base
tickets;
foreach(process on lottery_list) :
if (process holds winning base ticket) share of CPU time.
return process; The heart of the hybrid lottery scheduling algorithm

} resides inlott_choosenextrunner(), illustrated in Fig-

ure 2. The listkern_pri_list andlottery_list con-

tain runnable processes that do and do not hold kernel pri-
orities, respectively. If a process used less CPU time than
it deserved, we compute the process’s effective tickets by
multiplying the number of tickets that the process holds by
fts ticket boost. If not, we are dealing with a CPU-

is not actively competing for CPU time. When such a
process wakes ugsetrunqueue(assigns it the maximum
ticket_boost since it most probably has not received its

Figure 2: Pseudo-code ftwtt_choosenextrunner().

functions, and aggressively cache the computed values d

scribed further below. : . .
While in th th ber of tickets or base tickets all bound process and need to assign compensation tickets.
e in theory the number oTtICKELS or base UCKELS allo-y compute its effective tickets by dividing the number of

.C"f[ed to.a plr ocess; OtT use;_r_espectlvely, can betr?ny pOSItIﬁeﬂcroseconds in one time quantum by the number of mi-
integer, implementation €fliciency encourages the range ot ,qq -qngs used by the process during the last time that it

values to be bounded. We bound the ratio of minimum tq S .
)) . as scheduled and multiplying this value by the number of
maximum ticket and base ticket shares from 1-100 as WW u uitiplying tis value by u

fickets that the process holds. We compute the base tickets

believe two orders of magnitude expresses sufficient resQiayg by the process by dividing the number of base tick-

:cutloni nggare;uilgg eiéhgorg nge of tl.CkeltS antc:] bf\se t'Ckelt ts that fund the user’s currency by the number of tickets
rotm_ N anﬂ R d’ d reprec |(\j/e y so that we wotu n all of the user’s runnable processes and multiplying this
not incur-overriows and underfiows during our compu a'exchange rate by the process'’s effective tickets.

tions with 32-bit fixed-point integers. By default, processes When a process isi ce'd, we change the number of tick-

gggcl:i\s/glrj start with 100 tickets and 1,000 base tickets "%ts that it holds so that it will have more or less priority rel-

- ,_ative to the rest of the user’s processes. Since tickets range
To help us optimize and understand the system, we in-

; : (—nice+20)
strumented both the FreeBSD and our hybrid lottery schedffo™ 1 t 100, a givemice value equals 19

ulers to provide us with detailed profiling information. We tickets. After converting a process's fickets to base tick-

can measure the lastscheduling events, including when StS Inlott-choosenextrunner() we apply thenice base

and for what reasons processes go to sleep, and time quarit ket threshold. Slnce bage tickets range from_ 100 1o
expirations. ,000, the mapping fromice values to base tickets

1 .
) L (—nice+20)+2 ’
To implement windowed ticket boost, we maintain cir- 'S 10% - If the process has beence'd to have

cular arrays that track whether a process is getting less thefi“nlov"er priority, we force thg number of pase t'Cket_S held
its share of CPU time. Every second we update a circu-by the process to bat moslth|s va}lue, a”‘?' vice-versa ifthe
lar array that holds the number of base tickets in the Sysprocess has been assigned a higher priority witte.

tem over the last ten seconds. We also update similar ar-

rays which track the number of tickets held in each user'yy 2 User-level Programs

currency. Updating the circular arrays more often would

give us more accurate data at the expense of higher ovedsers adjust and query lottery scheduling parameters via a
head. For a particular processgtrunqueue(ilerives the number of user-level programset_tickets changes the
amount of time it deserved to run from the values in thenumber of tickets held by a process whilkow_tickets
circular arrays. Then this function finds the fractidnof displays aps-like listing of a user's processes and their
deserved time actually used over the ten second interval. Hcket allocations. A user executes a given program with
f is greater than one, the process is getting at least its fag specific number of tickets wittun_tickets. Root uses
share of the CPU. If not, we deem the process interactiveet_funding to set the number of base tickets that fund a

10000

9000 | - - -

10 tickets
20 tickets
30 tickets

8000

7000

10000

9000+

8000

7000

2 2

5 6000/ 5 6000/

i i

g sooop = 2 sooop

S 4000f e S 4000

z z ,
3000 ‘ 30001
2000 ST 20001

.
1000f ;£

I
20

I
30

I
40

I
50

I
60

70

1000F

Process 1 of user A
Process 2 of user A| 1

Process of user B

I
20

I
40

I
60

I
80

100

Time (s) Time (s)

