
Proceedings of USITS' 99: The 2nd USENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11–14, 1999

A U S E R ' S A N D P R O G R A M M E R ' S V I E W O F T H E
N E W J AVA S C R I P T S E C U R I T Y M O D E L

Vinod Anupam, David M. Kristol, and Alain Mayer

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A User's and Programmer's View of the New JavaScript Security

Model

Vinod Anupam David M. Kristol Alain Mayer

Bell Laboratories, Lucent Technologies

600 Mountain Avenue

Murray Hill, NJ 07974

fanupam,dmk,alaing@bell-labs.com

Abstract

In this paper we introduce a new security model

for JavaScript in Mozilla, as well as its program-

ming interface. We present important concepts

via examples from electronic commerce applications.

We also describe our experience of implementing the

model in the publicly available Mozilla source code.

This model is likely to be integrated into Navigator

5.0, which, as of this writing, is scheduled to be re-

leased in late fall, 1999.

1 Introduction

Web browser scripting languages are lightweight,
yet powerful procedural languages with rudimen-
tary object-oriented capabilities. Their source code
is typically embedded in an HTML page and exe-
cuted by an interpreter in the browser. As a form of
executable content, they add interactivity and au-
tomation to browsers. This means that a Web page
need no longer be static HTML, but can include
transportable programs that interact with the user,
control the browser, and dynamically create HTML
content. Examples of such languages are Netscape's
JavaScript, and Microsoft's VBScript (see [F97] and
[L97], respectively).

At the same time, scripting also adds to the
power of an adversarial entity. A user might visit a
dubious site (crook.com) and (unknowingly) down-
load scripts. Indeed, in the summer of 1997 we re-
ported in [CERT97, AM98] an attack against both
JavaScript and VBScript that allows a hostile entity
to plant a Trojan Horse script in a user's browser.
This script subsequently reports back all Web activ-
ity { URLs visited, private data supplied by the user
in a Web form, e.g., credit card numbers, social se-
curity numbers, company passwords, etc. Such an

attack works even when the user employs encryp-
tion (e.g., SSL) or when a user is behind a �rewall,
because the data is captured from the browser in-
side the �rewall, before it is encrypted. We further
learned that other people had discovered a series of
security
aws in earlier browser versions (see [L96]
for an overview). Unfortunately, the \tradition" of
security weaknesses being discovered did not stop
with us (see [K98] for an overview).

In March of 1998, Netscape decided to make the
Navigator source code available to the public (un-
der the name \Mozilla"). We consequently decided
to implement a new security model for JavaScript
in Mozilla. A technical description of the secu-
rity primitives used in our model can be found
in [AM98b].

We gave a demo of an early prototype \Bell Labs
Mozilla" to Netscape in late fall of 1998. Given
the positive feedback, we then went on to complete
\our" Mozilla and ship it to Netscape in March
1999. As of this writing, our contacts at Netscape
started to integrate our code into Navigator 5.0,
currently scheduled for release in late fall, 1999.
Check www.mozilla.org for updates on the progress
of Mozilla.

In this paper we focus on how our new model
bene�ts both the end user who surfs the Web and
the JavaScript programmer who designs the Web
sites that the end user visits. We also devote some of
the discussion on our implementation experience in-
tegrating our model into the existing Mozilla source
code base.

2 Brief Introduction to JavaScript

In this section, we give a very brief introduction
to JavaScript; for more details see [F97, KK97]).
JavaScript is a simple procedural language that

is interpreted by Web browsers from Netscape.
(JScript, Microsoft's implementation, is a clone
that is interpreted in Microsoft's Web browsers.)
JavaScript is object-based in the sense that it uses
built-in and user-de�ned extensible objects, but
there are no classes or inheritance. The code is
integrated with, and embedded in, HTML. By de-
fault, JavaScript provides an object-instance hier-
archy that models the browser window and some
browser state information. For example, the naviga-
tor object provides information about the browser
to a script, and the history object represents the
browsing history in the browser window.

