Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

A DOCUMENT-BASED FRAMEWORK FOR
INTERNET APPLICATION CONTROL

William LeFebvre and Ken Craig

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Rapid Reverse DNS Lookups for Web Servers

William LeFebvre Ken Craig
Group Sys Consulting CNN Internet Technologies
Alpharetta, GA 30022 Atlanta, GA 30348
WNL@GroupSys.com Ken.Craig@CNN.com
Abstract The CNN web farm supports approximately 50 web

servers which provide content for sites known as
When a web server wants to learn the domain name a@fhn.comcnnfn.comcnnsi.comand many others. A sin-
one of its clients, it must perform a lookup in thegle web server in this farm can see as many as 20,000
Domain Name System's “‘reverse domain’in- hits per minute. The farm was designed from the begin-
addr.arpa These lookups can take time and may havening for simplicity, reliability and speed in order to sup-
an adverse impact on the web server’s response to if®rt a web site that is the most heavily trafficked news
clients. Rapid DNS is an intermediate client/server syssite on the internet. In addition to serving over 20 mil-
tem that operates between a web server and a DN®n page views daily, the web farm must be able to
server. It provides caching of the results and, moravithstand traffic spikes that are three times what is
importantly, limits web server lookups to the data con-experienced on a normal day.
tained in the cache. This provides a significant improve-
ment in response time for situations in which knowledgeThe farm consists of smaller, distributed servers which
of the hostname is not critical to the web server’s operacan be easily replaced or re-purposed. The web server
tion. The Rapid DNS system was implemented for useoftware is primarily off-the-shelf, and additional soft-
in the web farm that serves the collection of Cable Newsvare, in the form of web-server plug-ins, must not intro-
Network (CNN) sites. Its design is presented, along wittduce significant latency to routine requests. Specialized
measurements of its performance in the CNN environfunctions are generally distributed off of the main-line
ment. servers to protect the basic service. A relatively homog-
enous environment simplifies the process of re-purpos-
1 Introduction ing hardware when the need arises.

. : . Off-line DNS processing has provided the web farm
When a client connects to a server, the only information . : : . .
: ; . . .team with useful information for analysis, but offers lit-
about the client that is available to the server is the cli: . . . . .
} .~ tle benefit to advertisers; an important consideration for
ent's IP address. In order to learn more about the client, o . )
. an advertising-supported web site. Domain based ad tar-
the server must perform a DNS lookup in time

addr.arpadomain, called severse lookupto translate a geting was one of the most highly requested features to

client's IP address in to a name [9]. On widely accesse%le added to our advertising capabilities due to its sup-

. osed simplicity and universal acceptance of accuracy.
web servers, a high percentage of the reverse looku plctty P y

S : hile architecturally simple, implementation of such a
will involve name servers from distant networks. Conse- . : . :
. capability at scale requires a different solution.
quently, these lookups can take a long time.

As beneficial as such targeting may be, protecting the
Most high traffic web sites cannot afford to wait for the reliability of the primary web serving functions always
completion of reverse lookups, as the delay in processakes precedence. This is basis for the two primary
ing these lookups would have a detrimental impact omlesign requirements of any additions to the CNN Web
the site’'s response time. Therefore, client tracking ig~arm, including Rapid DNS; high performance during
limited to just IP addresses. Any desired demographiciormal operations and graceful degradation of service
information must be generated off-line. Real-time deterunder excessive traffic loads.
mination of a visitor’s origins is not a reasonable possi-
bility due to the time required to perform a reverseEven though it may be possible for a well-configured
lookup. name server to handle several hundred requests per sec-



ond, there will still be a problem with latency. The root

name servers are expected to sustain a minimum | wep Rapid DNS
response rate of 1,200 queries per second, but they alsdq Server DNS Server
disable recursion on all requests [7]. Server load may he Server NS

