
THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

The following paper was originally published in the

Proceedings of the 1999 USENIX

Annual Technical Conference
Monterey, California, USA, June 6–11, 1999

Implementing Lottery Scheduling:
Matching the Specializations in Traditional Schedulers

David Petrou
Carnegie Mellon University

John W. Milford
NERSC

Garth A. Gibson
Carnegie Mellon University

© 1999 by The USENIX Association

All Rights Reserved

Rights to individual papers remain with the author or the author's employer. Permission is granted for noncommercial

reproduction of the work for educational or research purposes. This copyright notice must be included in the reproduced paper.

USENIX acknowledges all trademarks herein.

For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738
Email: office@usenix.org WWW: http://www.usenix.org

Implementing Lottery Scheduling:
Matching the Specializations in Traditional Schedulers

David Petrou
Carnegie Mellon University

dpetrou@cs.cmu.edu

John W. Milford
NERSC

jwm@csua.berkeley.edu

Garth A. Gibson
Carnegie Mellon University

garth.gibson@cs.cmu.edu

Abstract
We describe extensions to lottery scheduling, a propor-
tional-share resource management algorithm, to provide
the performance assurances present in traditional non-
real time process schedulers. Lottery scheduling enables
flexible control over relative process execution rates with
a ticket abstraction and provides load insulation among
groups of processes usingcurrencies. We first show that a
straightforward implementation of lottery scheduling does
not provide the responsiveness for a mixed interactive and
CPU-bound workload offered by the decay usage priority
scheduler of the FreeBSD operating system. Moreover,
standard lottery scheduling ignores kernel priorities used
in the FreeBSD scheduler to reduce kernel lock contention.

In this paper, we show how to use dynamic ticket adjust-
ments to incorporate into a lottery scheduler the specializa-
tions present in the FreeBSD scheduler to improve interac-
tive response time and reduce kernel lock contention. We
achieve this while maintaining lottery scheduling’s flexible
control over relative execution rates and load insulation.
In spite of added scheduling overhead, the throughput of
CPU-bound workloads under our scheduler is within one
percent of the FreeBSD scheduler for all but one test. We
describe our design, evaluate our implementation, and re-
late our experience in deploying ourhybrid lottery sched-
uler on production machines.

1 Introduction

Lottery scheduling from Waldspurgeret al. is a recently in-
troduced proportional-share scheduler that enables flexible
control over the relative rates at which CPU-bound work-
loads consume processor time [21]. With a proportional-
share scheduler, a user running several CPU-bound jobs,
such as those found in scientific environments, can easily
control the share of CPU time that each job receives. In
time-sharing systems, proportional-share schedulers con-
trol the relative rates at which different users can use the
processor, enabling load insulation among users. One pos-
sible policy forces users with CPU-bound processes to con-

sume CPU time at an equal rate, regardless of the number
of processes they own. Such control is particularly use-
ful for Internet Service Providers (ISPs) which often have
hundreds of competing users simultaneously logged into
one machine. With conventional processor schedulers, it
is simple for one user to monopolize the system with her
own processes. Considering desktop workstations, another
policy allows the console user to consume CPU time at a
faster rate than remote users so that the console user’s win-
dowing system is responsive. Naturally, this idea applies
recursively so that individual users can control the relative
rates at which their own processes consume CPU time.

Although proportional-share schedulers such as lottery
scheduling have powerful and desirable features, they are
not in wide use. We set out in this research to see if there
were any technical obstacles to overcome in an implemen-
tation of lottery scheduling on conventional time-sharing
systems. We began with a straightforward implementa-
tion of lottery scheduling on the FreeBSD 2.2.5R operating
system. CPU-bound workloads performed as advertised.
However, when running batch and interactive workloads
together, we experienced poorer responsiveness, or “chop-
piness,” with the interactive applications compared with the
same workload under the stock FreeBSD scheduler.

The FreeBSD scheduler has features to dynamically fa-
vor specific processes that lottery scheduling lacks. In
this work we show a variety of dynamic ticket adjustment
strategies that are harmless to the lottery scheduling goals
and that allow us to provide comparable specializations to
favor specific processes in specific conditions.

Ourhybrid lottery schedulerincludeskernel prioritiesto
reduce kernel lock contention andabbreviated time quanta
to increase responsiveness by preempting processes before
their quanta expire. Our primary contribution to achieve re-
sponsiveness comparable to the FreeBSD scheduler is with
windowed ticket boost, a scheme for dynamically identify-
ing interactive processes and boosting their ticket alloca-
tion. We maketickets, the priority abstraction in lottery
scheduling, adaptively serve a dual purpose based on mea-
sured process behavior. If a process is using less CPU than

has been granted by its ticket allocation, we identify it as
currently interactive and give it an apparent boost in ticket
allocation to influence scheduling order. We accomplish
this without impacting the ability of lottery scheduling to
control the relative CPU time used by CPU-bound pro-
cesses. Further, while lottery scheduling gives users and
administrators flexible resource control, it does not easily
offer the UNIXnice semantics in which a user (system ad-
ministrator) can downgrade (upgrade) one of its processes
relative to all others without downgrading (upgrading) the
rest of its processes. We present an approximate emulation
of thenice semantics. Our hybrid lottery scheduler, which
has been continually running on two production servers
and one personal machine for 1.5 years, provides compara-
ble responsiveness and throughput relative to the FreeBSD
scheduler under the benchmarks we run.

The rest of the paper is organized as follows. In Section 2
we describe both the FreeBSD and lottery schedulers. Sec-
tion 3 explains our extensions to the lottery scheduler while
Section 4 details our implementation. We evaluate our hy-
brid lottery scheduler and compare it with the FreeBSD
scheduler in Section 5. In Section 6 we present our expe-
rience in deploying our scheduler on production machines.
Section 7 summarizes related work, while Section 8 dis-
cusses work that we leave for the future. Finally, Section 9
concludes this paper.

2 Background

A process scheduler has several conflicting goals. The
scheduler should ensure that interactive processes are re-
sponsive to user input despite not being able to always
distinguish these processes from non-interactive processes.
Batch processes should be scheduled to maximize through-
put despite potential lock contention between such pro-
cesses. While addressing these goals, the scheduler must
ensure that no process starves. In this paper we are not
concerned with real-time schedulers [10].

2.1 Scheduling in FreeBSD

FreeBSD [7] is a UNIX operating system for the Intel x86
platform based on UC Berkeley’s 4.4BSD-Lite [14] re-
lease. FreeBSD’s scheduler is a typical decay usage prior-
ity scheduler [4] also used in System V [8] and Mach [2].
The scheduler employs a multi-level feedback queue in
which processes with equal priority reside on the same run-
queue. The scheduler runs processes round-robin from the
highest priority non-empty runqueue. Long (100ms) time
slices make TLB and cache state flushing infrequent, im-
posing minimal overhead on CPU-bound processes. The
scheduler favors interactive processes by lowering the pri-
ority of processes as they consume CPU time and by pre-
empting processes before their quanta expire if a higher
priority sleeping process wakes up. The scheduler pre-

vents starvation by periodically raising the priority of pro-
cesses that have not recently run. FreeBSD’s scheduler also
employs higher priorities for processes holding kernel re-
sources. These kernel priorities cause processes to release
high-demand kernel resources quickly, reducing the con-
tention for these resources.

The FreeBSD scheduler has several limitations. Heller-
stein demonstrates the difficulty in constructing “fair-
share” systems based on decay usage schedulers [9]. These
fair-share systems [12, 5] dynamically adjust the priori-
ties of running processes to obtain specific processor con-
sumption rates over the long-term via nontrivial and po-
tentially computationally expensive operations. Further,
FreeBSD provides only rudimentary inter-user load insu-
lation by limiting the number of simultaneous processes
that one user may run, and by terminating processes that
accumulate more than a certain amount of processor time.
These mechanisms prevent a user from starting many pro-
cesses that consume CPU time slowly and also from ex-
ecuting processes that consume a lot of CPU time over a
long duration.