Also, through a process called re
ection,
JavaScript automatically creates an object-instance
hierarchy of elements of the script's HTML docu-
ment when it is loaded by the browser. The location
object represents the URL of the current document,
while the document object encapsulates HTML el-
ements (forms, links, anchors, images, etc.) of the
current document. The re
ection process de�nes a
unique name space for each HTML page and thus
for each collection of scripts embedded in that page.
JavaScript is loosely typed: variables' data types are
not declared. JavaScript uses dynamic binding: ob-
ject references are resolved at runtime.

3 Overview of our Security Model

In this section, we give an overview of the secu-
rity primitives used in our model; for more details
see [AM98b]. Our design is based on the follow-
ing two basic building blocks: (1) Access Control

regulates what data a script can access on a user's
machine and in what mode; and, (2) Trust Man-

agement regulates how trust is established and ter-
minated among scripts executing simultaneously in
di�erent contexts. See [AM98b] for a detailed dis-
cussion and justi�cation of the security primitives
employed and what common goal is being realized
through them.

3.1 Security Policy and Access Control

Our JavaScript interpreter accepts as input, in
addition to the scripts to execute, a security pol-

icy from the browser user. Di�erent users may have
di�erent requirements with respect to their own pri-
vacy or that of the data they submit, and this will
be re
ected in their chosen security policies. Simply
put, a security policy de�nes a partitioning of the
JavaScript name space into inaccessible, read-only,
and read-write objects.

A policy also de�nes the action for the JavaScript
interpreter to take when the current script tries to
execute an operation that violates the access control
speci�cation that the policy's name space partition
de�nes.

A security policy further speci�es which external
protocols (e.g., loading a mailto: or ftp: URL)
the script is allowed to invoke and the appropriate
action to take in the event that a script attempts to
invoke a protocol not allowed by the policy.

3.2 Management of Trust

We use access control lists (ACLs) to regulate
access that scripts have to objects in name spaces
other than their own (e.g., a page in a di�erent
browser window or frame). In a nutshell, a docu-
ment's ACL is a list of URL paths or hostnames.
Only a script whose origin appears in the docu-
ment's ACL may access the name space of this
page. The ACL mechanism allows Web develop-
ers to both expand and contract the set of domains
that they trust. For example, store.com can put
partner.com on the ACL of an HTML document
that it serves to allow scripts from partner.com

full access to the page. Also, emall.com/store1
can prevent scripts from emall.com/store2 from
accessing its documents by setting its ACL to
emall.com/store1.

The ACL provides an all-or-nothing control for
access to a name space by other scripts. Another
script is trusted by a document if the script's origin
is listed in the document's ACL. Either every object
in the document's local name space is accessible (to
a trusted script), or none is (to an untrusted script).
To complement this, we introduce a new method,
setPrivate. If for any object obj a script executes
setPrivate(obj);, then obj (and any of its prop-
erties) is subsequently inaccessible, even to trusted
scripts.

4 The End User's View

In current browsers, the user's choice with re-
spect to JavaScript is truly limited. He/she can
either turn JavaScript completely o� or on for all
sites.

We introduce the notion of a security policy for
JavaScript. From the user's perspective, a security
policy is a bundled set of preferences with respect
to the following capabilities given to scripts that
execute on the user's machine:

� Access to re
ected objects: A script has access
to a number of objects in the JavaScript hier-
archy. For example, document.referrer indi-
cates the page from which the user arrived at
the current page, and navigator.platform in-
dicates the operating system on the user's ma-
chine. A policy aggregates access permissions
to these property policies of all re
ected objects.

� Access to external interfaces: A script also has
access to a number of external interfaces, such
as ftp (ftp: URL) and e-mail (mailto: URL)
protocols. It also has access to calls in the
Java language, through which it can capture
the user's IP address, for example (by calling
java.net.InetAddress). Again a policy ag-
gregates access permissions to all external in-
terfaces.