an issue, but far more critical is the need to provide a | Plug-in ~cp” ~Uop”™

quick response. A reverse lookup will need to consult

name servers throughout the world and can take severglgure 1: Inter-Server Relationship
seconds to complete. A server that receives over 300
requests per second cannot afford to have each requdstit reasonable to accept non-answers for this sort of
delayed by a recursive lookup. query? For our purposes the answer is yes. The host
name information is needed for two separate purposes.
In section 2 we present related work. Section 3 lays th&irst, we want to be able to produce summary traffic
foundational premise on which the entire system is builtinformation correlated by top level domain. This allows
Section 4 describes details of the Rapid DNS clientUs to calculate zone demographic information on our
server, and protocol. Section 5 discusses managementa&gdience: “35% of our traffic was from educational
the cache used by the server. Section 6 explains the sp#tes” for example. Before the deployment of Rapid
cialized way in which IP addresses are queued internallPNS we performed name resolution off-line: traffic logs
for processing by DNS. Section 7 discusses the use @rried the IP address and the translation to name was
negative caching in Rapid DNS. Section 8 presents pefloneen massevernight after the logs were extracted
formance results for a variety of configurations. Sectiorfrom the web server. In this situation an address that
9 discusses the results, and section 10 looks to thHeannot be translated in to a name is just placed in an

future. “unknown” category. Clearly the same can be done with
“I don't know” answers. Although this will adversely
2 Related Work affect the demographic results, it will not hamper the

operation of the web server itself.
Surprisingly little work has been done in this area. A
search of the published body of work has revealed ndhe second purpose for domain names is to drive the
documented efforts to provide rapid reverse lookups fogelection of advertisements presented on the page. If the
web servers. web server knows the domain name of the client it has
the option to choose an advertisement specifically tar-
Work has been done to utilize DNS for load balancinggeted for an audience group implied by the domain. If
requests across multiple web servers ([1], [6]) and fothe name information is missing then the advertisement
integrating DNS lookups with HTTP redirection to Selection can just draw from a generic pool of advertise-
achieve load balancing [3]. Brisco discussed the viabiliments. We miss a chance to target an ad, but are still
ity of using DNS as a general load balancing tool [2]able to operate.
and Schemers developed a Perl tool for tailoring DNS
answers based on measured load [11]. A study of namEhere is a situation in which the absence of a domain
server traffic on the NSFNet was conducted by Danzigname will have an impact on the server’s operation:
Obracza and Kumar [4], and they observed (amongame-based authentication. If the server determines
other things) that negative caching of DNS responses byccessibility based on the domain name then the answer
servers would have little impact on the reduction of“l don't know” is not acceptable. A user who has legiti-

DNS packets across a wide-area network. mate access may not receive that access if the name
lookup service can't provide an answer. The CNN web
3 Premise: “| don't know” is acceptable servers do not use name-based authentication, so this

_ _ . . . was not a concern for our service.
The desire for instant domain name information on the

CNN Web farm drove us to implement a mechanism f.0r4 Design of the Rapid DNS

rapid resolution. The foundational philosophy for Rapid

DNS is that the answer “I don't know” is acceptable. If aRapid DNS is implemented as an intermediate service
name is not readily available when requested, themplaced between the web server and the DNS name
Rapid DNS is free to answer “I don't know”. The web server (see Figure 1). A plug-in or module in the web
server then proceeds as if it never performed the lookugserver acts as the Rapid DNS client and is invoked as
This philosophy allows the implementation to uncouplepart of normal page handling. The Rapid DNS server
queries from the actual resolution of the name can be run on any host accessible to the web server via



TCP, reading and responding to client requests. Thase the information found there rather than perform the
Rapid DNS server is the only component that actuallyDNS lookup again. If DNS lookups are turned off in the
issues DNS queries. For the remainder of this papeNetscape server’s configuration, theession_maxdns
unless otherwise indicated, we will use the termwill not send any DNS queries, but it will still look in
“server” to refer to a Rapid DNS server and “client” to the pblock for the name.