2.2 Lottery Scheduling

Recently, proportional-share schedulers such as Wald-
spurger’s lottery scheduling have been introduced which
strive for instantaneous fairness; that is, making fair
scheduling decisions against only the currently runnable
set of processes [21]. In lottery scheduling, each process
holds a number oftickets. The scheduler selects which
process to run by picking a ticket from the runnable pro-
cesses at random and choosing the process that holds this
winning ticket. Users can set the ticket ratios among pro-
cesses to determine the expected ratios that their processes
are selected to run. Only runnable processes (not sleep-
ing, stopped, or swapped out) are eligible for this lottery.
Hence, if one process is always runnable while another
with equal tickets sleeps periodically, the first will consume
more CPU time because it has a greater fraction of the sys-
tem’s tickets during the times that the second was sleeping.

Currenciesenableload insulationamong users, making
the rate that a user can consume CPU time independent of
the number of processes owned. While processes hold tick-
ets in per-user currencies, users hold tickets in a system-
wide base currency. For simplicity, per-user currency tick-
ets will be called “tickets,” and base currency tickets will be
called “base tickets.” The ticket distribution within a user’s
processes determines the relative rate of execution among
these processes. To control the distribution of CPU time
among users, the system administrator can vary the number
of base tickets held by a user. This varies the total execu-
tion rate of all the user’s processes with respect to processes
owned by other users. The scheduler accomplishes this by
first converting the tickets,Tp, belonging a process into a
number of base tickets,Bp, and then performing a lottery
with base tickets instead of tickets. In detail,Bp = ETp,

whereE, the exchange rate, is the number of base tickets
funding a user’s currency divided by the total number of
tickets across the user’s runnable processes.

Lottery scheduling employscompensation ticketsto en-
able a process which goes to sleep before exhausting its
time quantum its fair share of CPU time if it becomes
runnable before the next scheduling decision is made. Each
time a process uses only a fraction,f , of its quantum, the
scheduler compensates the process by temporarily increas-
ing its tickets until the next time the it is chosen by the
scheduler. When compensated, a process holds aneffec-
tive number of tickets equal toTp(1= f). For example, a
process with 10 tickets that yields the CPU after using 1=2
of a quantum will hold 20 effective tickets, enabling it to
be chosen twice as likely as it would be without compen-
sation tickets. This type of technique—dynamic ticket ad-
justments to achieve specific behavior without sacrificing
the overall goals of proportional-share scheduling—is the
basis for the mechanisms described in this paper.

3 Hybrid Lottery Scheduler Design

We extended lottery scheduling to be more responsive to in-
teractive applications and to reduce kernel lock contention
using techniques borrowed from the FreeBSD scheduler.
Further, user feedback prompted us to provide semantics
similar to the UNIXnice utility. The challenge was to
improve performance without squandering the desired fea-
tures of proportional-share scheduling. We describe our ex-
tensions resulting in ahybrid lottery schedulerin the fol-
lowing sections.

3.1 Kernel Priorities

Processes that block in the kernel often hold shared kernel
resources locked until they wake and leave the kernel, such
as when a process holds a buffer locked while it waits for
disk I/O to complete. FreeBSD schedules processes asleep
in the kernel with a higher priority than processes which
exhaust their quanta at user level so that they will release
these resources sooner, reducing the chance that other pro-
cesses will find these resources in use [14]. The FreeBSD
scheduler implements this by temporarily assigning static
kernel priorities to processes after blocking in the kernel
so that they will be preferentially scheduled upon waking.
These kernel priorities are ordered in importance of the re-
source held. For example, a process holding a vnode locked
will have a higher priority than a process holding a buffer
waiting for disk I/O because vnodes have been deemed a
more contended or important resource.

In lottery scheduling, a blocked process could temporar-
ily transfer its tickets to the process that holds the desired
resource, encouraging it to run and release the resource
sooner. This technique was originally introduced to solve
priority inversion [21]. However, it is complex to retrofit

a kernel such as FreeBSD to perform ticket transfers at
each point where a process may block on a kernel resource
because of the number of places where new code would
have to be added and validated. We cannot simply inter-
pose ticket transfers within the kernel sleep and wakeup
functions, because the arguments to these functions do not
encapsulate enough information to know to which process
tickets should be transferred. Further, this approach incurs
more overhead than the FreeBSD scheduler. A process
that needs a locked kernel resource will find the resource
in use by another process, transfer its tickets to that pro-
cess, block to enable a new lottery, and eventually recover
its transferred tickets when it wakes up. Instead, by pref-
erentially scheduling processes that wake up holding ker-
nel resources, kernel priorities reduce outright the chance
that resources are found locked. This reduces the number
of context switches because processes contending for these
resources will block less often.

Rather than introduce in-kernel ticket transfers to ad-
dress kernel resource contention, we preferentially sched-
ule processes holding kernel resources, similar to the
FreeBSD approach. In detail, we maintain a list of pro-
cesses that wake up after being blocked on a kernel re-
source. This list is sorted by the kernel priority of the re-
source that each process was blocked on. When making a
scheduling decision, we run the standard lottery scheduler
algorithm if the list is empty. If not, we choose the first
process on this sorted list, emulating the behavior of the
FreeBSD scheduler.

We lose the probabilistic fairness of lottery schedul-
ing by choosing processes outside of the standard lottery
scheduling algorithm. We recover this fairness with a vari-
ation of compensation tickets (see Section 2.2). We track
the total time that each process has run between two suc-
cessive selections by the standard lottery scheduling algo-
rithm. During this period the process may go to sleep sev-
eral times as it blocks in the kernel. When the process gets
descheduled in user space by the time slice interrupt, the
scheduler computes its compensation tickets based on this
total time. If the process ran longer than one time quan-
tum, an appropriate number ofnegativecompensation tick-
ets is temporarily assigned until the process is chosen to
run again. These negative compensation tickets make the
processlesslikely to be chosen by the scheduler. For ex-
ample, consider a process with 10 tickets that overran its
time quanta by 25%. The scheduler will negatively com-
pensate the process by 2 tickets so that it will hold only 8
effective tickets until the process is chosen by the lottery.
In detail, effective tickets= Tp(1= f) = 10(1=1:25) = 8.

Sometimes a process spends very little time in user space
because it continually makes blocking system calls, making
it unlikely that the time slice interrupt will deschedule it.
As described, when the process is eventually descheduled
by the time slice interrupt, it will receive a large number
of negative compensation tickets, causing it to wait a long

α β

α β

L L K

L L

sendmail sendmail

sendmail

sleep on vnode

P

P

Figure 1: This figure shows processes being scheduled as time
moves from left to right. L indicates a scheduling decision by
the standard lottery scheduling algorithm whileK shows where a
process holding a kernel priority runs without having been chosen
by the standard lottery scheduling algorithm.

time before running again. To avoid this, we force the pro-
cess to relinquish the CPU in user level as soon as it has
consumed more than one time quantum and is not execut-
ing in the kernel. This way the process will incur a small
number of negative compensation tickets more frequently.

Figure 1 shows one way to think about kernel priorities
in the hybrid lottery scheduler. On the top linesendmail
is chosen by the lottery scheduler and afterα time goes
to sleep waiting for locked vnode, perhaps for the mail
spool directory. Meanwhile, another process, denotedP,
gets chosen by the lottery scheduler. When the vnode be-
comes available,sendmail is chosen from the kernel pri-
ority list (at K) and runs for some time,β, at which point
the time slice interrupt occurs. The hybrid lottery sched-
uler grantssendmail compensation tickets at the end ofβ
exactly as ifsendmail was able to acquire the vnode lock
without blocking and had run contiguously for timeα+β
as shown on the bottom line. The scheduler is in the same
state at the end of both lines, showing that kernel priorities
only temporarily violate the proportional-share properties
of lottery scheduling.