� Actions in the event of access violations: A
policy also speci�es the action to take by the
JavaScript interpreter if a script attempts to
violate the current policy.

Most end users will not want to be bothered with
such low-level details as the exact speci�cation of a
policy. Thus we o�er a small number of increas-
ingly strict prede�ned policies from which the user
can pick; see Figure 1. The chosen policy, the global
security policy, will be in e�ect whenever the user
starts visiting Web sites. A user can also pick pre-
de�ned policies to be in e�ect only for speci�c sites
(site-speci�c security policy). The user may specify
either a hostname or a speci�c URL for which this
policy should be in e�ect; see Figure 2. For example,
it makes sense to allow a more lenient policy when
browsing within an intranet than when accessing the
external Internet. In fact, as part of an overall cor-
porate security policy, the employees' browsers can
be initialized with a strict policy for external sites
and a liberal policy for internal sites.

As for many security tools (see, e.g., [WT98,
ZS96]), it is hard to design a user interface that, on
the one hand, does not restrict the power user from
fully exploiting the provided functionality, and, on
the other hand, does not confuse the average user,
the confusion leading to possible unwanted security
implications. For example, [WT98] call the problem
of choosing access rules and policies the abstraction
property and observe that such notions are often
alien and unintuitive to a wider user population.
Another factor mentioned in [WT98] is that users
get little feedback when they make an error in con-
�guring security aspects. Consequently, we think it
is very important that reasonable default settings

be chosen for the average user and that good rep-
resentative examples be chosen to explain in which
situations a given policy is adequate.

We envision that corporate administrators will
want to incorporate policy management (creating
and updating policies, installing new policies on
each desktop's browser, etc.) via some sort of direc-
tory service integration (e.g., LDAP-like solution).
Home users might also want to have tools to eas-
ily create or download (from certi�ably trusted site)
and then install new policies on their desktop. Thus,
policy management and its tools seem like a fruitful
area of further work.

4.1 Signed JavaScript

Netscape Navigator 4 and later versions support
digitally signed scripts that can request privileges,
and, subject to user approval, lift certain security
restrictions while executing. A digital signature al-
lows the browser to securely establish the author of
a signed JavaScript program (see [N98]). Crypto-
graphically signed scripts are not yet very popular,
partly because average users �nd it hard to grasp
the privilege-granting process or the implications of
granting a particular privilege.

For future versions of browsers we propose to in-
tegrate code signing into our model, by having spe-
ci�c security policies that go into e�ect if a signed
script is downloaded from a particular site. For ex-
ample, a Fidelity policy for the user's interaction
with the brokerage house might allow reading and
writing �les in a speci�c directory, so that the user
can study his account o�ine.

5 The JavaScript Programmer's

View

5.1 Domain and URL Based Trust
Management

JavaScript executes in the name space de�ned
by both the browser window and the HTML page
in which it is embedded. This name space is ac-
cessible to all scripts embedded in the same page.
Standard JavaScript also grants access to that
name space to scripts that run in other browser
windows, but that were loaded by an HTML
page that loaded from the same server. This
same origin policy leads to the situation where
scripts from, for example, e-mall.com/pet-shop

can access all data (e.g., credit-card num-
bers) that the user inputs into a form at

Figure 1: User Interface for Setting Browser Security Policy

Figure 2: User Interface for Setting Site-Speci�c Security Policies

https://e-mall.com/toy-store/checkout.html,
given that the user has pages from both shops open
at the same time. Note that this access is possi-
ble even though toy-store uses SSL to secure their
client's data.

In our model, the JavaScript programmer can
model trust explicitly by using ACLs. The
toy-store programmer can state in the initializa-
tion step of scripting in all of the toy-store pages:

<SCRIPT LANGUAGE="Javascript">

document.ACL =

"http://e-mall.com/toy-store";

...