Figure 3: This figure demonstrates the progress of three CPUFigure 4: This figure shows the progress of three CPU-bound pro-
bound processes under the hybrid lottery scheduler. Each operaesses under lottery scheduling. The top curve represents a pro-
tion on the Y-axis represents a fixed amount of work. Also showncess run by one user while the bottom curves represent two pro-
are straight dotted lines representing ideal processor utilizationcesses run by another user. When the first process finishes, the
Notice that when a process finishes, after completing 10,000 opsether processes have made 47% and 46% progress toward com-
erations, the remaining processes execute faster. pletion (50% each is ideal).

user’s currency whilehow_funding displays the number We demonstrate the ease with which a user can control
of base tickets that fund a user’s currency. Today the fundthe execution rate of her programs in Figure 3. This fig-
ing commands only apply to logged in users; soon we willure shows three CPU-bound processes assigned tickets in
record the number of base tickets funding a user’s currencg 3:2:1 ratio making progress at approximately the same
in the user’s account record. Finallytt_chuser takesa ratio. Curious as to how hard this is to achieve using the
process and places it under another user’s currency, whidhreeBSD scheduler, we found through trial and error a
is useful for moving processes like the X Window Systemnumber ofnice values that come close. Thece values
which run as root under the currency of the process’s prithat we discovered, +10, +5, and 0, are not intuitively map-
mary user. pable to our goal of 3:2:1. Naturally, any other ratio would
be equally difficult to implement. Further, while lottery
scheduling maintains the 3:2:1 ratio irrespective of system
load, the FreeBSD scheduler unpredictably schedules these

We first demonstrate some properties of proportional-sharBrocesses if other jobs are running. S
resource management that the FreeBSD scheduler lacks. W& demonstrate user workload insulation in Figure 4.
We then show that the hybrid lottery scheduler is moreP€SPite one user running two CPU-bound processes, the
responsive and helps reduce waiting time for processe%econd user is able to receive approximately twice the
blocked on kernel resources relative to our initial lottery throughput from one CPU-bound process.
scheduler implementation. Finally, we show that the hy-
brid lottery scheduler incurs minimal overhead relative tog 2 performance
the FreeBSD scheduler.

Unless otherwise noted, all results in this section werdn this section we show the utility of windowed ticket boost,
obtained from the personal computer calfeattita. This abbreviated quanta, and kernel priorities.
machine has one 200 MHz AMD K6 (Pentium compatible) The minimum latency that humans can discern varies be-
processor, 64 MB of main memory, and 3 GB of ultra-widetween 50-150ms depending on the individual [15]. We
SCSI storage. No tests caused the machine to page. set up the following experiment to test the responsiveness
of our hybrid lottery scheduler. We run one completely
CPU-bound process against a bimodal process, both with
the same number of tickets. This bimodal process is CPU-
Here we demonstrate the features that we have gained byound for the first 15 seconds, interactive for the next 20
replacing FreeBSD’s decay usage scheduler with lottergeconds, and then CPU-bound again for the remaining 15
scheduling. We refer the reader to Waldspurger's theseconds. In the interactive stage, the process repeatedly
sis [20] for a wide range of additional examples and ancomputes for approximately 5ms and then sleeps for about
extensive analysis of lottery scheduling. 100 ms, simulating an editor such asacs. While these

5 Evaluation

5.1 Flexible Execution Rate Control

Dispatch Latency (milliseconds)
0-15s 15-35s 35-50s 22-35s
Without Windowed Ticket Boost| 29.85 (58.18)| 9.13 (27.79)| 27.24 (49.64)|| 10.59 (31.63)
With Windowed Ticket Boost || 27.79 (58.46)| 2.68 (12.84)| 27.58 (50.92)|| 0.05 (0.02)

Table 1: This table presents the data from Figures 5 and 6 numerically. We show the average dispatch latency (and standard deviation
in parentheses) in milliseconds for the bimodal application for each of its three stages of execution, with and without windowed ticket
boost. Between 15-35 seconds we perform better with windowed ticket boost, although some of this time is spent discovering that the
process became interactive. In the fourth column we show the dispatch latency during seconds 22—-35, which is when the scheduler has
identified the process as interactive and is applying a substantial ticket boost.