3.2 Abbreviated Quanta

Lottery scheduling succeeds at scheduling processes which
never voluntarily relinquish the CPU in proportion to the
number of tickets that they hold. Interactive jobs, such
as editors and shells, spend most of their time idle, and
thus for them we are not concerned with the rate at which
they consume CPU time, but instead with how responsive
they are to user input. Upon becoming runnable from re-
ceiving input, we desire the time it takes for the scheduler
to choose the process, known as thedispatch latency, to
be small. Since lottery scheduling does not distinguish
between CPU-bound and interactive jobs, it often fails to
schedule interactive jobs first, causing noticeable “choppi-
ness.” This and the following sections describe enhance-
ments to lottery scheduling to improve responsiveness.

Under the FreeBSD scheduler, a process waking up af-
ter blocking in the kernel (such as when a process waits for
an I/O event) will preempt the running process before its
quantum expires. The process which woke up has a ker-
nel priority and will be chosen to run next unless multiple
such tasks arrive at once. This behavior, which we call
abbreviated quanta, is desirable if the sleeping process is
interactive, for example, anemacs process that has just re-
ceived a keystroke. Further, there are instances in which
FreeBSD willconditionallypreempt the running process.
One such instance is when a process receives a signal and
has a higher priority than the running process. Lottery
scheduling, however, does not preempt the running process
when another process wakes up or receives an event1.

Our hybrid lottery scheduler forces a context switch
when a sleeping process wakes up or when a process re-
ceives an event such as a signal. To ensure that the pre-
empted process will receive the processor in proportion to
the number of tickets that it holds, the scheduler awards
the preempted process compensation tickets based on the
fraction of the time slice it used (see Section 2.2).

We note a synergy between kernel priorities and abbrevi-
ated quanta. Without kernel priorities, abbreviated quanta
will preempt running processes when a process wakes up,
but will not guarantee that processes that were blocked
in the kernel will be chosen ahead of processes executing
user-level code. Without abbreviated quanta, kernel prior-
ities will schedule processes blocked on kernel resources
ahead of those that are not, but will not preempt processes
before their quanta expire.

3.3 Windowed Ticket Boost

Since interactive processes generally use a fraction of their
quanta, compensation tickets make them more responsive
by temporarily boosting their effective tickets. Unfortu-
nately, compensation tickets cannot be relied on to pro-
vide adequate responsiveness. If a CPU-bound job gets
preempted by another process due to abbreviated quanta,
then it will also receive compensation tickets, putting it on
equal footing with interactive processes.

Consider the interactive applicationemacs running in
an X window while a CPU-bound job runs in the back-
ground. At the outset, X runs whileemacs sleeps waiting
for a keystroke. Earlier, the CPU-bound job was preempted
and received compensation tickets. When we press a key,
emacs preempts X and runs immediately because we have
implemented abbreviated quanta andemacs holds a kernel
priority. After processing the keystrokeemacs goes back to
sleep. Both X and the CPU-bound process are runnable and
neither have a kernel priority because they were both pre-
empted running user-level code. Up to this point, both the

1Other implementations of lottery scheduling may have implicitly
leveraged abbreviated quanta on the operating systems they were imple-
mented on. However, we know of no work demonstrating the importance
of using abbreviated quanta with lottery scheduling.

FreeBSD and hybrid lottery schedulers behave the same.
The FreeBSD scheduler will almost certainly pick X to
run because, having accrued less CPU time than the CPU-
bound process (which always runs when X andemacs are
sleeping), it resides in a higher priority runqueue. Because
neither X nor the CPU-bound process have kernel prior-
ities, the lottery scheduler will perform the standard lot-
tery algorithm against them. Sometimes the CPU-bound
process will be chosen and run for one quantum (100ms).
When this occurs, X delays in updating theemacs window,
resulting in choppiness.

We have experienced this scenario on a workstation run-
ning a preliminary version of our hybrid lottery scheduler
with only abbreviated quanta and kernel priorities imple-
mented. When holding a key down (equivalent to pressing
120keys=s) over approximately 7s, we generated 825 key
events, of which 23 where delayed when the CPU-bound
process was chosen to run before X, perceptibly delaying
window updates. In summary, delayed dispatching of an
interactive process is likely to happen if it does not hold
a kernel priority (because it was preempted at user level)
and a CPU-bound process was preempted and granted com-
pensation tickets. This will also occur in deterministic
proportional-share schedulers like stride scheduling.

To solve this problem we make tickets serve a dual pur-
pose depending on the nature of the process. For CPU-
bound jobs, tickets correspond to the rate of CPU time con-
sumed, as before. For interactive jobs, tickets determine
how responsive the processes are. If we increase the tickets
held by interactive jobs, then we increase the chance that
they will be chosen to run before CPU-bound jobs, short-
ening dispatch latency. Hence, if we can identify processes
as interactive, we can boost their tickets to make them more
responsive.

Our central observation is that most interactive processes
do not use CPU time in proportion to their ticket allocations
because they often block for long time periods on user in-
put. By tracking the total number of base tickets in the
system and total number of tickets per currency at regu-
lar intervals, we can find the processes that have received
less CPU time than deserved. Transparently to the user, we
classify these processes as interactive and boost their effec-
tive tickets to make them more responsive. There is no fear
that they will use more than their allotted share because we
only boost the tickets of exactly those processes using less
than their share.

We desire the dispatch latency of interactive jobs to
be below the minimum latency that humans can discern.
When only one interactive job is runnable, abbreviated
quanta and an arbitrarily high ticket boost will ensure this.
However, when multiple interactive jobs are simultane-
ously runnable, there is a chance that the dispatch latency
of some of them will be noticeable. We can reduce this

chance by influencing the scheduling order of multiple in-
teractive jobs to minimize their average dispatch latency. It
is well known that response time is minimized by schedul-
ing tasks via shortest-processing-time first (SPT) [3]. If we
knew how much processing time would be used by the in-
teractive jobs in handling an event (such as a keystroke) be-
fore going back to sleep, we could schedule them optimally
to minimize dispatch latency. Since we do not have this in-
formation, we approximate SPT by using history. We make
the ticket boost inversely related to the fraction of deserved
CPU time used. Specifically, we boost the effective tickets
of a job that used almost none of its allotted CPU time by
a large factor, such as 10,000, making it many times more
likely to be chosen as before. A job that used its deserved
share receives no boost. Finally, we use interpolation to
derive the boost of a job whose fraction of deserved CPU
time was between these extremes. Hence, interactive jobs
that barely use the CPU are more likely to be scheduled be-
fore interactive jobs that use a moderate, but still less than
deserved, amount of CPU, approximating SPT.

Jobs are rarely continuously interactive or CPU-bound.
For example, anemacs process may be interactive most of
the time, but then become CPU-bound for some time as it
executes elisp code. To adapt to these types of processes,
we look at a sliding window interval of history when check-
ing to see if a process is using its fair share of the CPU. We
would like the scheduler to be “agile,” in the sense that if a
previously interactive job became CPU-bound, we restore
its ticket allocation quickly, and contrariwise, if a previ-
ously CPU-bound job became interactive, we quickly boost
its ticket allocation. This argues for a small window size,
e.g.,on the order of one second. However, if the window
size is too small, there is a chance that a CPU-bound job
will not run during this window simply because the ma-
chine is heavily loaded. If this were to occur, we would
mistakenly label such a process as interactive. While this
parameter may require tuning for different environments,
we found that a window interval of ten seconds works ade-
quately for making a bimodal process such asemacs re-
sponsive within a few seconds after going from a CPU-
bound to interactive stage, when competing against com-
pletely CPU-bound processes.

We call this extensionwindowed ticket boost. Our moti-
vation was the priority decay present in the stock FreeBSD
scheduler. Rather than lower the priority of processes con-
suming CPU time, we raise the priority of those that do not.
Since we only boost the priorities of only those processes
that are not receiving their deserved CPU time, we do not
violate the proportional-share semantics. The combination
of the abbreviated quanta and windowed ticket boost ex-
tensions together provide the responsiveness of the stock
FreeBSD scheduler.