refer to a Rapid DNS client, even though that client may

be part of a web server. The Rapid DNS plug-intdns_lookup takes advantage
of this behavior. When an answer arrives from the
4.1 Client server,rdns_lookupwill place it in the client pblock as

The cli h developed for the N E the parametedns Subsequent calls ®ession_maxdns
e client we have developed for the Netscape Ente(y; noyer yse DNS directly but rely exclusively on the

prise server uses a single per.sistent_Rapid DNS CONNeGe - mation in the pblock, even if DNS lookups are
tion to handle all requests in a given process, evefl ,aq off in the Netscape configuration. If the answer
though that process may have many threads handling, ..ived from Rapid DNS is “I don't know” then no
HTTP requests information is placed in the pblock, and calls to

) ) . ) _session_maxdnwill return NULL. Beyond the change
The design relies heavily on the multl—threadeq capaplllto the pblockydns_lookupaffects no aspect of process-
ties of the Netscape server provided through its applicgng a request. As a consequence, it can be used in any
tion programming interface (API) [10]. At initialization pp5se of request processing. The following C statement

time, the Rapid DNS client starts several backgroungjystrates how the name information is placed in the
threads. One thread, the writer, dispatches requests {fy|ock:

servers. Additional threads, the readers, are created to ' .
read and process the servers’ responses (one thread pdtblock_nvinsert("dns”, name, sn->client);

server). ) ]
The rdns_lookupfunction must be invoked before any

T['yug-ins that may need to utilize its information, such as

vertisement scheduling software. CNN chose to use a
é:onfiguration that invokes the client as the very last
object type function, so that it is run immediately before
8_ntering the request servicing phase.

The Netscape server creates threads for handling HT
requests. When a request arrives it is dispatched to
idle thread. While processing the HTTP request, th
Rapid DNS plug-in function will be invoked and will
place the peer’s IP address on a central queue for pr
cessing. The writer thread takes a request off the queue . . .
dispatches it and moves it to a pending queue that is spg—he writer thread will always dispatch requests to the
cific to the server used. As a reader thread processesS8Ver With the shortest pending queue. This policy
response, it is matched up with the correspondin@“tomat'ca"y compensates for malfunctioning or abnor-

request in the pending queue. One response may ser%"‘"Y sloyv servers. If a server fa|-Is, its perS|st§nt con-
to fill more than one request nection is severed and the client code will stop
dispatching requests to the server. Finally, a watcher
L . ttaread monitors all the queues to ensure that none of the

Request processing in the Netscape server is performée

in 6 phases: authorization, name translation, path chec [equests get stuck.

ing and modification, object typing, request servicing,_, . .. . . -
and logging. Server plug-in functions can be invokedTh'S client design provides good scalability for web

during any phase. Information is passed in to the funcS€vers. In fact, we have Rapid DNS deployed across

tions using parameter blocks, mslocks These are hash more than 60 web servers, and they all use the same trio

tables that store name/value pairs and provide for eas SErvers.

lookup and modification. All information about the

request is stored in a set of pblocks, and plug-in func4-2 Server

tions affect processing of the request by modifying thesghe server also uses a threaded design. A thread is cre-

pblocks. ated to handle each client connection, and other service
threads handle various maintenance tasks and communi-

The Netscape API provides a functi@ession_maxdns cations with DNS servers. The server is logically sepa-

that retrieves the domain name of the HTTP client hostrated in to two components: the front end and the back

This function also stores the information in a pblock:end. The front end handles the task of providing answers

specifically in the session client pblock using the paramto clients, while communications with DNS servers is

eter namalns Subsequent calls gession_maxdnsill completely isolated to the back end. This total decou-



question _‘ cache DNS

uer
qTC;/ P threads € -——— answer
- — thread
/
(/0,0
queue
DNS
S
D ot
question
thread
answer \‘ bucket
thread stack
- response
TCP

Figure 2: Flow of Data through the Rapid DNS Server

pling gives Rapid DNS the ability to provide quick are sent to a name server via UDP. The DNS answer
results without waiting on answers from DNS servers. thread reads all DNS replies sent to the process, extracts
the domain name and adds an entry to the cache.

