Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

USING FULL REFERENCE HISTORY FOR
EFFICIENT DOCUMENT REPLACEMENT IN
WEB CACHES

Hyokyung Bahn, Sam H. Noh, Sang Lyul Min, and Kern Koh

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Using Full Reference History for

Efficient Document Replacement in Web Caches

Hyokyung Bahn'

Sam H. Noh?

Sang Lyul Min’ Kern Koh'

'Department of Computer Science, Seoul National University,
Seoul 151-742, Korea. http://oslab.snu.ac.kr
2Department of Computer Engineering, Hong-Ik University,
Seoul 121-791, Korea. http://www.cs.hongik.ac.kr/~noh
3Department of Computer Engineering, Seoul National University,
Seoul 151-742, Korea. http://archi.snu.ac.kr

Abstract

With the increase in popularity of the World Wide
Web, the research community has recently seen a pro-
liferation of Web caching algorithms. This paper pre-
sents a new such algorithm, that is efficient and robust,
called Least Unified-Value (LUV). LUV evaluates a
Web document based on its cost normalized by the
likelihood of it being re-referenced. This results in a
normalized assessment of the contribution to the value
of a document, leading to a fair replacement policy.
LUV can conform to arbitrary cost functions of Web
documents, so it can optimize any particular perfor-
mance measure of interest, such as the hit rate, the byte
hit rate, or the delay-savings ratio. Unlike most existing
algorithms, LUV exploits complete reference history of
documents, in terms of reference frequency and re-
cency, to estimate the likelihood of being re-referenced.
Nevertheless, LUV allows for an efficient implementa-
tion in both space and time complexities. The space
needed to maintain the reference history of a document
is only a few bytes and furthermore, the time complex-
ity of the algorithm is O(log,n), where n is the number
of documents in the cache. Trace-driven simulations
show that the LUV algorithm outperforms existing al-
gorithms for various performance measures for a wide
range of cache configurations.

1. Introduction

In an effort to relieve the problem of network conges-
tion and latency on the World Wide Web (WWW), the
research community has recently seen a proliferation of
Web cache replacement algorithms [1, 2, 3, 5, 6, 8, 9,
10, 14]. This paper presents yet another such algorithm.

However, the algorithm that we propose has the fol-
lowing salient features:

* First, it shows the best performance for a wide range
of cache configurations in terms of popular perfor-
mance measures used in evaluating Web caching
algorithm, namely, the hit rate, the byte hit rate, and
the delay-savings ratio.

* Second, the proposed algorithm makes full use of all
of the past activities, in terms of reference frequen-
cy and recency, made upon the Web cache in de-
ciding which document to evict. By so doing, it not
only accurately distinguishes actively referenced
documents and those that are not so, i.e. hot and
cold documents, but it also distinguishes those
documents that are hot but are getting colder, and
those that are cold but are getting hotter. This is the
main reason behind the superior performance.

e Third, the implementation of the replacement algo-
rithm is efficient in both space and time complexi-
ties. The space needed to maintain the reference
history of a document is only a few bytes per docu-
ment and furthermore, the time complexity of the
algorithm is O(log, n), where n is the number of
documents in the cache. This is a feature that is not
easy to satisfy when the size of the document and
cost of fetching documents from remote sites have
to be incorporated into the algorithm, as it is in Web
caching [5,6,8].

e Fourth, the replacement algorithm retains the above
features irrespective of what the performance meas-
ure of interest is. As mentioned above, in Web

caching environments, the typical performance
measures of interest are the hit rate, the byte hit rate,
and the delay-savings ratio. The proposed algorithm
can easily be conformed to execute based on a par-
ticular performance measure. This is unlike many
previous algorithms that tightly couple the optimi-
zation of a particular performance measure into the
algorithm itself.

Before describing the algorithm, we describe, in the
next section, the measures that have been the focus of
interest and optimization in the Web caching realm. We
also briefly make comparisons of previously presented
algorithms. We focus on the differences and main fea-
tures of the algorithms rather than describing them in-
dividually in detail. In Sections 3 and 4, we describe
the proposed algorithm, namely, the Least Unified-
Value (LUV) algorithm and its implementation. In
Section 5, we describe the results of the simulation ex-
periments, and compare LUV’s performance with pre-
viously proposed algorithms. Finally, we conclude in
Section 6.