3.4 nice Emulation

All UNIX variants have a utility callednice that enables a
user to vary the priority of her processes from�20 (high-
est) to+20 (lowest) relative to all other processes in the
system. After deploying our hybrid lottery scheduler on
production systems, users complained that ticket adjust-
ments alone did not give them the type of control pro-
vided bynice. Sincenice priority adjustments only allow
a general favoring or shunning of process priority and do
not provide absolute, or even predictable guarantees [18],
we do not attempt to exactly emulatenice semantics, but
rather we approximate the aspects of its behavior relied on
by its users; specifically, that a user (system administrator)
can downgrade (upgrade) one of her processes relative to
all others without downgrading (upgrading) the rest of her
processes. Of course, the targeted process will no longer
receive the CPU utilization allocated by its tickets.

A näıve approach to emulatingnice semantics is to only
modify the tickets of the target process according to a map-
ping of nice values to tickets. This fails because only the
relative execution rate of a user’s own processes are af-
fected. If a user has only one CPU-bound process running
that isnice’d to lowest priority (+20), the exchange rate
will still assign the process all of the base tickets funding
the user’s processes (see Section 2.2). Another incorrect
approach adjusts only the base tickets funding a user’s pro-
cesses with a mapping ofnice values to base tickets. In
this instance, if a user lowers the priority of one process
with nice, all of the user’s processes will have lower prior-
ity relative to the rest of the processes on the system. One
could instead create a new currency for eachnice’d pro-
cess, funded with a number of base tickets reflecting the
nice value. Unfortunately, a user can run a large number
of nice’d processes and get an unfair share of CPU time.
We could not take that many base tickets from her normal
currency, because then her normal processes would not get
their share of CPU time if anynice’d process momentar-
ily went to sleep. Further, without adding more complexity,
we would run out of base tickets to take from the user’s cur-
rency if the user started manynice’d processes.

Our solution adjusts both tickets and base tickets to
achieve thenice function. We raise (lower) a process’s
number of tickets according to the process’snice value,
ensuring that the process will have more (less) priority rela-
tive to other processes owned by the user. When a schedul-
ing decision is made, we convert the tickets held by the pro-
cess into base tickets and make the following adjustments
to the allocated base tickets. If the process has beennice’d
to have a lower priority, we force the number of base tickets
held by the process to beat mosta threshold determined by
thenice value. Likewise, if the process has been assigned
a higher priority withnice, we force the number of base
tickets held to beat leasta specific threshold. This thresh-
olding ensures that anice’d process will have more or less
priority relative to processes outside of the user’s currency.

4 Implementation

Our system is divided into two parts. Most of the code
resides in the kernel files implementing the hybrid lottery
scheduler. The rest of the system consists of small user-
level programs that make a newlott sched()system call to
adjust or query scheduling parameters.

4.1 Kernel Functionality

We first describe critical pieces of the FreeBSD scheduler
necessary for understanding our scheduler implementation
and for understanding the benchmarks in Section 5. After
becoming runnable, processes are put onto the appropriate
runqueue by the assembly language routinesetrunqueue().
Processes are removed from runqueues when chosen by
the scheduler. The assembly language routinecpu switch()
saves process context, chooses the next process to run,
and switches to that process (or idles if no processes are
runnable).

We decoupled the scheduling policy from mechanism
by placing a function call from withincpu switch() to
lott choosenext runner(), a C function which implements
the hybrid lottery scheduling algorithm. We assign pro-
cesses a default number of tickets when they are created
by fork1(). Thesetuid()system call (cf.,login) was mod-
ified to create a new user currency funded with a default
number of base tickets. Naturally, we do not create a new
currency if the user is already logged onto the machine. We
reference count the processes owned by a user so that we
can garbage collect her currency when all of her processes
terminate. Although Waldspurger’s original framework al-
lows currencies to be nested indefinitely, our implementa-
tion only distinguishes between the base and per-user cur-
rencies.

Any lottery scheduler with compensation tickets and cur-
rencies will be more computationally expensive than the
FreeBSD scheduler. A FreeBSD scheduling decision is a
fastO(1) operation because the scheduler simply removes
a process from the head of the first non-empty runqueue.
Our hybrid lottery scheduler implementation employs an
O(n) algorithm, wheren is the number of runnable pro-
cesses2. As we sought to achieve performance compara-
ble to the FreeBSD scheduler, we expended much effort in
optimizing our implementation. Since floating point op-
erations are not permitted while running in the FreeBSD
kernel, we do nearly all of our computations with fixed-
point integers. We use 32-bit integers so that we can utilize
hardware instructions for most of the arithmetic. When we
needed to use 64-bit integers, we wrote an in-line assem-
bly routine which issues the “32-bit times 32-bit to 64-bit”
hardware instruction after discovering thatgcc inefficiently
compiled this operation. We also defer work, use in-line

2An O(lgn) lottery scheduling algorithm exists, but as we rarely see
largen, we believe its extra overhead outweighs its lower computational
complexity.

lott_choose_next_runner() {

if(empty(kernel_pri_list && lottery_list))

return 0; /* idle */

if(!empty(kernel_pri_list))

return head(kernel_pri_list);

foreach(process on lottery_list) {

compute effective tickets based on

ticket_boost or frac. of quanta used;

convert effective tickets to base tickets

based on user's exchange rate;

use threshold if process is nice'd;

update our running count of base tickets;

}

pick random number from 1 to total base

tickets;

foreach(process on lottery_list)

if(process holds winning base ticket)

return process;

}

Figure 2: Pseudo-code forlott choosenext runner().

functions, and aggressively cache the computed values de-
scribed further below.

While in theory the number of tickets or base tickets allo-
cated to a process or user, respectively, can be any positive
integer, implementation efficiency encourages the range of
values to be bounded. We bound the ratio of minimum to
maximum ticket and base ticket shares from 1–100 as we
believe two orders of magnitude expresses sufficient reso-
lution. We carefully set the range of tickets and base tickets
from 1–100 and 100–10,000 respectively so that we would
not incur overflows and underflows during our computa-
tions with 32-bit fixed-point integers. By default, processes
and users start with 100 tickets and 1,000 base tickets re-
spectively.

To help us optimize and understand the system, we in-
strumented both the FreeBSD and our hybrid lottery sched-
ulers to provide us with detailed profiling information. We
can measure the lastn scheduling events, including when
and for what reasons processes go to sleep, and time quanta
expirations.

To implement windowed ticket boost, we maintain cir-
cular arrays that track whether a process is getting less than
its share of CPU time. Every second we update a circu-
lar array that holds the number of base tickets in the sys-
tem over the last ten seconds. We also update similar ar-
rays which track the number of tickets held in each user’s
currency. Updating the circular arrays more often would
give us more accurate data at the expense of higher over-
head. For a particular process,setrunqueue()derives the
amount of time it deserved to run from the values in the
circular arrays. Then this function finds the fraction,f , of
deserved time actually used over the ten second interval. If
f is greater than one, the process is getting at least its fair
share of the CPU. If not, we deem the process interactive

and derive a scaling factor calledticket boost which we
later multiply against the process’s effective tickets. While
ticket boost can simply be set to 1= f , raising this to a
power will dramatically increase our system’s ability to en-
sure SPT ordering for interactive jobs while still using a
probabilistic scheduler. Although this parameter may re-
quire tuning for different environments, our current imple-
mentation uses(1= f)4. To prevent an overflow in a later
computation, we clipticket boost at 10,000.

If a process has been asleep for more than ten seconds,
we discount it from the above measurements because it
is not actively competing for CPU time. When such a
process wakes up,setrunqueue()assigns it the maximum
ticket boost since it most probably has not received its
share of CPU time.