The front and back ends are tied together with a cache ) S

and a stack. The cache, fed by the back end, contains Aymaintenance thread is run at periodic intervals to per-
the DNS answers that the server has received. The frofRfm two functions: cache maintenance and persistent
end reads from the cache to provide answers for clieriitorage. Cache maintenance consists of a sweep through
requests. If the cache does not contain the answer, thék€ cache to look for entries that have expired. At regu-
the front end answers “I don't know” and places thdar intervals the entire contents of the cache is written to
address on the stack. The back end drains the stack Bytext file. This provides for a persistent record of the

sending questions to a DNS server. The stack is a fixdéiformation and allows the cached data to survive server
size, called a “leaky bucket”, and will be discussed infestarts. This file has other uses as well, since it contains

more detail in a later section. address to host mappings of nearly all clients to visit the
site in the past several days.

The flow of data through the threads and data objects i

depicted in Figure 2. A request is read by one of the .3 Protocol

question threads, which then performs a lookup for th&he protocol used between client and server is
requested IP address in the cache. Any entry found iextremely simple. Although its specification is not sig-
the cache is used to answer the query: the IP address, iticant to the results presented here, a brief description
name, and a pointer identifying the i/o stream is placeds provided.

on an answer queue. If no entry is found in the cache,

then a null string is used for the answer and the IFhe protocol runs over a TCP stream, and an individual
address is placed in the DNS bucket. A fixed number o€onnection can handle an unlimited number of requests.
answer threads drains the answer queue by composify request (from client to server) consists of an IP
and sending out responses. The DNS question threaatidress represented by 4 octets in network byte order
drains the DNS bucket, composing queries that ask fofmost significant byte first). Each IP address is sepa-
PTR records in the domain-addr.arpa These requests rated from the next in the data stream with a framing



octet consisting of all 1's. Should the server get out ofng information from the cache simultaneously. When
sync with the client, it will be able to resync within a the DNS answer thread needs to add an entry to the
few requests. cache, it must first determine the target bucket in the
hash table, then it must obtain a write lock on the bucket
A response (from server to client) consists of an IPbefore inserting the new datum on to the bucket'’s linked
address followed by a null-terminated string. The IPlist. A write lock on the bucket must also be obtained
address is formatted as in the request: 4 octets in nébefore any datum in the bucket is altered or removed.
work byte order. The string is the domain name associ-
ated with the IP address and ends with a zero octet. Eaipthough the number of buckets for the cache is con-

response is separated from the next with a framing OCtestant the cache is not of a fixed size and a cache man
consisting of all 1's. Responses are not coupled with '

requests: any number of requests can be sent betwe@ﬂsmenotl dalgorlthhmTrr?ust be .emrl)loyed tp prglyent
responses from the server. unbounded growth. The current implementation utilizes
a first-in first-out (FIFO) algorithm bounded by time.

When an entry is added to the cache, it is stamped with

There are two peculiarities in this protocol. First, the o . '
P P an expiration timex seconds in to the future. The config-

only identifying information in the response is the IP . o . .
address itself. This is considered sufficient to matc urable valueis the "time to live” and is typ_|cally SEI.
responses with requests, even though it is not unique ptbpt\_/veen threg and seven day§. Lower sett_lngs for t|me
request. Second, there is no explicit length given for th&® ,I'V,e result in a smaller run-time caghe size. At peri-
variable length response. The client is expected to readdiC intervals, a maintenance thread is run that sweeps

until seeing the null octet, and the framing octet is usedirough the cache and removes any entry beyond its
to ensure that client and server do not get out of sync. €xPiration time. The memory used by those entries is
returned to the free pool so that it can be used for new