2. Performance Measures and Related
Works

Performance measures of interest in the Web caching
realm can be defined according to the goal of caching.
The three popular performance measures used in Web
caching, that is, the hit rate, the byte hit rate, and the
delay-savings ratio, denoted as HR, BHR, and DSR,
respectively, can be described as follows:

HR= 3 hi/% r

BHR =3 (s;[h) /3 (s;1)

DSR =3 (d;[h) /3 (d;F;)
where

h; : number of hit references to document i,

r; : total number of references to document i
(number of hits + number of misses),

s; : size of document i,

d; : delay time to fetch document i from the
original server to the cache.

HR is the measure used in traditional caching systems
such as file caching and database buffer management,
and represents the number of hit references over the
total number of references. BHR represents the number

of bytes saved from retransmission by using the cache
over the total amount of bytes referenced. BHR consid-
ers the size of the Web document, but does not consider
the difference in retrieval costs. Among documents that
are of the same size, those that incur higher cost in re-
trieving the document should be retained in the cache
longer than those that incur lower cost. DSR, which
considers this matter in terms of retrieval latency, rep-
resents the reduced latency by virtue of a cache hit over
the total latency incurred when assuming caches are not
used [8]. One may also define other new performance
measures that reflect the focus of interest one wants to
measure. For example, Kelley et al. define VHR (value
hit rate) which represents a normalized measure of so-
cial welfare [14]. In this case, performance is measured
by simply replacing the delay time (d;) in DSR by value
in VHR.

Many of the previous algorithms proposed for Web
caching have attempted to optimize performance for
one particular measure. The LRU, LFU, SIZE [9],
HYBRID [10], and LNC-R-W3 [8] are such algorithms
(Note the Performance Measure column of Table 1).
These algorithms have a weakness that as the perfor-
mance measure of interest changes due to circumstan-
tial changes, they have difficulty in adjusting to these
changes. The GD-SIZE [2], LRV [5], sw-LFU [14],
and LUV algorithms, on the other hand, are robust to
changes in the performance measure of interest. How-
ever, for the LRV algorithm, the time complexity varies
according to the performance measures. While the al-
gorithm is efficient for the byte hit rate measure, for
other measures the complexity of the algorithm is O(n),
which makes it impractical as an on-line algorithm. For
this reason, a recent version of LRV restricts their op-
timization of the algorithm to only the byte hit rate
measure [15]. Another weakness of the LRV is that its
replacement decision is based on extensive empirical
analysis of trace data. Finally, the MIX algorithm tries
to optimize the combination of the three measures, i.e.,
HR, BHR, and DSR [6].

For caching algorithms to be practical, it is important
that the time complexity of the algorithm not be exces-
sive, preferably not higher than O(log, n) where 7 is the
number of documents in the cache [2,4]. Algorithms
that do not meet this criterion are the LNC-R-W3 and
MIX algorithms (Note the Complexity column of Ta-
ble 1).

Table 1. A summary of Web caching algorithms.