500 : : ; ; 500 : : ; o ;
I No Ticket Boost I \Windowed Ticket Boost

4501 N 4501

4001 b 4001 b

w
a
o

I
w
a
o

T

I

w

i=3

o
I

N

(=3

o
I

Dispatch Latency (ms;
= N
a o
o o
i i
Dispatch Latency (ms;

=
(=}
o

H I

20 30

0 40 50

@
o ©
==

[y -

or— .

wE—

o
=
o

Figure 5: This figure shows the dispatch latency of a bimodal proFigure 6: This figure shows the dispatch latency of a bimodal pro-

cess competing against a CPU-bound process under our hybritkss competing against a CPU-bound process under our hybrid

lottery scheduler with windowed ticket boost disabled. From seciottery scheduler with windowed ticket boost enabled. From sec-

onds 15 to 35 (marked by the thick bars) the process is interactivegnds 15 to 35 (marked by the thick bars) the process is interactive

yet the scheduler is unable to schedule it in a timely manner. and after a short adjustment period, the process exhibits excellent
dispatch latencies.

two processes compete, a third process wakes up every

50ms and goes back to sleep immediately simply to causeicket_boost increases until it is always favored by the

occasional rescheduling events as would be triggered by Xcheduler when it becomes runnable. From seconds 22 to

or background processes in an actual workload. 35, the dispatch latency is in the tens of microseconds, far
The most important metric for responsiveness is diselow human perception. Once the process becomes CPU-

patch latency after user input, that is, the time elapsed bd2ound again, the system quickly adapts by lowering the
tween when a process becomes runnablgeinunqueue() process’'sticket_boost parameter, ensuring that it will
and when it is chosen to run bytt_choosenextrunner() ~ Not get more than its share of CPU time.

We ran the described benchmark with and without win- To ensure that windowed ticket boost does not negatively
dowed ticket boost as shown in Figures 5 and 6, and Taeffect the completely CPU-bound process, we show the
ble 1. During the interactive phase (seconds 15-35) th@rogress of both processes with windowed ticket boost en-
scheduler with windowed ticket boost disabled is unable taabled in Figure 7. Between seconds 0-15 both processes
schedule the process fast enough to avoid discernible chogonsume CPU time at the same rate. When the bimodal
piness. Although the dispatch latency is somewhat loweprocess becomes interactive between seconds 15-35, the
than during the CPU phases due to compensation ticket§PU-bound job nearly doubles its throughput, getting at
there are still many points over 100ms. This occurs beieast its share. Finally, when the interactive process be-
cause the CPU-bound process occasionally gets preempteshmes CPU-bound from seconds 35-50, the sliding win-
earning compensation tickets which puts it on equal footingdow quickly adapts to lower itsicket_boost SO that it

with the interactive process. When windowed ticket boostdoes not dominate the CPU. The bimodal job only needs to
is enabled, we see an adjustment period for about severbnsume the CPU at a faster rate for less than one second
seconds after the bimodal process becomes interactive. Awefore losing its boost. We omit the same graph with win-
the 10 second sliding window moves forward, the process’slowed ticket boost disabled because it is nearly identical.

150 w w % improvement with kernel prioritieg

| wmesg |type|| freq. | duration | weighted
biowait | disk 4.43 20.38 23.91

ool ffsfsn fs 8.53 25.26 31.63
g getblk fs 39.37 39.15 63.11
‘g pipdwt ipc 75.97 27.33 82.54
6‘_ piperd ipc 4451 | —148728 | —78072
2 sol sbwait net —-1411 63.39 58.22
swpfre | vm || —10197 52.75 4.57

7777777777777 swread | vm 16.09 34.53 45.06

ttywai tty —-9.25 53.08 48.74

o n = = ttywri tty 11.69 53.74 59.15
Time (s) ufslk2 fs 59.43 49.63 79.57

vnread fs —-1162 27.38 18.94

Figure 7: This figure shows the computational progress of the -3¢ proc 18.12 15.94 31.18

CPU-bound and bimodal jobs with windowed ticket boost en-

abled. When the bimodal job enters its interactive stage betweemaple 2: This table shows the effect of kernel priorities. We show

seconds 15 to 35, the CPU-bound job makes progress 1.9 timgfe places within the kernel where processes went to sleep, cat-

faster than when both jobs are CPU-bound. egorized as those related to the network, disk 1/0, the file sys-
tem, inter-process communication, the virtual memory system,
terminal 1/0, and process administration. We compare the per-
cent reduction in sleep frequency, sleep duration, and weighted