</SCRIPT>

The above statement indicates that only scripts
from a URL that is pre�xed by the above element of
the access control list (ACL) are allowed to access
the page's name space. Thus, if a script embedded
in e-mall.com/pet-shop/snoop.html executes the
following:

<SCRIPT LANGUAGE="Javascript">

toy_store_check_out_window =

window.open("http://e-mall.com

/toy-store/checkout.html");

...

the page will be loaded into a new browser window
on the user's desktop, but its name space will be
inaccessible to the calling script.

If toy-store decides to collaborate with
baby-store in order to cross-link, then the initial-
ization might look like:

document.ACL =

"http://e-mall.com/toy-store

http://e-mall.com/baby-store";

...

If these two stores want to collaborate further with
a site that is not even part of the e-mall domain
(e.g., the parentsoup site), then while the existing
browsers do not allow this, our model can accom-
modate this easily by using the following:

document.ACL =

"http://e-mall.com/toy-store

http://e-mall.com/baby-store

www.parentsoup.com";

...

The last entry above is a domain name, which in-
cludes all pages from that domain in the ACL.

5.2 Fine-Grained Trust Management
via SetPrivate

The ACL-based approach is still an all-or-
nothing approach in the sense that by including a
page in its ACL, a script makes its whole name space
available to the other page. This coarse granularity
may not always be appropriate. The new security
model allows Web developers to prevent access to
sensitive information by marking it private by using
the setPrivatemethod. We motivate this by using
an example.

\Associates programs" are rapidly gaining pop-
ularity with e-commerce sites, such as amazon.com.
In their associates program, amazon.com pays
each participating site (like associate.com) a
small percentage of a sale that results from a
person's following a link from associate.com

to amazon.com, i.e., by a person who was re-

ferred by associate.com. Often, the asso-
ciates program is realized by a third-party net-
work, such as linkexchange.com. Currently,
both associate.com and linkexchange.com sim-
ply have to trust amazon.com to provide at the end
of each month a statement that accurately re
ects
the sales; the business relationship is clearly stacked
in favor of amazon.com| since linkexchange.com
and amazon.com are di�erent domains, the name
spaces on their respective pages are inaccessible to
each other. The same applies for associate.com

and amazon.com. At best the associate could
know that the user clicked on their link leading
them to amazon.com by appropriately instrument-
ing their Web page, and the third-party network
could know that this happened if referrals were redi-
rected through it. However, there is no way for ei-
ther of them to verify that the user engaged in a
purchase. While this may not a problem with a well-
known site such as amazon.com, better accountabil-
ity would boost these programs when other stores
(new-vendor.com) are involved.

While using ACLs would circumvent the prob-
lem of lack of access, new-vendor.com may not be
comfortable simply setting

document.ACL = "www.associate.com";

on all of its relevant check-out pages, as that
could potentially reveal con�dential client data
(e.g., credit-card number, etc.). However,
new-vendor.com might be willing to reveal some
of the non-con�dential customer data, such as the
fact that the referred client did indeed purchase
a book and the amount paid. In our model,

new-vendor.com would simply add the following
code on the check-out page:

<SCRIPT LANGUAGE="Javascript">

document.ACL = "www.associate.com";

setPrivate(CreditCardForm, "elements");

....

</SCRIPT>

The above code allows access by scripts from
www.associate.com to all the elements on the page
except the form with the name \CreditCardForm".
Assuming that all the client's con�dential data is in
this HTML form, it is now protected. We note that
the statement setPrivate(document.forms[0],

"elements"); is equivalent to the above, if \Cred-
itCardForm" is the �rst form on the HTML page.
But we caution that this version is less safe. If dur-
ing page evolution, a new form is inserted in front
of \CreditCardForm", the new form will be pro-
tected while \CreditCardForm" is all of a sudden
accessible again to www.associates.com. There-
fore we strongly recommend the use of names in
setPrivate.