Performance Complexity
Maintaining Reference History Measure for (n is the number of Advantage/Weakness
Algorithm which the cached objects)
Algorithm .
Recency Frequency Optimizes Time Space Advantage Weakness
LRU Last r.eference No Fixed to BHR o) O(n) Fixed performance
time . measure;
Simple to Consid rtial
Number of implement onsiders partia
LFU No references Fixed to BHR | O(log, n) O(n) aspects of reference
while in cache history
Keeps many Fixed performance
SIZE [9] No No Fixed to HR O(log, n) O(n) documents in Ineasure, .
cache Does not consider
reference history
Per server informa-
+
HYBRID Number of . o(n) " per Good estimation of | tion overhead;
No references Fixed to DSR O(logan) | server infor- .
[10] o . download latency Fixed performance
while in cache mation
measure
Otkn) + Perception of
LNC-R- k-th reference | Based on k-th . replaced pt Time complexity;
. . Fixed to DSR O(n) s normalized con-
W3 [8] time reference time document’s S Space overhead
. . tribution to DSR
information
Fixedto BHR | O(1) Olm) +
replaced
LRV [5] Last reference Number of document’s | Considers trace Trace analysis over-
time references Any other O(n) information | characteristics head
measure " + parameter
value
No parameter; Does not consider
GD-SIZE Last reference HR, BHR, k-competitive; frequency;
. No DSR, or any O(logy n) O(n) May cause cache
[2] time Any performance . s
other measure measure possible pollution with high
P cost documents
Mix [6] | Lestreference If‘?e?bﬁr e(t)sf HR, BHR, and | O(n) Cglr:;dersa?"élilme- Time complexit
time elerenc DSR combined p P ¢ comp y
while in cache ters
La;t reference Number of HR, BHR, Does not consider
sw-LFU time used Any performance
. references DSR, or any O(logy n) O(n) . recency except to
[14] only as a tie o measure possible .
breaker while in cache other measure break ties
Uses complete
Time of all Number of HR, BHR, reference history;
LUV past refer- references DSR, or any O(logy n) O(n) Best performance; | Parameter tuning
ences while in cache other measure Any performance
measure possible

In terms of maintaining previous reference history,
most of the algorithms maintain and use the recency of
the last reference to the document, with the exception
of the LNC-R-W3 algorithm that uses the k-th reference
(Note the Maintaining Reference History column of
Table 1). The LNC-R-W3 algorithm uses a strategy
similar to the LRU-k algorithm that was proposed for
buffer caching [7]. In contrast, the LUV algorithm, as
we will show later, uses the reference recency history of
all past references.

As for the reference frequency history, some algo-
rithms simply use the frequency count, while others
combine this information with the recency history that
is maintained. The GD-SIZE algorithm, however, does
not consider any frequency information. Again, note
that the LUV algorithm uses the frequency count as
well as the recency history of all prior references to a
document.

Another aspect that may be considered in classifying
replacement algorithms is the way in which reference
history is maintained. Basically, there are two ways to
maintain the reference history of documents. One is in-
cache-history and the other is perfect-history. The in-
cache-history method retains the reference history of
only those objects that are in the cache. Hence, referen-
ce information is lost once the object is evicted. On the
other hand, the perfect-history method retains the refer-
ence history of an object even after its eviction, allow-
ing this information to be used when it returns to the
cache. This method may offer considerable information
about the reference behaviors, resulting in better pre-
diction of future references than the in-cache-history
method. However, it incurs more space and time over-
head for maintaining the information of the evicted
objects. To resolve this problem, perfect-history algo-
rithms may choose to retain approximations of the ref-
erence history.

Breslau et al. show that perfect-history LFU outperforms
in-cache-history LFU in terms of HR and BHR [13].
Recency history, i.e. reference time information, can
also be maintained as either in-cache-history or perfect-
history. In fact, most caching algorithms may be im-
plemented using both in-cache-history and perfect-
history methods. However, this paper basically deals
with in-cache-history algorithms with the exception of
some algorithms that inherently use perfect-history such
as the LNC-R-W3 and LRV algorithms. Other algo-
rithms shown in Table | are in-cache-history algorithms
unless explicitly stated.

Other features of various Web caching algorithms,
including advantages and weaknesses, are summarized
in Table 1.

3. The LUV (Least Unified-Value) Algo-
rithm

In this section, we describe the Least Unified-Value
(LUV) replacement algorithm. LUV evaluates a Web
document based on its retrieval cost normalized by the
likelihood of it being re-referenced. This results in a
normalized assessment of the contribution to the value
of a document, leading to a fair replacement policy.
Like most existing algorithms, LUV associates a value
Value(i) to each document i in the cache and, when

needed, replaces the document that has the smallest
Value. Value(i) in LUV is defined as

Value(i) = Weight(i) LH(7).