Without abbreviated quanta, the dispatch latency for theby frequency) sleep duration when running with kernel priorities

bimodal process when it is interactive would never be be&nabled.

low about 100ms. Note that the bimodal process is always

chosen by the scheduler at the start of a new quantum. After

it goes to sleep, the scheduler chooses the CPU-bound pro-\wjth kernel priorities, processes holding kernel re-

cess. Unless abbreviated quanta is employed, it will congoyrces are preferentially scheduled, reducing the duration
sume CPU time until the time slice elapses. of sleeps, which in turn reduces the frequency of sleeps
To show the utility of kernel priorities, we instrumented because there is a smaller window of time that a process
the FreeBSD kernel to provide us with statistics concerningwill find a resource in use. These trends are apparent al-
kernel lock contention. Every 15 minutes we took a 30 secthough we made no effort to artificially increase kernel re-
ond log of each time a process went to sleep {(sieep(), source contention. One major anomaly is the wait duration
for what purpose it went to sleep, and for how long. Wefor processes going to sleep waiting for data in a pipe read
ran one set of numbers with kernel priorities enabled, andpiperd). In the run with kernel priorities disabled, we
one set without, each for a 24-hour periodsarda, a busy saw an unusually large number of very short sleeps from
production machine on which we have deployed our hy-the processsh (a secure telnet shell) on a pipe read during
brid lottery scheduler. Although there is some uncertaintyone 30 second interval. We believe that this activity caused
in our measurements due to our inability to completely conthis anomaly.
trol the workloads over both runs, we took care to ensure
that the workloads were roughly equivalent by comparing
the number of users logged in, the context switch rate, an®.3 Overhead

the paging activity. . .
paging y We measure scheduling code fragments to quantify

Over a 24-hour period, there were about 40 distinct réagcheqyling overhead. To obtain accurate measurements, we
sons why processes went to sleep. We present an abbrgqnjoy thernTsC (Read Time-Stamp Counter) instruction
viated version in Table 2. We omit sleeps that occur 1eS§yhich reads a counter incremented every clock cycle. In
than 100 times and sleeps initiated by processes that neithg{, following figures, error bars represent 95% confidence

held a lock before going to sleep nor held one upon wakjieryals. The number of independent runs for each exper-
ing (such as when a process goes to sleep on a timer evenf), ot is listed with the experiment.

We compare the percent reduction in sleep frequency, sleep The two most common scheduling operations in both

. : R ®Bhe FreeBSD and hybrid lottery schedulers@ra switch()
running with kernel priorities enabled. Due to latency vari- . 4 setrunqueue() Under the FreeBSD schedulepu.-
ations in network and terminal-related events which Caus%witch()makes a scheduling decision and performs a con-
Iongjtailed wait distributions, we used the sleep durationtext switch. In the hybrid lottery schedularpuswitch()
median to generate the data presented. performs a context switch after callirigtt_choosenext-

FreeBSD Lottery
mean| std. err.|| mean| std. err.
cpuswitch() 2.86 0.011| 7.25 0.019
setrunqueue()| 0.57 0.003 || 17.36| 0.038
cpuswitch() 4.18| 0.012|| 14.37| 0.124
setrunqueue()| 0.66 0.003 || 17.79 0.037
cpuswitch() 4.32| 0.012]| 22.95| 0.172
setrunqueue()| 0.64 0.004 || 17.59 0.062
cpuswitch() 4.74 0.014 || 26.63| 0.153
setrunqueue()| 0.83 0.003 || 17.08| 0.081
| cpuswitch() 7.37| 0.066| 36.28| 0.241
setrunqueue()| 0.69 0.009 || 16.63| 0.102

1 process

25 processes

50 processes|

75 processes

100 processe

Table 3: This table presents the data from Figures 8 and 9 in numerical format. The times are in microsgnosagch()makes a
scheduling decision and performs a context swiggtrunqueue(@narks a process as runnable, and in the hybrid lottery scheduler also
computegicket_boost for the windowed ticket boost.