The heart of the hybrid lottery scheduling algorithm
resides in lott choosenext runner(), illustrated in Fig-
ure 2. The listskern pri list andlottery list con-
tain runnable processes that do and do not hold kernel pri-
orities, respectively. If a process used less CPU time than
it deserved, we compute the process’s effective tickets by
multiplying the number of tickets that the process holds by
its ticket boost. If not, we are dealing with a CPU-
bound process and need to assign compensation tickets.
We compute its effective tickets by dividing the number of
microseconds in one time quantum by the number of mi-
croseconds used by the process during the last time that it
was scheduled and multiplying this value by the number of
tickets that the process holds. We compute the base tickets
held by the process by dividing the number of base tick-
ets that fund the user’s currency by the number of tickets
in all of the user’s runnable processes and multiplying this
exchange rate by the process’s effective tickets.

When a process isnice’d, we change the number of tick-
ets that it holds so that it will have more or less priority rel-
ative to the rest of the user’s processes. Since tickets range
from 1 to 100, a givennice value equals 10

1
20(�nice+20)

tickets. After converting a process’s tickets to base tick-
ets in lott choosenext runner(), we apply thenice base
ticket threshold. Since base tickets range from 100 to
10,000, the mapping fromnice values to base tickets
is 10

1
20(�nice+20)+2. If the process has beennice’d to have

a lower priority, we force the number of base tickets held
by the process to beat mostthis value, and vice-versa if the
process has been assigned a higher priority withnice.

4.2 User-level Programs

Users adjust and query lottery scheduling parameters via a
number of user-level programs.set tickets changes the
number of tickets held by a process whileshow tickets

displays aps-like listing of a user’s processes and their
ticket allocations. A user executes a given program with
a specific number of tickets withrun tickets. Root uses
set funding to set the number of base tickets that fund a

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (s)

N
o.

 O
pe

ra
tio

ns

10 tickets
20 tickets
30 tickets

Figure 3: This figure demonstrates the progress of three CPU-
bound processes under the hybrid lottery scheduler. Each opera-
tion on the Y-axis represents a fixed amount of work. Also shown
are straight dotted lines representing ideal processor utilization.
Notice that when a process finishes, after completing 10,000 op-
erations, the remaining processes execute faster.

user’s currency whileshow funding displays the number
of base tickets that fund a user’s currency. Today the fund-
ing commands only apply to logged in users; soon we will
record the number of base tickets funding a user’s currency
in the user’s account record. Finally,lott chuser takes a
process and places it under another user’s currency, which
is useful for moving processes like the X Window System
which run as root under the currency of the process’s pri-
mary user.

5 Evaluation

We first demonstrate some properties of proportional-share
resource management that the FreeBSD scheduler lacks.
We then show that the hybrid lottery scheduler is more
responsive and helps reduce waiting time for processes
blocked on kernel resources relative to our initial lottery
scheduler implementation. Finally, we show that the hy-
brid lottery scheduler incurs minimal overhead relative to
the FreeBSD scheduler.

Unless otherwise noted, all results in this section were
obtained from the personal computer calledpartita. This
machine has one 200MHz AMD K6 (Pentium compatible)
processor, 64MB of main memory, and 3GB of ultra-wide
SCSI storage. No tests caused the machine to page.

5.1 Flexible Execution Rate Control

Here we demonstrate the features that we have gained by
replacing FreeBSD’s decay usage scheduler with lottery
scheduling. We refer the reader to Waldspurger’s the-
sis [20] for a wide range of additional examples and an
extensive analysis of lottery scheduling.

0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (s)

N
o.

 O
pe

ra
tio

ns

Process 1 of user A
Process 2 of user A
Process of user B

Figure 4: This figure shows the progress of three CPU-bound pro-
cesses under lottery scheduling. The top curve represents a pro-
cess run by one user while the bottom curves represent two pro-
cesses run by another user. When the first process finishes, the
other processes have made 47% and 46% progress toward com-
pletion (50% each is ideal).

We demonstrate the ease with which a user can control
the execution rate of her programs in Figure 3. This fig-
ure shows three CPU-bound processes assigned tickets in
a 3:2:1 ratio making progress at approximately the same
ratio. Curious as to how hard this is to achieve using the
FreeBSD scheduler, we found through trial and error a
number ofnice values that come close. Thenice values
that we discovered, +10, +5, and 0, are not intuitively map-
pable to our goal of 3:2:1. Naturally, any other ratio would
be equally difficult to implement. Further, while lottery
scheduling maintains the 3:2:1 ratio irrespective of system
load, the FreeBSD scheduler unpredictably schedules these
processes if other jobs are running.

We demonstrate user workload insulation in Figure 4.
Despite one user running two CPU-bound processes, the
second user is able to receive approximately twice the
throughput from one CPU-bound process.

5.2 Performance

In this section we show the utility of windowed ticket boost,
abbreviated quanta, and kernel priorities.

The minimum latency that humans can discern varies be-
tween 50–150ms depending on the individual [15]. We
set up the following experiment to test the responsiveness
of our hybrid lottery scheduler. We run one completely
CPU-bound process against a bimodal process, both with
the same number of tickets. This bimodal process is CPU-
bound for the first 15 seconds, interactive for the next 20
seconds, and then CPU-bound again for the remaining 15
seconds. In the interactive stage, the process repeatedly
computes for approximately 5ms and then sleeps for about
100ms, simulating an editor such asemacs. While these

Dispatch Latency (milliseconds)
0–15s 15–35s 35–50s 22–35s

Without Windowed Ticket Boost 29.85 (58.18) 9.13 (27.79) 27.24 (49.64) 10.59 (31.63)
With Windowed Ticket Boost 27.79 (58.46) 2.68 (12.84) 27.58 (50.92) 0.05 (0.02)

Table 1: This table presents the data from Figures 5 and 6 numerically. We show the average dispatch latency (and standard deviation
in parentheses) in milliseconds for the bimodal application for each of its three stages of execution, with and without windowed ticket
boost. Between 15–35 seconds we perform better with windowed ticket boost, although some of this time is spent discovering that the
process became interactive. In the fourth column we show the dispatch latency during seconds 22–35, which is when the scheduler has
identified the process as interactive and is applying a substantial ticket boost.

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Time (s)

D
is

pa
tc

h
La

te
nc

y
(m

s)

No Ticket Boost

Figure 5: This figure shows the dispatch latency of a bimodal pro-
cess competing against a CPU-bound process under our hybrid
lottery scheduler with windowed ticket boost disabled. From sec-
onds 15 to 35 (marked by the thick bars) the process is interactive,
yet the scheduler is unable to schedule it in a timely manner.

two processes compete, a third process wakes up every
50ms and goes back to sleep immediately simply to cause
occasional rescheduling events as would be triggered by X
or background processes in an actual workload.

The most important metric for responsiveness is dis-
patch latency after user input, that is, the time elapsed be-
tween when a process becomes runnable insetrunqueue()
and when it is chosen to run bylott choosenext runner().
We ran the described benchmark with and without win-
dowed ticket boost as shown in Figures 5 and 6, and Ta-
ble 1. During the interactive phase (seconds 15–35) the
scheduler with windowed ticket boost disabled is unable to
schedule the process fast enough to avoid discernible chop-
piness. Although the dispatch latency is somewhat lower
than during the CPU phases due to compensation tickets,
there are still many points over 100ms. This occurs be-
cause the CPU-bound process occasionally gets preempted,
earning compensation tickets which puts it on equal footing
with the interactive process. When windowed ticket boost
is enabled, we see an adjustment period for about seven
seconds after the bimodal process becomes interactive. As
the 10 second sliding window moves forward, the process’s

0 10 20 30 40 50
0

50

100

150

200

250

300

350

400

450

500

Time (s)

D
is

pa
tc

h
La

te
nc

y
(m

s)

Windowed Ticket Boost

Figure 6: This figure shows the dispatch latency of a bimodal pro-
cess competing against a CPU-bound process under our hybrid
lottery scheduler with windowed ticket boost enabled. From sec-
onds 15 to 35 (marked by the thick bars) the process is interactive
and after a short adjustment period, the process exhibits excellent
dispatch latencies.

ticket boost increases until it is always favored by the
scheduler when it becomes runnable. From seconds 22 to
35, the dispatch latency is in the tens of microseconds, far
below human perception. Once the process becomes CPU-
bound again, the system quickly adapts by lowering the
process’sticket boost parameter, ensuring that it will
not get more than its share of CPU time.