Weight(i) denotes the retrieval cost of a document per
unit size and is defined as

Weight(i) = c;/ s;

where ¢; and s; denotes the cost and the size of docu-
ment i, respectively. ¢; can be defined differently ac-
cording to the performance measure of interest, and for
the HR, BHR, and DSR measures, the ¢; value used
would normally be 1, the document size, and the
download latency, respectively. For other measures
such as social welfare as referred to by Kelly et al. [14],
one can define c¢; appropriately for the performance
measure of interest.

H(i) represents the likelihood of re-reference, that is,
the worth of the document based on observations of
past behavior. For the LUV algorithm, this is based on
the recency and frequency history of all of the past ref-
erences on document i. This notion is taken directly
from the LRFU replacement policy [4]. Each reference
to a document i in the past contributes to H(i) and a
reference’s contribution is determined by a weighing
function F(x) where x is the time span from the referen-
ce in the past to the current time. For example, assume
that document i was referenced at ¢, t,, and ;. Then,
H(7) at current time, 7., is computed by

H(i)=F(d)) + F(J,) + F(95)
where 0,=t,— t;, 0,=t.— t,, and O3= . — t5.
A formal definition of H(i) is, then, given as

H(i) = Y1 Flte— 1)

where ¢, is the current time, »n is the number of refer-
ences made to document i since it has been brought into
the cache, and #; is the time of the k-th reference. F(x)
would generally be a decreasing function as more
weight should be given to more recent references. In
this paper, we use the function that was chosen in the
original LRFU presentation [4], that is,

F=(12)* (0<A <1).

if document i is already in the cache
{ Update the Value of i;
Adjust the position of i in the heap appropriately;
h
else
{ Fetch document i from the original site;
Give an initial Value to i;
while(Size of i is larger than free space)
Remove the root and reorganize the heap;
Insert document i into the proper place in the heap;

Figure 1. Operation upon request for a document on
the Web.

When A is equal to 0, H(i) simply counts the number
of previous references and LUV is reduced to the sw-
LFU [14], which is basically a weighted LFU. As A
increases, LUV gives more weight to more recent ref-
erences. When A is equal to 1, the original LRFU is
reduced to the LRU algorithm, which considers only
the last reference time. Then, at first glance, LUV may
again be thought of as a weighted LRU similar to GD-
SIZE [2]. However, this is not the case, though LUV
indeed gives more weight to more recent references.
Moreover, there is an important difference between
LUV with A=1 and GD-SIZE. Both of the algorithms
increase the Value of a document when it is referenced,
and decrease it as time progresses. This aging mecha-
nism reflects the recency of past references in caching
environments where non-uniform costs may be associ-
ated with the objects. While LUV applies the same
decremental-rates to all of the documents in the cache,
GD-SIZE applies the same decremental-values. For
example, let the Value of documents 4 and B be 1000
and 10, respectively, at time ¢, and no reference is made
to these documents up to time ¢+1. Then, when the
same decremental-value of 1 is applied, as in GD-SIZE,
the Value of A and B becomes 999 and 9, respectively,
at time #+1. When the same decremental-rate of 0.1 is
applied, as in LUV, the Value of A and B becomes 900
and 9, respectively. Though both methods are identical
in philosophy, the same decremental-value method has
a weakness that it may incur cache pollution when the
cost of documents has large variations as it may be dif-
ficult to age documents with large costs in such envi-
ronments.

4. Implementation of the LUV Algorithm

According to the description of the LUV algorithm
given in Section 3, computing the Value of each docu-
ment requires all of the past reference times. At first
thought, this may seem impractical as space and time
overhead for attaining and maintaining this information
may seem infeasible. Moreover, Value of each docu-
ment changes over time, and this necessitates recom-
puting the Value of all documents in the cache as time
progresses. Here, we show that this is not the case, and
that an efficient implementation is possible. Similar
arguments were presented for the LRFU algorithm [4].
In this paper, we show that the original argument can be
extended to the Web caching realm, where the Weight
factor is incorporated into the document value calcula-
tions.