T T
—— Lottery r///t\f\l\:
o FreeBSD 161 9
301 14r —— Lottery
- - FreeBSD
121 8
25F
e X
o 20]
£ £ g
= =
15F
6L
10+ al
5 RIS S SIS S 2
0 L L i 0_"”"”“””””—‘” ST T T T T T T T T T -
0 25 50 75 100 0 25 50 75 100
Runnable Processes Runnable Processes

Figure 8: This figure shows the average number of microsecFigure 9: This figure shows the average number of microsec-
onds (out of at least 1,000 measurements) to perform a contexdinds (out of at least 1,000 measurements) to make a process
switch via thecpuswitch()function while varying the number of runnable via thesetrunqueue(junction while varying the num-
runnable processes. ber of runnable processes.

runner() which makes a scheduling decision. Figure 8which requires iterating through a 10 element array. While
shows the time it takes to ruzpuswitch(f while varying the overhead is substantially higher in the lottery scheduler,
the number of runnable processes. Naturally, we includehis function isO(1) in both schedulers. We do not know
the time inlott_choosenextrunner() in the hybrid lottery why neither curve is entirely flat. Table 3 presents the data
scheduler measurements. As described in Section 4, ofirom both Figures 8 and 9 in numerical format.

scheduling algorithm i©(n) in the number of runnable The preceding experiments uncovered measurable dif-
processes while the FreeBSD scheduldd{$). This dif- ferences between the FreeBSD and hybrid lottery sched-
ference in algorithmic complexity is apparent in these re-ulers. Now we determine how appreciable these differences
sults. are on the scale of compute-bound applications.

Figure 9 shows the time it takes to execugetrun- To measure the throughput of batch processes we use
queue() which makes a process runnable. This functionrc564, a program that tries to find the solution to RSAs
is short in the FreeBSD scheduler. In the hybrid lottery64-bit secret-key challenge. To exacerbate the effect of
scheduler, we also compute the process’sket_boost, our added overhead while runnig564, we increase the
number of context switches that occur by running up to

30ther work often records context switch time as the elapsed time belO processes callethteractive at the same time. An
tween passing control from user space in one process to user space 1n ;

another. Thus our reported times, which record just the elapsed time O}_nteract.ive process continually goes to sleep 'for the
cpuswitch() may appear low. shortest time possible and causes a context switch upon

325 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ PID USERNAME PRI NICE SIZE RES STAT TIME WCPU CPU COMMND
555 jwm 92 0 808K 164K RUN 0:17 16.34% 16.25), rcb64
553 peterm 90 7392K 8012K RUN :18 16.28% 16.21% xoopic
552 peterm 90 7392K 8012K RUN 0:18 16.12% 16.06% xoopic
550 peterm 90 7392K 7852K RUN .12% 16.06% xoopic
551 peterm 90 7392K 7864K RUN :18 16.08% 16.02% xoopic
554 peterm 89 7392K 8012K RUN :18 16.05% 15.98% xoopic

w

R

=]

T
OO OO0
OO OO0

=

<Y

=

o

Table 4: This table shows the output framsp while two users are

s10r ' ‘ ‘] running one and five CPU-bound processes respectively under the
FreeBSD scheduler. The lack of load insulation enapéesrm

to obtain an unfair percentage of the CPU.

Key Rate (1000/s)

3051 b

—— Lottery
-—- FreeBSD

T2 3 4 s s 7 8 9 10 6 Experience

Interactive Processes

Figure 10: This figure shows the average number of keys triedVMe have deployed our hybrid lottery schedulerseda . -
per second (out of 5 trials) byc564 while varying the num- csua.berkeley.edu andmeeko.eecs.berkeley.edu,
ber of interactive processes. Note that the Y-axis begins attywo production machines.soda is the central machine
300,000keyg's, exaggerating the apparent differences. The perqr the Computer Science Undergraduate Association at
formance under the hybrid lottery scheduler is always within 1%UC Berkeley. soda is powered by one 200MHz AMD
of the FreeBSD scheduler. . .
K6 (Pentium compatible) processor, 256 MB of RAM, and
15GB of ultra-wide SCSI storagesoda supports over
2400 shell accounts and often has over 150 unique users si-
multaneously logged on accessing USENET, reading mail,
waking due to abbreviated quanta. Gmeeractive pro- participating in chat rooms, and developing codeda
cess generates 128 context switches per second while ¥)so manages over 200 mailing lists, and on an average
generate 626 context switches per second. Adding an irday, completes roughly 170,00kndmail transactions.
teractive process adds approximately 55 context switchesinally, soda runs a web server that receives approxi-
per second. The throughput o¢564 versus the number mately 50,000 accesses a dayeko runs on one 200 MHz
of interactive processes is shown in Figure 10. We AMD K6, 128MB of main memory, and 22GB of ultra-
note that as morénteractive processes are run, the per- wide SCSI storagemeeko belongs to the FreeBSD Users’
formance ofrc564 under the FreeBSD and hybrid lottery Group at UC Berkeleymeeko runs a web server and mir-
schedulers worsens and diverges. In all rar$64 under rors part ofucarchive which is offered on its anonymous
the hybrid lottery scheduler is less than one percent sloweFTP server. In additionpeeko exports a filesystem via
than under the FreeBSD scheduler. NFS. There are usually 5 users logged ameko actively