Now, when associate refers a potential client to
new-vendor, its page can stay resident on the user's
desktop in its own window or frame; if the client
ever reaches the check-out page at new-vendor,
associate will be able to read the relevant data
used to verify new-vendor's end-of-month state-
ments. Note that new-vendor.com can generate
the necessary JavaScript automatically via server-
side logic based on referrer information. The ability
to selectively expose information realizes a better
balance in the business relationship between a store
and its associates. Furthermore, as soon as the user
leaves new-store.com's Web site, the associate no
longer has access to any information about the user.

A similar scenario exists for sites like shop.com

that serve as centralized resources providing infor-
mation about online stores. shop.com's customers
(online vendors) provide it with enough information
to organize stores into hierarchies, provide search-
able interfaces, etc. A user browsing shop.com's
Web site eventually clicks on a link on a page from
shop.com and is sent to store.com's Web site,
which is displayed as a frame on shop.com's page.
As in the earlier example, shop.com only knows that
the user clicked through to store.com, and is un-
aware of any activity that subsequently transpires.

The new security model allows shop.com's cus-
tomers (store owners) to put shop.com on the ACL
of pages they serve. store.com appropriately pro-
tects the information that it considers sensitive
(e.g., the user's credit card number) by marking it

Mozilla’s original JavaScript implementation

Our security layer

getSubjectOrigin
getObjectOrigin

CheckAccessPermission

Figure 3: Security Layers

private. shop.com thus has access to the informa-
tion that it needs for pay-per-click, pay-per-lead and
pay-per-sale type scenarios.

6 Security Code Layers and Harden-

ing of the Mozilla Layer

Our implementation adds a new security layer on
top of the existing Netscape code, realizing access
control, security policies, and trust management as
described in Section 3. We created a security layer
API and added calls to it from Netscape's code, as
depicted in Figure 3. (See Section 7 for further de-
tails.)

The robustness of the combined code depends
on �nding all the right spots in Netscape's code at
which to interpose our API calls such that we close
all back doors. At the same time, our implementa-
tion makes calls to basic functions in the Netscape
code and therefore relies on the correct behavior of
that code. Much of that code is devoted to iden-
tifying the subject and object origin URLs. (The
subject origin URL is the place where the executing
JavaScript code comes from. The object origin URL
is the place where the JavaScript code comes from
for the object being acted on.) If our code were to
get the wrong information, it could possibly grant
access inappropriately, thus opening a security hole.
Given the importance of this basic code, we suggest
a more methodical approach to realize these two ba-
sic functions. (See the subsequent subsections.)

Another area of concern is that object values
persist across document loads in a window. Each
document is supposed to form a separate con-

text. However, in Netscape's current implementa-
tion, window.name maintains its value across doc-
ument loads. A clever intruder could then access
the information that was supposed to be destroyed
with the object. While we have �xed the case
of window.name, we chose not to close this hole
in its generality, because we believe that the new
Netscape document object model (DOM) would do
so for us.

6.1 Finding the Subject Origin URL

JavaScript has a number of possible ways to pass
the control
ow or to generate an additional thread
of execution:

1. Function/method call: e.g., v = foo(x); or u
= otherWindow.foo(x);

2. Dynamic generation of JavaScript code: e.g.,
document.write(foo(x);); or
myWindow.eval(foo(x));.

3. JavaScript URL: e.g., otherWindow.location
= "javascript:foo(x)";

4. JavaScript invocation through HTML
(browser):

<a target=otherWin href="javascript:

alert(window.location);" >

Also, code invoked through installed event han-
dlers, \script" tags, etc.

Most \traditional" languages only have func-
tion/method calls. In those cases it is usually fairly
straightforward to determine which entity origi-
nated the call sequence by inspecting the call stack,
i.e., stack inspection. The additional methods and

exibility in JavaScript complicate this task. For in-
stance, dynamic invocation has the
avor of a func-
tion call, but the passing of control does not take
place instantly. In fact, a callee might be execut-
ing at a time when the caller is no longer on the
stack. Therefore, we propose the use of proactive
forward passing of the subject origin information.
Whenever a passing of the control
ow in the code
is indicated (and whether it is about to take place
right then or not), the interpreter sets the subject
domain of the callee to the subject domain of the
caller, in such a way that when the callee executes,
this value can be easily retrieved.