Property 1. Let the Value of document i at the n-th
reference time ¢ and the (n+1)-th reference time ¢’ be
Value, (i) and Value, (i), respectively. Then Value, (i) is
derived from Value, (i) as follows:

Value, (i) = Value, (i) [(F() + Weight(i)
where d =¢t'—1t.
Proof. Let d, denote the time interval between the k-th

reference time and the n-th reference time where
1<k<n . Then,

Value, (i)

= Weight(i) H, (i)

= Weight(i){F(0,+0)+ -+ +F(3,+0) + F(0)}

= Weight(i){(1/2)"® 0+ -+ +(1/2)"™9 + (1/2)°}

= Weight()){ (1/2)" + -+ +(1/2)"} (1/2)*® + Weighu(i)

= Weight(i){ F(8,)+ ++ +F(3,)} F(8) + Weight(i)

= Weight(i) H, (i) F(O) + Weight(i)

= Value,; (i) F(0) + Weight(i)]

Property 1 states that the Value at the time of the
(n+1)-th reference can be computed directly from the
time of the n-th reference and the Value and Weight at
that time. Property 1 implies that the space complexity

of LUV is constant per document, thereby resolving the
space complexity problem.

Table 2. Characteristics of traces used in the experiments.

Trace Trace gathering Total Total Unique Total Total Unique
period Requests Requests Mbytes Mbytes
DEC [11] 03;(/)21;19999667 609951 306685 6415.64 3826.34
07/18/1999 —
NLANR [12] 07/31/1999 2688258 1405635 23051.80 14290.83

Lemma 1. Let the Value of document i at time ¢ and ¢’
(¢' >t) be Value, (i) and Value, (i), respectively. If there
have been no references to document i between the
time interval ¢ and ¢', Value, (i) is derived from Value,
(7) as follows:

Value, (i) = Value, (i) (F(d)

where 8 =¢'—¢.
Proof. Suppose document i had been referenced »
times before ¢, and let &, denote the time interval be-
tween the k-th reference time and ¢. Then,

Value, (i)

= Weight(i) H, (i)

= Weight(i){F(0,+d)+ - +F(,+J)}

= Weight(i){(1/2) @+ - +(1/2)(0+9}

= Weight(i){ (1/2)’%+ -+ +(1/2)"%} (1/2)*

= Weight(i){ F(0,)+ -+ +F(J,)} F()

= Weight(i) H, (i) F(5)

= Value, (i) F(5) O
Lemma 1 states that the Value of document i can be

computed directly from a recently computed Value and
the time this Value was computed.

Property 2. If Value,(a)> Value,(b) and neither a nor b
have been referenced after ¢, then Value, (a) > Value, (b)
holds for any #' (¢’ >?).

Proof. Let d=1t¢'— ¢ Then, from Lemma 1,
Value, (a) = Value,(a) F(0) > Value,(b) F(d) = Value, (b)
(" Fd)>0) [
Property 2 shows that the relative ordering of the
documents in the cache does not change if they are not

re-referenced. This property, along with Property 1,
allows LUV to be implemented by a heap structure,

where the time complexity of operations on this data
structure is O(logyn). Figure 1 shows the algorithm that
is invoked upon a request for a document.

5. Experimental Results

In this section, we discuss the results from trace-driven
simulations performed to assess the effectiveness of the
LUV algorithm. We used two public traces: Digital
Equipment Corporation Web proxy traces (DEC) and
access logs of proxy caches at the National Lab for
Applied Network Research (NLANR). DEC traces used
in our simulations are local-client traces that are refer-
ences made by clients within Digital’s Palo Alto cam-
pus [11]. NLANR provides ten sanitized proxy cache
access logs: bol, bo2, lj, pa, pb, rtp, sd, sj, sv, and uc.
Among these sj was used in our experiments [12]. Ta-
ble 2 shows the characteristics of the traces. In the ex-
periments, we filtered out some requests such as UDP
requests, cgi_bin requests, and requests whose size is
larger than the cache size used in the simulation.

The performance of LUV is compared with those of
the LRU, LFU, SIZE, HYBRID, LRV, GD-SIZE,
LNC-R-W3, MIX, and sw-LFU in terms of HR, BHR,
and DSR. Before discussing the results themselves, we
point out for clarity, some of the peculiarities of the
presented results and algorithms.

e In case of the LRV algorithm, we analyzed each
trace a priori and used the complete parameter value
information to reflect the characteristics of the tar-
get traces. Note that this would not be possible in
real life.