Curious as to what the context switch rate is on bus)pevlelloplng code while a c%uple dozen usErs er;gage Ina
systems, we measuredarchive, the world's largest and Multi-user game (MUD). These systems have been run-

busiest FTP site The average number of context switches N9 our hybrid lottery scheduler since December 1997 (1.5
over a 30 second interval on this site was 2589 per sec/ea'S)- That we have received no complaints is a testament
ond. As the previous experiment did not show a large dif-1° OUr implementation’s stability and performance.
ference between the FreeBSD and hybrid lottery sched- It is especially important to have load insulation on a
ulers, we ran a program which simply loops and main-machine likesoda that supports a large user community
tains a counter of how many loops it made for 5 min-0on one processor. We show the load insulation properties of
utes, while simultaneously running 1@fteractive pro- both the FreeBSD and hybrid lottery schedulers by looking
cesses. Thesmteractive processes pushed the numberat the output of the UNIXop utility while two users run
of context switches per second up to 5160 averaged over tiife CPU-bound processesopic andrc564. xoopicis a
run. In this very extreme test we were about 15% sloweparticle-in-cell plasma simulation that calculates fields on
than the FreeBSD scheduler. If such an scenario realist@ 2-D mesh using Maxwell’s equations. Tables 4 and 5
cally occurred, we could minimize our overhead at the cosshow no load insulation under the FreeBSD scheduler, and
of some accuracy by not computimgcket_boost on ev- reasonably accurate load insulation under the hybrid lottery
ery call tosetrunqueue(out perhaps every 10th call. scheduler.
Our latest version of the hybrid lottery scheduler incor-
porating windowed ticket boost has not been deployed to
IWhen we took this measurement in December 198&rchive soda andmeeko because they are used exclusively over

stored 142GB on-line and supported up to and often reached 2750 she€tworks of S?Qniﬁcant Iatengy and thL!S would not appreci-
multaneous connectionscarchive is located at ftp://ftp.cdrom.com/. ate the benefits offered by this extension.

PID USERNAME PRI NICE SIZE RES STAT TIME WCPU CPU COMMND
296 jwm 98 0 808K 392K RUN 0:28 52.21% 48.71), rcb64 8 FUture Work

272 peterm 76 0 7392K 7544K RUN 1:02 11.63} 11.63} xoopic

275 peterm 65 0 7392K 7716K RUN 0:57 9.61% 9.61% xoopic) . L.) .

282 peterm 64 O 7392K 8032K RUN 0:50 9.50% 9.50% xoopic Hybrid lottery scheduling heuristically identifies and re-
274 peterm 55 0 7392K 7636K RUN 0:57 7.90% 7.90% xoopic i H i

273 betern B3 0 7392K T600K RUN 0.55 7.13% 7.13% reeuic wards interactive processes by how much of their allocated

CPU time they consume. However, some interactive pro-
cesses, such as those that render graphics, also consume
Table 5: This table shows the output framp while two users are moderate amounts of CPU. Evaas al. suggest several
running one and five CPU-bound processes respectively under th@iethods based on past user action and window manager
hybrld Iottery SChedU'el’ij is able to receive about 50% of the Cooperation for an operating System to recognize interac-
CPU despite having only one runnable process. tive processes [6]. We wish to incorporate these methods
into our scheduler so that once recognized, these processes
can be allocated more tickets and preferentially scheduled.
In Section 3.1 we argued that kernel priorities are more
L%{gsirable than ticket transfers for encouraging processes to
elease kernel resources quickly. However, to our knowl-
dge, the chosen ordering of kernel priorities has not been
igorously studied and thus may not provide optimal per-
ormance in all cases. Ticket transfers are more dynamic
ecause they enable additive and transitive transfers from
ultiple blocked processes. If the kernel can identify the
aner and borrower when a kernel resource is under con-