We distinguish three cases:

� The callee will begin executing immediately.
Either its stack frame is loaded right on top
of the caller's frame (e.g., regular function call)
or its stack frame is loaded onto another doc-
ument's stack frame (e.g., javascript URL).
Hence, the interpreter can propagate the sub-
ject origin information among stack frames
(which logically form a tree structure).

� The callee will execute at a later point (e.g.,
document.write). In this case, the callee will
be the top-level stack frame in its document.
Hence, the interpreter can store the subject
origin information as an attribute of the doc-
ument. Once the top-level stack frame gets
loaded, the interpreter fetches the subject ori-
gin information from the document attribute
and initializes the subject origin value in the
top-level stack frame.

� JavaScript is invoked through HTML. In this
case, the callee executes in a top-level frame of
the JavaScript stack of its document. Hence,
the browser should play the role of a JavaScript
caller as far as the passing of the subject origin
to the top-level frame is concerned.

Our goal is to arrive at a situation where, for
every stack frame loaded, the correct subject origin
can be retrieved from a well-de�ned location and,
consequently, there will never be the need to search
backward for it or even to fail and declare \unknown
origin", as might occur in the current version of
JavaScript (4.x browsers).

6.2 Finding the Object Origin URL

The object origin is always de�ned by its static
scope. That is, global objects always derive their
origin from the origin of their document. Similarly,
an object local to a function or method derives its
origin from the origin of the method. A reference
to a variable x in a document d loaded into window
w is really w:x and thus derives its object origin
from the origin of d. Let y be a local variable to
the function foo(), located in a document d in win-
dow w. Even when foo() is called from a di�erent
window otherWin, e.g., when \z = w.foo();" is a
line in otherWin, the object origin of y is still de-
termined by its static scope, the origin of d. Note
that in \otherWin.location = "javascript: x

= 1;"; \, the \"javascript: x = 1;" part is just
a string and not code; thus the static scope of x is
within the window otherWin.

Dynamically created documents (e.g., created by
document.write) should always inherit origin from
the creating window/document.

Here are some examples for code executing in a
window w1, loaded from origin o1:

v = foo(x);

// o1 remains subject origin

// for function ``foo''

v = w2.foo(x);

// o1 remains subject origin

// for function ``foo''

// foo will execute in w2's scope

w2.location = "javascript:foo()";

// o1 remains subject origin

// for function ``foo''

// foo will execute within a

// top-level stack frame

// of a new document in w2.

w1.document.write(foo());

// o1 remains subject origin for

// function ``foo''

// foo will execute in a new

// document in w1, whose origin

// is the same as the one of

// the current document

w2.eval(w1.foo(x));

// subject of this statement is o1 and

// thus is subject of foo.

// foo will execute in w2's context,

// since w2 owns the eval method.

Thus, in this context, the object origin can al-
ways be retrieved in one step, by accessing the en-
closing scope.

7 Our Implementation

Our implementation adds a new security layer on
top of the existing Netscape code, realizing access
control, security policies, and trust management as
described earlier.

7.1 Overview

With the exception of user interface code to sup-
port site security policies, nearly all the code that
was modi�ed directly supports the JavaScript ob-
ject model.

Property policies are implemented in the respec-
tive modules for their objects. They control whether
there is read-write, read-only, or no access to the
property. External interface policies are handled by

the code that sets a URL object's value. They con-
trol whether there is read-write, read-only, or no
access to the external interface.

Our implementation depends on correctly identi-
fying subject and object origin URLs. The subject
origin URL determines which site security policy to
use. The subject and object origin URLs together
determine ACL behavior.