* For the GD-SIZE algorithm, it has been reported that
using the cost (c;) value of 1 instead of the document
download latency results in a higher DSR [2]. It is
not clear why this is so, but we think this is due to
the decrements used in GD-SIZE as described pre-
viously. As GD-SIZE applies the same decrements
to all of the documents in the cache, it is slow in
aging documents that have high latencies possibly

leading to cache pollution. To deal with this situa-
tion, we experimented with both cost values, that is,
1 and the download latency, and selected the best
results.

¢ LNC-R-W3 and LRV are inherently perfect-history
algorithms [5,8]. For LFU, both in-cache-history
and perfect-history methods are used. All other al-
gorithms are in-cache-history algorithms.

e For GD-SIZE, sw-LFU, and LFU (both in-cache-
history LFU and perfect-history LFU), the LRU or-
der is used as a tie breaker. That is, when there is
more than one document with the same Value, we
select the victim by the LRU order.

¢ For the LUV algorithm, the A value was tuned to re-
flect the characteristics of the given traces.

Figures 2 and 3 show the HR, BHR, and DSR of each
algorithm as a function of the cache size for the DEC
and NLANR traces, respectively. In the figures, Infinite
represents the performance when the cache size is equal
to Total Unique Mbytes in Table 2, which is essentially
equivalent to having an infinite size cache. The x-axis,
which is the cache size, is the size relative to the In-
finite cache size. We simulated a wide range of cache
sizes, from 0.05% to 30% of the Infinite cache size, to
see the relation between the various cache sizes and the
performance of each algorithm. Small cache size re-
sults, such as when the size is 0.05%, may be applica-
ble to main memory caching, while results for large
sizes may be appropriately used for disk caching. Note
that the scale of the x-axis is not uniform. This ar-
rangement is intended to show clearly the relative per-
formances of the algorithms. Note that for clarity, we
show the results in two groups of algorithms. The first
(left-hand side) shows LUV, LNC-R-W3, GD-SIZE,
LRV, and the two types of LFU, i.e. in-cache-history
LFU (denoted by I-LFU) and perfect-history LFU (de-
noted by P-LFU), while the second (right-hand side)
shows LUV, LRU, HYBRID, SIZE, MIX, and sw-
LFU. From the results, the following observations can
be made.

e For most cases, the LUV algorithm performs the
best irrespective of the cache size for all perfor-
mance measures, while the other algorithms give
and take amongst each other at particular cache
sizes and measures.

* Algorithms not considering the recency history per-
form worse than recency-based algorithms when the
cache size is small. The performance of the SIZE,
HYBRID, and LFU-based policies is consistently
inferior and the gap is quite wide for most of the ca-
che sizes that were studied. The only range that they
come close is when the cache is large. Note that the-
se algorithms do not consider the recency of past
references at all, which is primarily considered in
other algorithms compared in our experiments.

* We find that generally, frequency-based algorithms
are inferior to recency-based replacement algo-
rithms. However, as implied by the superior per-
formance of the LUV algorithm, a good combina-
tion of recency and frequency can lead to even bet-
ter performance.

* MIX shows good performance for all performance
measures, though the performance gap between
MIX and LUV is somewhat wider for smaller cache
sizes. Recall, however, that the MIX algorithm re-
quires O(n) time complexity.

e Though perfect-history LFU shows better perfor-
mance than in-cache-history LFU for all cases, there
is no significant advantage of other perfect-history
algorithms, that is, LNC-R-W3 and LRV over in-
cache-history algorithms. In fact, even with perfect-
history, none of these algorithms performed better
than the LUV algorithm. Moreover, LNC-R-W3 re-
quires O(n) time complexity and LRV requires trace
analysis overhead.