7 Related Work

Process scheduling on time-sharing systems has been st
ied extensively [13, 11]. A number of fair-share schedulerd’
fairly allocate CPU time to classes of processes over lon
time spans [12, 5]. Recently introduced proportional-shar
schedulers such as lottery scheduling [21] and EEVDF [17
strive for instantaneous fairness; that is, making fair
scheduling decisions against only the currently runnable sig

of processes. Another proportional-share scheduler fro . L
tention, the kernel can perform thimplicit ticket transfer

Waldspurgetet al. is stride scheduling, which determinis- ¢ iV 1o th We wish t the th h
tically schedules processes with higher throughput accus ansparently 1o the user. YWe wish to compare the through-

racy and lower response time variability compared to lotPUt of different workloads with implicit ticket transfers ver-

tery scheduling [22]. Since they both employ the same>!S kernel priorities.

ticket framework, our extensions to lottery scheduling are

also applicable to stride scheduling. We choose to extend)
lottery scheduling over other schedulers because the co@® Conclusion
algorithm is simple.

Although tickets enable flexible resource control, it is of- This work incorporates into a lottery scheduler the special-
ten difficult for users to assign tickets among workloads toizations present in typical operating system schedulers to
meet higher-level performance goals. Recent work fromimprove interactive response time and reduce kernel lock
Sullivanet al.introduces application-specific “negotiators” contention. We began with a straightforward implementa-
that enable automatic ticket exchanges between processtien of lottery scheduling which enabled control over pro-
desiring different resource allocations [19]. In other work, cess execution rates and processor load insulation at the
a feedback-driven reservation-based scheduler by Steepost of interactive responsiveness relative to the FreeBSD
et al. monitors process progress to divine appropriate CPUscheduler baseline. To match the performance of the
time allocations transparently to the user [16]. FreeBSD scheduler, we added kernel priorities, abbreviated

Arpaci-Dusseatet al. studied stride scheduling in the quanta, and windowed ticket boost to lottery scheduling,
network of workstations context [1]. Part of their aim was resulting in a hybrid lottery scheduler. Further, user feed-
to provide better responsiveness under mixed workloadyack prompted us to add support for the UNiXce util-

They award a sleeping (interactive) process exhaustibl8y. These techniques have been applied without squander-
tickets that expire when it receives its fair share of CPUINg the proportional-share resource management seman-
time. However, most interactive processes will never usdics. The principle technique used by these mechanisms is
their allocation because they are usually sleeping. For theg#/namic ticket adjustments that influence scheduling order

processes, rather than strive for CPU-time fairness, we bévhile preserving CPU utilization targets.

lieve that dispatch latency should be minimized. Further, Our measurements show that our optimized scheduler in-
without modification, their system does not handle pro-curs more overhead than the FreeBSD scheduler, but that
cesses with interactivand compute phases. A process these differences are negligible even under heavy work-

that has slept for a long time and wakes up will dominateloads. We achieve throughput and responsiveness nearly
the CPU for an extended duration in virtue of holding ex-equal to the FreeBSD scheduler. Our system has been
haustible tickets. Finally, their algorithm for computing ex- deployed to two production machines with success. This

haustible tickets assumes that the total number of runnableaper demonstrates that our hybrid lottery scheduler is a
tickets is constant. In reality, this number fluctuates as proviable process scheduler for the workloads that we have

cesses are created and destroyed, and sleep and wake upested.

Availability

Our hybrid lottery scheduler is available from http://www.-
cs.cmu.edu/"dpetrou/hls.tgz. Included are two new kerne
source files, aontext diffthat patches 14 existing kernel

1]

files, and the source for 10 user-level programs that interac[iz]

with the scheduler.

Acknowledgments

(13]

We thank the anonymous reviewers for their careful and de 4
tailed comments. Thanks also go to UC Berkeley’s Com-
puter Science Undergraduate Association and FreeBSD

Users’ Group for permitting us to deploy our experi-

mental kernel on their production machines. Our col-[;5
leagues Remzi Arpaci-Dusseau, Joan Digney, Jason Flinn,
Greg Ganger, Dushyanth Narayanan, and David Rochberg

kindly reviewed drafts.
Smith for asking us to suppoitice semantics and David

Finally, thanks go to Aaron [16]

Greenman for providing us witiicarchive statistics.