To ensure that windowed ticket boost does not negatively
effect the completely CPU-bound process, we show the
progress of both processes with windowed ticket boost en-
abled in Figure 7. Between seconds 0–15 both processes
consume CPU time at the same rate. When the bimodal
process becomes interactive between seconds 15–35, the
CPU-bound job nearly doubles its throughput, getting at
least its share. Finally, when the interactive process be-
comes CPU-bound from seconds 35–50, the sliding win-
dow quickly adapts to lower itsticket boost so that it
does not dominate the CPU. The bimodal job only needs to
consume the CPU at a faster rate for less than one second
before losing its boost. We omit the same graph with win-
dowed ticket boost disabled because it is nearly identical.

0 10 20 30 40 50
0

50

100

150

Time (s)

N
o.

 O
pe

ra
tio

ns

CPU−bound job
Bimodal job

Figure 7: This figure shows the computational progress of the
CPU-bound and bimodal jobs with windowed ticket boost en-
abled. When the bimodal job enters its interactive stage between
seconds 15 to 35, the CPU-bound job makes progress 1.9 times
faster than when both jobs are CPU-bound.

Without abbreviated quanta, the dispatch latency for the
bimodal process when it is interactive would never be be-
low about 100ms. Note that the bimodal process is always
chosen by the scheduler at the start of a new quantum. After
it goes to sleep, the scheduler chooses the CPU-bound pro-
cess. Unless abbreviated quanta is employed, it will con-
sume CPU time until the time slice elapses.

To show the utility of kernel priorities, we instrumented
the FreeBSD kernel to provide us with statistics concerning
kernel lock contention. Every 15 minutes we took a 30 sec-
ond log of each time a process went to sleep (viatsleep()),
for what purpose it went to sleep, and for how long. We
ran one set of numbers with kernel priorities enabled, and
one set without, each for a 24-hour period onsoda, a busy
production machine on which we have deployed our hy-
brid lottery scheduler. Although there is some uncertainty
in our measurements due to our inability to completely con-
trol the workloads over both runs, we took care to ensure
that the workloads were roughly equivalent by comparing
the number of users logged in, the context switch rate, and
the paging activity.

Over a 24-hour period, there were about 40 distinct rea-
sons why processes went to sleep. We present an abbre-
viated version in Table 2. We omit sleeps that occur less
than 100 times and sleeps initiated by processes that neither
held a lock before going to sleep nor held one upon wak-
ing (such as when a process goes to sleep on a timer event).
We compare the percent reduction in sleep frequency, sleep
duration, and weighted (by frequency) sleep duration when
running with kernel priorities enabled. Due to latency vari-
ations in network and terminal-related events which cause
long-tailed wait distributions, we used the sleep duration
median to generate the data presented.

% improvement with kernel priorities
wmesg type freq. duration weighted

biowait disk 4.43 20.38 23.91
ffsfsn fs 8.53 25.26 31.63
getblk fs 39.37 39.15 63.11
pipdwt ipc 75.97 27.33 82.54
piperd ipc 44.51 �1487:28 �780:72
sbwait net �14:11 63.39 58.22
swpfre vm �101:97 52.75 4.57
swread vm 16.09 34.53 45.06
ttywai tty �9:25 53.08 48.74
ttywri tty 11.69 53.74 59.15
ufslk2 fs 59.43 49.63 79.57
vnread fs �11:62 27.38 18.94
wait proc 18.12 15.94 31.18

Table 2: This table shows the effect of kernel priorities. We show
the places within the kernel where processes went to sleep, cat-
egorized as those related to the network, disk I/O, the file sys-
tem, inter-process communication, the virtual memory system,
terminal I/O, and process administration. We compare the per-
cent reduction in sleep frequency, sleep duration, and weighted
(by frequency) sleep duration when running with kernel priorities
enabled.

With kernel priorities, processes holding kernel re-
sources are preferentially scheduled, reducing the duration
of sleeps, which in turn reduces the frequency of sleeps
because there is a smaller window of time that a process
will find a resource in use. These trends are apparent al-
though we made no effort to artificially increase kernel re-
source contention. One major anomaly is the wait duration
for processes going to sleep waiting for data in a pipe read
(piperd). In the run with kernel priorities disabled, we
saw an unusually large number of very short sleeps from
the processssh (a secure telnet shell) on a pipe read during
one 30 second interval. We believe that this activity caused
this anomaly.

5.3 Overhead

We measure scheduling code fragments to quantify
scheduling overhead. To obtain accurate measurements, we
employ theRDTSC (Read Time-Stamp Counter) instruction
which reads a counter incremented every clock cycle. In
the following figures, error bars represent 95% confidence
intervals. The number of independent runs for each exper-
iment is listed with the experiment.

The two most common scheduling operations in both
the FreeBSD and hybrid lottery schedulers arecpu switch()
and setrunqueue(). Under the FreeBSD scheduler,cpu -
switch()makes a scheduling decision and performs a con-
text switch. In the hybrid lottery scheduler,cpu switch()
performs a context switch after callinglott choosenext -

FreeBSD Lottery
mean std. err. mean std. err.

1 process
cpu switch() 2.86 0.011 7.25 0.019
setrunqueue() 0.57 0.003 17.36 0.038

25 processes
cpu switch() 4.18 0.012 14.37 0.124
setrunqueue() 0.66 0.003 17.79 0.037

50 processes
cpu switch() 4.32 0.012 22.95 0.172
setrunqueue() 0.64 0.004 17.59 0.062

75 processes
cpu switch() 4.74 0.014 26.63 0.153
setrunqueue() 0.83 0.003 17.08 0.081

100 processes
cpu switch() 7.37 0.066 36.28 0.241
setrunqueue() 0.69 0.009 16.63 0.102

Table 3: This table presents the data from Figures 8 and 9 in numerical format. The times are in microseconds.cpu switch()makes a
scheduling decision and performs a context switch.setrunqueue()marks a process as runnable, and in the hybrid lottery scheduler also
computesticket boost for the windowed ticket boost.

0 25 50 75 100
0

5

10

15

20

25

30

35

40

Runnable Processes

T
im

e
(µ

s)

Lottery
FreeBSD

Figure 8: This figure shows the average number of microsec-
onds (out of at least 1,000 measurements) to perform a context
switch via thecpu switch()function while varying the number of
runnable processes.

runner() which makes a scheduling decision. Figure 8
shows the time it takes to runcpu switch()3 while varying
the number of runnable processes. Naturally, we include
the time inlott choosenext runner() in the hybrid lottery
scheduler measurements. As described in Section 4, our
scheduling algorithm isO(n) in the number of runnable
processes while the FreeBSD scheduler isO(1). This dif-
ference in algorithmic complexity is apparent in these re-
sults.

Figure 9 shows the time it takes to executesetrun-
queue(), which makes a process runnable. This function
is short in the FreeBSD scheduler. In the hybrid lottery
scheduler, we also compute the process’sticket boost,

3Other work often records context switch time as the elapsed time be-
tween passing control from user space in one process to user space in
another. Thus our reported times, which record just the elapsed time of
cpu switch(), may appear low.

0 25 50 75 100
0

2

4

6

8

10

12

14

16

18

Runnable Processes

T
im

e
(µ

s)

Lottery
FreeBSD

Figure 9: This figure shows the average number of microsec-
onds (out of at least 1,000 measurements) to make a process
runnable via thesetrunqueue()function while varying the num-
ber of runnable processes.

which requires iterating through a 10 element array. While
the overhead is substantially higher in the lottery scheduler,
this function isO(1) in both schedulers. We do not know
why neither curve is entirely flat. Table 3 presents the data
from both Figures 8 and 9 in numerical format.