6. Conclusion

In this paper, we presented a Web cache replacement
algorithm called LUV. LUV evaluates a Web document
based on its retrieval cost normalized by the likelihood
of it being re-referenced. This results in a normalized
assessment of the contribution to the value of a docu-
ment, leading to a fair replacement policy. Unlike most
previous algorithms, LUV estimates the re-reference
likelihood of a document by its full reference history
during cache residency. Despite this, we showed that
LUV allows for an efficient implementation in both
space and time complexities. The space needed to
maintain the reference history of a document is only a
few bytes and furthermore, the time complexity of the
algorithm is O(log,n), where n is the number of docu-
ments in the cache. Through trace-driven simulations
we showed that the LUV algorithm performs better

than existing algorithms for various performance meas-
ures for a wide range of cache configurations.

One direction for future research is to model the dis-
tribution of Web requests seen by Web proxy caches
considering both recency and frequency. Breslau et al.
show that an independent request stream following a
Zipf-like distribution is sufficient to model the requests
seen at Web proxies [13]. However, our experimental
results show that temporal locality is also important.
Hence, we are attempting to model Web requests con-
sidering both the recency and frequency information to
simultaneously reflect the reference popularity and the
temporal locality. This will allow us to fix a priori the
control parameter A, which currently has to be deter-
mined through off-line experiments, according to the
corresponding model.

Also, in this paper, we only considered the in-cache-
history LUV algorithm, which requires low overhead in
both time and space. However, because only a few
bytes of information is required for each object, per-
fect-history LUV may improve performance even more
without incurring much system overhead. We are cur-
rently conducting experiments to validate this conjec-
ture.

Acknowledgment

We would like to thank NLANR and DEC for making
their proxy traces available. Without their generosity
this paper would not exist. Many thanks to the anony-
mous reviewers for their very helpful comments.

References

[1] M. Abrams, C. Standridge, G. Abdulla, S. Wil-
liams, and E. Fox, “Caching proxies: Limitations
and potentials,” In Proceedings of the 4th Interna-
tional WWW Conference, pp. 119-133, 1995.

[2] P. Cao and S. Irani, “Cost-Aware WWW Proxy
Caching Algorithms,” In Proceedings of the
USENIX Symposium on Internet Technology and
Systems, pp. 193-206, 1997.

[3] S. Glassman, “A caching relay for the World Wide
Web,” Computer Networks and ISDN system, vol.
27, no. 2, pp. 165-173, 1994.

[4] D. Lee, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y.
Cho, and C. Kim, “On the Existence of a Spectrum

of Policies that Subsumes the LRU and LFU Poli-
cies,” In Proceedings of the 1999 ACM SIGMET-
RICS Conference, pp.134-143, 1999.

[5] P. Lorenzetti, L. Rizzo, and L. Vicisano, “Re-
placement Policies for a Proxy Cache,” |http://
Iwww.iet.uniﬁi.it}~luigi/caching.ps.gzeunis, 1996.

[6] N. Niclausse, Z. Liu, and P. Nain, “A new and effi-
cient caching policy for the world wide web,” In
Workshop on Internet Server Performance

(WISP'98), 1998.

[7] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-k
Page Replacement Algorithm for Database Disk
Buffering,” In Proceedings of the 1993 ACM
SIGMOD Conference, pp. 297-306, 1993.

[8] P. Scheuermann, J. Shim, and R. Vingralek, “A
Case for Delay-Conscious Caching of Web Docu-
ments,” In Proceedings of the Sixth International
WWW Conference, 1997.

[9] S. Williams, M. Abrams, C. Standridge, G. Ab-
dulla, and E. Fox, “Removal policies in network
caches for world-wide web documents,” In Pro-
ceedings of the ACM SIGCOMM '96, pp. 293-305,
1996.

[10] R. Wooster and M. Abrams, “Proxy caching that
estimates page load delays,” In Proceedings of the
Sixth International WWW Conference, 1997.

[11]fftp://ftp.digital.com/pub/DEC/traces/proxy/locallist |

k1.2|html

[12] ftp://ircache.nlanr.net/Traces/sj sanitized-access_
990718.gz ~ sj_sanitized-access_990731.gz

[13] L. Breslau, P. Cao, L. Fan, G. Phillips, and S.
Shenker, “Web Caching and Zipf-like Distribu-
tions: Evidence and Implications,” In Proceedings
of Infocom '99, 1999.