When a policy violation of any kind occurs, the
implementation always presents an error dialog to
the user. Based on the value of a con�gurable con-
tinuation preference setting in the current policy,
the JavaScript interpreter may then stop interpret-
ing the o�ending script, or it may continue, while
denying the requested access.

7.2 Policy Lookup

To look up a policy P for a property or ex-
ternal interface, our implementation �rst checks
whether there is a site security policy for the ex-
ecuting script's origin URL. Otherwise it uses the
current default global security policy. It then checks
whether there is a preference for P in that security
policy.

Because we allow site security policies to ap-
ply to URLs, and not just to hostnames, the
site security policy lookup uses the longest (and,
therefore, presumably most speci�c) policy that
matches the subject URL. For example, assume
there are site security policies for e-mall.com

and http://e-mall.com/store1/. The subject
origin URLs http://e-mall.com/index.html and
http://e-mall.com/store2/ would both use the
�rst policy, whereas,
http://e-mall.com/store1/catalog.html would
use the second.

7.3 Property and External Interface
Policies

The per-property and per-external-interface poli-
cies were easy to implement. At the point in the
code where a get- or set-property function is imple-
mented, the modi�ed code checks whether there is
a corresponding property (external interface) policy
in e�ect, and, if so, whether the requested access
violates it (for example, attempting to write a read-
only property). Because this check happens fre-
quently, performance optimizations should be con-
sidered, such as caching previous results of checks or
building a hash table that can be e�ciently queried
to check whether an object's access is a�ected by
an existing policy. A vast majority of objects won't

be a�ected since a typical policy covers only a few
security-sensitive objects.

On a violation, the implementation checks the
continuation setting for the relevant security policy
and either aborts interpretation or continues with-
out granting access. If there is no violation, inter-
pretation proceeds normally.

Access to the new document.ACL property is a
special case. We unconditionally restrict access so
only the script that created the document has per-
mission to read or write document.ACL. Otherwise a
rogue script could attempt to change document.ACL
and gain access to the objects that ACLs protect.

7.4 Access Control List (ACL) Support

Because an ACL is tied to a document object,
the default ACL is the subject origin URL that cre-
ated the document. However, as stated earlier, that
script may change the value of document.ACL to en-
large the set of URLs that can access objects that
the ACL protects.

We implement ACL checks in those places in the
interpreter code where one object attempts to access
an object that might have arisen from a di�erent
context. The implementation checks the ACL for
the (containing object of the) object being accessed
against the accessing script's (subject) origin URL.
If the two are identical, or if one of the URLs in the
ACL is a pre�x of the subject origin URL, then the
check succeeds, and access is granted. Otherwise an
ACL violation occurs. As above, the continuation
policy on ACL violation is controlled by a prefer-
ence, but access to the protected object is never
granted if a violation occurs.

As described above, our current implementation
uses only pre�x matching for ACL checks rather
than fully general regular expressions, which are
costly to evaluate. Logically, an ACL check has to
be performed for each object access. Note however,
that the ACL check actually has to be performed
only once for each ACL/subject pair if we cache the
outcome of the check (and adjust or
ush the cache
when there is an assignment to an ACL). Thus un-
der such cache optimization, the use of regular ex-
pressions becomes feasible.

7.5 setPrivate, unsetPrivate

Even if access is granted according to the ACL,
the speci�c object may have been setPrivate. The
implementation does a separate check for whether
the object is setPrivate, and there is a separate
continuation policy for failed attempts to access one.

As with document.ACL, we only allow the script
that created a document to set or unsetPrivate

objects.

7.6 Hierarchy of Tests: \Hedging Your
Bets"

The various tests outlined above and summa-
rized here must all succeed before access to an ob-
ject or property is granted. The order of checks is
something like this:

1. Check whether the (JavaScript) script is signed,
and if so, whether the signature is valid.
(The current Netscape security model does
not allow access to some objects/methods
unless the script presents a valid signature.
One example is the user preferences object,
navigator.preferences. We integrate this
approach into our access control.)

2. Check for ACL violation.

� Determine whether subject has permission
to access object.