The preceding experiments uncovered measurable dif-
ferences between the FreeBSD and hybrid lottery sched-
ulers. Now we determine how appreciable these differences
are on the scale of compute-bound applications.

To measure the throughput of batch processes we use
rc564, a program that tries to find the solution to RSA’s
64-bit secret-key challenge. To exacerbate the effect of
our added overhead while runningrc564, we increase the
number of context switches that occur by running up to
10 processes calledinteractive at the same time. An
interactive process continually goes to sleep for the
shortest time possible and causes a context switch upon

1 2 3 4 5 6 7 8 9 10
300

305

310

315

320

325

Interactive Processes

K
ey

 R
at

e
(1

00
0/

s)

Lottery
FreeBSD

Figure 10: This figure shows the average number of keys tried
per second (out of 5 trials) byrc564 while varying the num-
ber of interactive processes. Note that the Y-axis begins at
300;000keys=s, exaggerating the apparent differences. The per-
formance under the hybrid lottery scheduler is always within 1%
of the FreeBSD scheduler.

waking due to abbreviated quanta. Oneinteractive pro-
cess generates 128 context switches per second while 10
generate 626 context switches per second. Adding an in-
teractive process adds approximately 55 context switches
per second. The throughput ofrc564 versus the number
of interactive processes is shown in Figure 10. We
note that as moreinteractive processes are run, the per-
formance ofrc564 under the FreeBSD and hybrid lottery
schedulers worsens and diverges. In all runs,rc564 under
the hybrid lottery scheduler is less than one percent slower
than under the FreeBSD scheduler.

Curious as to what the context switch rate is on busy
systems, we measuredwcarchive, the world’s largest and
busiest FTP site4. The average number of context switches
over a 30 second interval on this site was 2589 per sec-
ond. As the previous experiment did not show a large dif-
ference between the FreeBSD and hybrid lottery sched-
ulers, we ran a program which simply loops and main-
tains a counter of how many loops it made for 5 min-
utes, while simultaneously running 100interactive pro-
cesses. Theseinteractive processes pushed the number
of context switches per second up to 5160 averaged over the
run. In this very extreme test we were about 15% slower
than the FreeBSD scheduler. If such an scenario realisti-
cally occurred, we could minimize our overhead at the cost
of some accuracy by not computingticket boost on ev-
ery call tosetrunqueue(), but perhaps every 10th call.

4When we took this measurement in December 1997,wcarchive

stored 142GB on-line and supported up to and often reached 2750 si-
multaneous connections.wcarchive is located at ftp://ftp.cdrom.com/.

PID USERNAME PRI NICE SIZE RES STAT TIME WCPU CPU COMMND

555 jwm 92 0 808K 164K RUN 0:17 16.34% 16.25% rc564

553 peterm 90 0 7392K 8012K RUN 0:18 16.28% 16.21% xoopic

552 peterm 90 0 7392K 8012K RUN 0:18 16.12% 16.06% xoopic

550 peterm 90 0 7392K 7852K RUN 0:18 16.12% 16.06% xoopic

551 peterm 90 0 7392K 7864K RUN 0:18 16.08% 16.02% xoopic

554 peterm 89 0 7392K 8012K RUN 0:18 16.05% 15.98% xoopic

Table 4: This table shows the output fromtop while two users are
running one and five CPU-bound processes respectively under the
FreeBSD scheduler. The lack of load insulation enablespeterm

to obtain an unfair percentage of the CPU.

6 Experience

We have deployed our hybrid lottery scheduler onsoda.-

csua.berkeley.edu and meeko.eecs.berkeley.edu,
two production machines.soda is the central machine
for the Computer Science Undergraduate Association at
UC Berkeley. soda is powered by one 200MHz AMD
K6 (Pentium compatible) processor, 256MB of RAM, and
15GB of ultra-wide SCSI storage.soda supports over
2400 shell accounts and often has over 150 unique users si-
multaneously logged on accessing USENET, reading mail,
participating in chat rooms, and developing code.soda

also manages over 200 mailing lists, and on an average
day, completes roughly 170,000sendmail transactions.
Finally, soda runs a web server that receives approxi-
mately 50,000 accesses a day.meeko runs on one 200MHz
AMD K6, 128MB of main memory, and 22GB of ultra-
wide SCSI storage.meeko belongs to the FreeBSD Users’
Group at UC Berkeley.meeko runs a web server and mir-
rors part ofwcarchive which is offered on its anonymous
FTP server. In addition,meeko exports a filesystem via
NFS. There are usually 5 users logged ontomeeko actively
developing code while a couple dozen users engage in a
multi-user game (MUD). These systems have been run-
ning our hybrid lottery scheduler since December 1997 (1.5
years). That we have received no complaints is a testament
to our implementation’s stability and performance.

It is especially important to have load insulation on a
machine likesoda that supports a large user community
on one processor. We show the load insulation properties of
both the FreeBSD and hybrid lottery schedulers by looking
at the output of the UNIXtop utility while two users run
the CPU-bound processesxoopic andrc564. xoopic is a
particle-in-cell plasma simulation that calculates fields on
a 2-D mesh using Maxwell’s equations. Tables 4 and 5
show no load insulation under the FreeBSD scheduler, and
reasonably accurate load insulation under the hybrid lottery
scheduler.

Our latest version of the hybrid lottery scheduler incor-
porating windowed ticket boost has not been deployed to
soda and meeko because they are used exclusively over
networks of significant latency and thus would not appreci-
ate the benefits offered by this extension.

PID USERNAME PRI NICE SIZE RES STAT TIME WCPU CPU COMMND

296 jwm 98 0 808K 392K RUN 0:28 52.21% 48.71% rc564

272 peterm 76 0 7392K 7544K RUN 1:02 11.63% 11.63% xoopic

275 peterm 65 0 7392K 7716K RUN 0:57 9.61% 9.61% xoopic

282 peterm 64 0 7392K 8032K RUN 0:50 9.50% 9.50% xoopic

274 peterm 55 0 7392K 7636K RUN 0:57 7.90% 7.90% xoopic

273 peterm 53 0 7392K 7600K RUN 0:55 7.13% 7.13% xoopic

Table 5: This table shows the output fromtop while two users are
running one and five CPU-bound processes respectively under the
hybrid lottery scheduler.jwm is able to receive about 50% of the
CPU despite having only one runnable process.

7 Related Work

Process scheduling on time-sharing systems has been stud-
ied extensively [13, 11]. A number of fair-share schedulers
fairly allocate CPU time to classes of processes over long
time spans [12, 5]. Recently introduced proportional-share
schedulers such as lottery scheduling [21] and EEVDF [17]
strive for instantaneous fairness; that is, making fair
scheduling decisions against only the currently runnable set
of processes. Another proportional-share scheduler from
Waldspurgeret al. is stride scheduling, which determinis-
tically schedules processes with higher throughput accu-
racy and lower response time variability compared to lot-
tery scheduling [22]. Since they both employ the same
ticket framework, our extensions to lottery scheduling are
also applicable to stride scheduling. We choose to extend
lottery scheduling over other schedulers because the core
algorithm is simple.

Although tickets enable flexible resource control, it is of-
ten difficult for users to assign tickets among workloads to
meet higher-level performance goals. Recent work from
Sullivanet al. introduces application-specific “negotiators”
that enable automatic ticket exchanges between processes
desiring different resource allocations [19]. In other work,
a feedback-driven reservation-based scheduler by Steere
et al.monitors process progress to divine appropriate CPU-
time allocations transparently to the user [16].

Arpaci-Dusseauet al. studied stride scheduling in the
network of workstations context [1]. Part of their aim was
to provide better responsiveness under mixed workloads.
They award a sleeping (interactive) process exhaustible
tickets that expire when it receives its fair share of CPU
time. However, most interactive processes will never use
their allocation because they are usually sleeping. For these
processes, rather than strive for CPU-time fairness, we be-
lieve that dispatch latency should be minimized. Further,
without modification, their system does not handle pro-
cesses with interactiveand compute phases. A process
that has slept for a long time and wakes up will dominate
the CPU for an extended duration in virtue of holding ex-
haustible tickets. Finally, their algorithm for computing ex-
haustible tickets assumes that the total number of runnable
tickets is constant. In reality, this number fluctuates as pro-
cesses are created and destroyed, and sleep and wake up.