[14] T. Kelly, Y. Chan, S. Jamin, and J. MacKie-
Mason, “Biased Replacement Policies for Web
Caches: Differential Quality-of-Service and Aggre-
gate User Value,” In Proceedings of the Fourth
International Web Caching Workshop, 1999.

[15] L. Rizzo and L. Vicisano, “Replacement Policies
for a Proxy Cache,” Technical Report UCL-CS
RN/98/13, 1998 (available at http://www.iet.unipi.it|
/~luigi).

http://www.iet.unipi.it/
http://www.iet.unipi.it/
ftp://ftp.digital.com/pub/DEC/traces/proxy/locallistv1.2
ftp://ftp.digital.com/pub/DEC/traces/proxy/locallistv1.2
http://www.iet.unipi.it/

HR

BHR

DSR

0.60

0.50

0.40

0.30

0.20

0.10

0.00

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

—*—Infinite
—o— LUV
—%—LNC-R-W3
—>—GD-SIZE
—+— LRV
—&—|-LFU
—+—P-LFU

05 1 &5 10

15 20 25 0
cache size (%)

—*—Infinite
—— LUV
—*—LNC-R-W3
—<+—GD-SIZE
—2— LRV
—a—|-LFU
—+—P-LFU

05 1 5 10

15 20 25 30
cache size (%)

—*—Infinite
—o— LUV
—%—LNC-R-W3
—<+—GD-SIZE
—+— LRV
—8—|-LFU
—+—P-LFU

1 5 10 15 20 25 30
cache size (%)

HR

BHR

DSR

0.60

0.50

0.40

0.30

0.20

0.10

0.00

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

—*—Infinite
—e— LUV
——LRU
—=a—HYBRID
—&—SIZE
—x— MIX
—+—sw-LFU

00501 05 1 5 10 15
cache size (%)

20 25 30

A
&

,,//j"'g

A

/
n A
T I 1

/
/
/
/

—*—Infinite
—— LUV
——LRU
—=—HYBRID
—&—SIZE
—*%— MIX
—+—sw-LFU

00501 05 1 5 10 15
cache size (%)

20 25 30

E*'T'?/. 1 1 1 1

—*—Infinite

—o— LUV
——LRU
—a—HYBRID
—&—SIZE
—%— MIX
—+—sw-LFU

00501 05 1 5 10 15
cache size (%)

Figure 2. Comparison of LUV with other algorithms using DEC trace.

20 25 30

HR

BHR

DSR

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

—*— Infinite
—— LUV
—*— LNC-R-W3
—>— GD-SIZE
—+— LRV

—&— |-LFU
—+—P-LFU

0.05 0.1

15 10 15 20 25 30
cache size (%)

—*—Infinite
—— LUV
—*—LNC-R-W3
—<+—GD-SIZE
—2— LRV
—a—|-LFU
—+—P-LFU

0.05 0.1

1 5 10 15 20 25 30
cache size (%)

—*—Infinite
—o— LUV
—*%— LNC-R-W3
—>— GD-SIZE
—&— LRV
—a—|-LFU
—+—P-LFU

0.05 0.1

1 5 10 15 20 25 30
cache size (%)

HR

BHR

DSR

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

—*— Infinite
—e— LUV
——LRU
—a—HYBRID
—&—SIZE
—%— MIX
—+—sw-LFU

0.05 0.1

0.5

1 5 10 15
cache size (%)

20 25 30

O - e

&

“| —*—Infinite

—e— LUV
——LRU
—=—HYBRID
—&SIZE
—%—MIX

—+—sw-LFU

0.05 0.1

0.5

1 5 10 15
cache size (%)

20 25 30

—*—Infinite
—o— LUV
——LRU
—&—HYBRID
—&—SIZE
—%—MIX
—+—sw-LFU

0.05 0.1

0.5

1 5 10 15
cache size (%)

Figure 3. Comparison of LUV with other algorithms using NLANR trace.

20 25 30