References

(17]

[1] Andrea C. Arpaci-Dusseau and David E. Culler. Extend-

(2]

(3]

[4]

[5]

[6]

ing Proportional-Share Scheduling to a Network of Work-
stations. InProceedings of the International Conference on
Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA'97)June 1997.

D. L. Black. Processors, priority, and policy: Mach schedul-
ing for new environments. IProceedings of the USENIX
1991 Winter Conferen¢c@ages 1-12, January 1991.

R. W. Conway, W. L. Maxwell, and L. W. MillerTheory of
Scheduling Addison-Wesley, Reading, 1967.

Fernando J. Corbati” Marjorie Merwin-Daggett, and
Robert C. Daley. An experimental time-sharing system. In

Proceedings of the 1962 AFIPS Spring Joint Computer Con{20]

ferencevolume 21, pages 335-344, May 1962.

Raymond B. Essick. An event-based fair share scheduler. In
Proceedings of the Winter 1990 USENIX Conferepeges
147-162. USENIX, January 1990.

Steve Evans, Kevin Clarke, Dave Singleton, and Bart
Smaalders. Optimizing Unix Resource Scheduling for User
Interaction. InProceedings of the 1993 Summer USENIX
pages 205-218. USENIX, June 1993.

[7] The FreeBSD Operating System, 1999. See http://www.-

(8]

freebsd.org/.

Berny Goodheart and James CoXhe Magic Garden Ex-
plained: The Internals of UNIX System V Release 4, an
Open Systems DesigRrentice-Hall, 1994.

[9] Joseph L. Hellerstein. Achieving Service Rate Obijectives

(10]

with Decay Usage SchedulindEEE Transactions on Soft-
ware Engineering19(8):813-825, August 1993.

Kevin Jeffay, F. Donelson Smith, Arun Moorthy, and James
Anderson. Proportional share scheduling of operating sys-
tem services for real-time applications. Rioceedings of

(18]

(19]

(21]

(22]

the 19th IEEE Real-Time Systems SymposiDecember
1998.

L. Kleinrock. A continuum of time-sharing scheduling. In
Proceedings of the AFIPS Spring Joint Computer Confer-
ence pages 453-458, 1970.

J. Larmouth. Scheduling for immediate turnroun8oft-
ware—Practice and Experienc8(5):559-578, September/
October 1978.

J. M. McKinney. A survey of analytical time-sharing mod-
els. ACM Computing Survey§, 2:105-116, 1969.

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels,
and John S. Quartermafhe Design and Implementation of
the 4.4BSD Operating Systerddison-Wesley Publishing

Company, Inc., 1996.

Ben Shneiderman.Designing the User Interface: Strate-
gies for Effective Human-Computer InteractioAddison-
Wesley Publishing Co., 2nd edition, 1992.

David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan
McNamee, Calton Pu, and Jonathan Walpole. A feedback-
driven proportion allocator for real-rate scheduling Pliro-
ceedings of the 3rd Symposium on Operating Systems De-
sign and Implementation (OSDHFebruary 1999.

lon Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy
Baruah, Johannes Gehrke, and C. Greg Plaxton. A Propor-
tional Share Resource Allocation Algorithm for Real-Time,
Time-Shared Systems. IEEE Real-Time Systems Sympo-
sium December 1996.

Jeffrey H. Straathof, Ashok K. Thareja, and Ashok K.
Agrawala. UNIX scheduling for large systems.Rmoceed-
ings of the USENIX 1986 Winter Conferengages 111—
139. USENIX, Winter 1986.

David G. Sullivan, Robert Haas, and Margo I. Seltzer. Tick-
ets and currencies revisited: Extensions to multi-resource
lottery scheduling. IrProceedings of the 7th Workshop on
Hot Topics in Operating Systems (HotOS-VMjarch 1999.

Carl A. WaldspurgerLottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Managemd®D thesis,
Massachusetts Institute of Technology, September 1995.

Carl A. Waldspurger and William E. Weihl. Lottery
Scheduling: Flexible Proportional-Share Resource Manage-
ment. InProceedings of the 1st USENIX Symposium on Op-
erating Systems Design and Implementation (OSyes
1-11, November 14-17 1994.

Carl A. Waldspurger and William E. Weihl. Stride Schedul-
ing: Deterministic Proportional-Share Resource Mange-
ment. Technical Report MIT/LCS/TM-528, Massachusetts
Institute of Technology, MIT Laboratory for Computer Sci-
ence, June 1995.