8 Future Work

Hybrid lottery scheduling heuristically identifies and re-
wards interactive processes by how much of their allocated
CPU time they consume. However, some interactive pro-
cesses, such as those that render graphics, also consume
moderate amounts of CPU. Evanset al. suggest several
methods based on past user action and window manager
cooperation for an operating system to recognize interac-
tive processes [6]. We wish to incorporate these methods
into our scheduler so that once recognized, these processes
can be allocated more tickets and preferentially scheduled.

In Section 3.1 we argued that kernel priorities are more
desirable than ticket transfers for encouraging processes to
release kernel resources quickly. However, to our knowl-
edge, the chosen ordering of kernel priorities has not been
rigorously studied and thus may not provide optimal per-
formance in all cases. Ticket transfers are more dynamic
because they enable additive and transitive transfers from
multiple blocked processes. If the kernel can identify the
loaner and borrower when a kernel resource is under con-
tention, the kernel can perform thisimplicit ticket transfer
transparently to the user. We wish to compare the through-
put of different workloads with implicit ticket transfers ver-
sus kernel priorities.

9 Conclusion

This work incorporates into a lottery scheduler the special-
izations present in typical operating system schedulers to
improve interactive response time and reduce kernel lock
contention. We began with a straightforward implementa-
tion of lottery scheduling which enabled control over pro-
cess execution rates and processor load insulation at the
cost of interactive responsiveness relative to the FreeBSD
scheduler baseline. To match the performance of the
FreeBSD scheduler, we added kernel priorities, abbreviated
quanta, and windowed ticket boost to lottery scheduling,
resulting in a hybrid lottery scheduler. Further, user feed-
back prompted us to add support for the UNIXnice util-
ity. These techniques have been applied without squander-
ing the proportional-share resource management seman-
tics. The principle technique used by these mechanisms is
dynamic ticket adjustments that influence scheduling order
while preserving CPU utilization targets.

Our measurements show that our optimized scheduler in-
curs more overhead than the FreeBSD scheduler, but that
these differences are negligible even under heavy work-
loads. We achieve throughput and responsiveness nearly
equal to the FreeBSD scheduler. Our system has been
deployed to two production machines with success. This
paper demonstrates that our hybrid lottery scheduler is a
viable process scheduler for the workloads that we have
tested.

Availability

Our hybrid lottery scheduler is available from http://www.-
cs.cmu.edu/˜dpetrou/hls.tgz. Included are two new kernel
source files, acontext diff that patches 14 existing kernel
files, and the source for 10 user-level programs that interact
with the scheduler.

Acknowledgments

We thank the anonymous reviewers for their careful and de-
tailed comments. Thanks also go to UC Berkeley’s Com-
puter Science Undergraduate Association and FreeBSD
Users’ Group for permitting us to deploy our experi-
mental kernel on their production machines. Our col-
leagues Remzi Arpaci-Dusseau, Joan Digney, Jason Flinn,
Greg Ganger, Dushyanth Narayanan, and David Rochberg
kindly reviewed drafts. Finally, thanks go to Aaron
Smith for asking us to supportnice semantics and David
Greenman for providing us withwcarchive statistics.

References

[1] Andrea C. Arpaci-Dusseau and David E. Culler. Extend-
ing Proportional-Share Scheduling to a Network of Work-
stations. InProceedings of the International Conference on
Parallel and Distributed Processing Techniques and Appli-
cations (PDPTA’97), June 1997.

[2] D. L. Black. Processors, priority, and policy: Mach schedul-
ing for new environments. InProceedings of the USENIX
1991 Winter Conference, pages 1–12, January 1991.

[3] R. W. Conway, W. L. Maxwell, and L. W. Miller.Theory of
Scheduling. Addison-Wesley, Reading, 1967.

[4] Fernando J. Corbat´o, Marjorie Merwin-Daggett, and
Robert C. Daley. An experimental time-sharing system. In
Proceedings of the 1962 AFIPS Spring Joint Computer Con-
ference, volume 21, pages 335–344, May 1962.

[5] Raymond B. Essick. An event-based fair share scheduler. In
Proceedings of the Winter 1990 USENIX Conference, pages
147–162. USENIX, January 1990.

[6] Steve Evans, Kevin Clarke, Dave Singleton, and Bart
Smaalders. Optimizing Unix Resource Scheduling for User
Interaction. InProceedings of the 1993 Summer USENIX,
pages 205–218. USENIX, June 1993.

[7] The FreeBSD Operating System, 1999. See http://www.-
freebsd.org/.

[8] Berny Goodheart and James Cox.The Magic Garden Ex-
plained: The Internals of UNIX System V Release 4, an
Open Systems Design. Prentice-Hall, 1994.

[9] Joseph L. Hellerstein. Achieving Service Rate Objectives
with Decay Usage Scheduling.IEEE Transactions on Soft-
ware Engineering, 19(8):813–825, August 1993.

[10] Kevin Jeffay, F. Donelson Smith, Arun Moorthy, and James
Anderson. Proportional share scheduling of operating sys-
tem services for real-time applications. InProceedings of

the 19th IEEE Real-Time Systems Symposium, December
1998.

[11] L. Kleinrock. A continuum of time-sharing scheduling. In
Proceedings of the AFIPS Spring Joint Computer Confer-
ence, pages 453–458, 1970.

[12] J. Larmouth. Scheduling for immediate turnround.Soft-
ware—Practice and Experience, 8(5):559–578, September/
October 1978.

[13] J. M. McKinney. A survey of analytical time-sharing mod-
els. ACM Computing Surveys, 1, 2:105–116, 1969.

[14] Marshall Kirk McKusick, Keith Bostic, Michael J. Karels,
and John S. Quarterman.The Design and Implementation of
the 4.4BSD Operating System. Addison-Wesley Publishing
Company, Inc., 1996.

[15] Ben Shneiderman.Designing the User Interface: Strate-
gies for Effective Human-Computer Interaction. Addison-
Wesley Publishing Co., 2nd edition, 1992.

[16] David C. Steere, Ashvin Goel, Joshua Gruenberg, Dylan
McNamee, Calton Pu, and Jonathan Walpole. A feedback-
driven proportion allocator for real-rate scheduling. InPro-
ceedings of the 3rd Symposium on Operating Systems De-
sign and Implementation (OSDI), February 1999.

[17] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy
Baruah, Johannes Gehrke, and C. Greg Plaxton. A Propor-
tional Share Resource Allocation Algorithm for Real-Time,
Time-Shared Systems. InIEEE Real-Time Systems Sympo-
sium, December 1996.

[18] Jeffrey H. Straathof, Ashok K. Thareja, and Ashok K.
Agrawala. UNIX scheduling for large systems. InProceed-
ings of the USENIX 1986 Winter Conference, pages 111–
139. USENIX, Winter 1986.

[19] David G. Sullivan, Robert Haas, and Margo I. Seltzer. Tick-
ets and currencies revisited: Extensions to multi-resource
lottery scheduling. InProceedings of the 7th Workshop on
Hot Topics in Operating Systems (HotOS-VII), March 1999.

[20] Carl A. Waldspurger.Lottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Management. PhD thesis,
Massachusetts Institute of Technology, September 1995.

[21] Carl A. Waldspurger and William E. Weihl. Lottery
Scheduling: Flexible Proportional-Share Resource Manage-
ment. InProceedings of the 1st USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI), pages
1–11, November 14–17 1994.

[22] Carl A. Waldspurger and William E. Weihl. Stride Schedul-
ing: Deterministic Proportional-Share Resource Mange-
ment. Technical Report MIT/LCS/TM-528, Massachusetts
Institute of Technology, MIT Laboratory for Computer Sci-
ence, June 1995.