� Check that the accessed object has not
been setPrivate

3. Check for property policy violation

� Determine which security policy applies
(in order): site policy, global policy, de-
fault policy.

� Check whether there's a property policy
under the applicable security policy.

� Check whether the property policy has
been violated

Note that this hierarchy means that even a
signed script is not granted unconditional access
to JavaScript objects. A signed script makes some
parts of the object model accessible that otherwise
would not be, but the signed script's code is still
subject to the same set of checks as any other script.

7.7 User Interface Changes

We pre-de�ned three model security policies:
strict, moderate, and default, where default

corresponds to Mozilla's behavior prior to our
changes. When a user enables JavaScript in Ad-
vanced Preferences, she can now select one of these
three security policies as her global security policy.
Moreover, there is a table of site security policies,
initially empty, where she can add, delete, or edit

site security policy selections. This facility allows
her to enter a hostname or URL in a text �eld and
to mark a checkbox for the desired policy (strict,
moderate, default).

8 Summary and Outlook

We have described the bene�ts of our model and
implementation for the end user and the JavaScript
programmer. Our model furthermore bene�ts the
Mozilla developers: If new security bugs emerge,
browser developers can use specialized �ne-grained
policies that control access to sensitive objects in
order to identify paths that need to be followed to
mount a successful security breach. Furthermore, in
case of such a security bug, Mozilla can make avail-
able specially tailored policies to download, which
protect against exploitation of this security bug.
This is a more desirable course of action than the
current practice of suggesting turning o� JavaScript
entirely until a bug �x is available. (Our current
implementation allows only prede�ned security poli-
cies, but it could be extended to provide for user-
de�ned policies.)

Our positive experience with using site-speci�c
security policies indicates that such policies for the
whole browser (on-o� for cookies, Java, JavaScript,
etc.) should be considered.

We hope that the �nal implementation will be
scrutinized early on by the Mozilla open source com-
munity, so that remaining weaknesses can be iden-
ti�ed before they become actual \bugs".

Acknowledgments: We thank Murali Rangara-
jan, who did the initial work on the implementation
of the new security model. We are grateful to Norris
Boyd and Tom Pixley at Netscape for their help and
encouragement. Finally, Eric Brewer at Inktomi, in
his role as USITS shepherd, helped us to make a
number of improvements.

References

[AM98] V. Anupam and A. Mayer, Security of Web

Browser Scripting Languages: Vulnerabilities,

Attacks and Remedies, Proc. 7th USENIX Se-
curity Symposium, January 1998.

[AM98b] Vinod Anupam and Alain Mayer, Se-

cure Web Scripting, IEEE Internet Computing,
Nov/Dec 1998.

[CERT97] CERT* Advisory CA-97.20, JavaScript
Vulner-

ability, CERT Coordination Center, July 1997,
ftp://info.cert.org/pub/cert advisories/

CA-97.20.javascript.

[F97] D. Flanagan, JavaScript: The De�nitive
Guide. O'Reilly and Associates, January 1997.

[KK97] P. Kent, J. Kent, O�cial Netscape
JavaScript 1.2 BookNetscape Press & Ventana.

[K98] E.
Kubaitis, WWW Browser Security and Pri-
vacy Flaws, http://www.cen.uiuc.edu/�ejk/

browser-security.html

[L96] J. R. LoVerso, JavaScript Security Flaws,
http://www.schooner.com/�loverso/javascript/

[L97] P. Lomax, Learning VBScript, O'Reilly and
Associates, July 1997.

[N98] Netscape Corp., JavaScript Security in Com-

minicator 4.x,
http://developer.netscape.com/docs/manuals/

communicator/jssec/contents.htm

[WT98] A. Whitten and D. Tygar, Usability of Se-

curity; A Case Study, CMU Tech. Report 98-
155.

[ZS96] M. E. Zurko and R. Simon, User-Centered
Security, New Security Paradigm Workshop,
1996.