entries. In the current implementation the configured
time to live is the only value consulted when calculating
The main cache holds answers received from DNS senthe expiration time of an entry. The time to live value
ers. As queries arrive from clients, the answers areontained in the response from the DNS server is
served directly out of the cache. As more information iSgnored. Although this policy may degrade the accuracy
retained in the cache, the likelihood of a cache hit for @f the answer, it does reduce the server’s dependency on
given request will increase. But the size of the cachelata not under our direct control. If the server used DNS
cannot grow without bound due to system memory contime to live values, then remote servers would have a
straints. A variety of cache management techniques cagirect influence on the cache hit ratio. In this applica-
be used to provide a trade-off between informationtion, we prefer an answer that is potentially a few days
retention and memory utilization. When we first begangt of date over no answer at all. Although this policy
this project, we anticipated very high memory utiliza- may have an affect on the statistical results presented
tion on.the part of the cache and sized our server systegy|oy, it certainly has no influence on the implementa-
accordingly. tion. The server could easily be changed to take the min-

imum of the configured time to live and the DNS time to
In the current implementation of Rapld DNS, the CaChqive when Creating the cache entry_

is implemented as a bucket hash keyed on IP address.

The number of buckets is fixed throughout the lifetime . _ o
of the server process, but can be configured at start-u-[)he choice of a strict FIFO cache policy is primarily due

time. The current configuration at CNN uses 400,0040 Performance concerns. A policy that is tied to the
buckets. Each bucket contains a linked list of item<Entry creation time does not require modification of the
which is hashed to the bucket, and there is no limit of€htry at any point during its lifetime. Any policy based
the length of each list. Since multiple threads of execuon use would require such usage to be tracked, and that
tion need to access the cache simultaneously, muteiuestion threads modify the entries they were reading to
locks are necessary to preserve the integrity of the dagiamp them with a last use time. Such an implementa-
structure. Figure 2 clearly shows that only one threadion would require that these threads obtain a write lock
adds data to the cache while multiple threads may bleefore modifying the entry. With a FIFO policy, only the
reading information from the cache. To optimize perfor-DNS answer thread and the maintenance thread need to
mance, read/write locks[8] were utilized within the obtain write locks. If all the question threads performed
cache with one lock being assigned to each bucket in tharite locks, the lock contention would have a detrimen-
hash table. Any number of question threads can be reathl impact on performance.

5 Cache Management



6 DNS Request Bucket “back end cache hit". Collectively, this technique sup-

. . ) presses the creation of duplicate DNS queries.
When a cache miss occurs, the question thread inserts

the missing IP address in to a stack. The back end DN . .
question thread pops addresses off this stack and cor?— Negative Caching
poses DNS queries for the corresponding PTR record# good percentage of the responses from DNS indicate
This data structure is not implemented as a FIFO queughat the requested reverse domain does not exist
but as a LIFO stack of bounded size. If a new requegtesponse code NXDOMAIN). Consider the conse-
fills the stack, then requests at the bottom of the stackuences of this result on the Rapid DNS server if this
are dropped. This “leaky bucket’” method prevents amesult is ignored. After two minutes the blank cache
ever increasing backlog of requests while avoidingentry which was inserted for duplicate suppression (see
swamped DNS servers. Section 6) will expire and additional requests for the
address will generate another DNS query. Therefore we
Consecutive DNS requests are spaced with a configsonsidered it prudent to cache this negative information.
urable delay to avoid flooding the DNS server. TheA response of “no such domain” is represented in the
LIFO implementation intentionally gives priority to cache with a null entry, and its time to live is set to be
most recently received requests. It is expected that wethe same as regular entries. Further requests for that
page requests will have a high locality of reference buentry will generate an “I don’t know” answer. In this
only for a brief period of time. This is due to two obser-particular case, however, we actually do know that there
vations. First, the typical web page “view” consists ofis no name for this number. From the perspective of the
many embedded images, each of which will generate @lient, the distinction between “not known” and “nonex-
separate HTTP request from the same client. Second, iitent” is unimportant, as they would be logged the
is expected (hoped) that upon seeing the first page thgame.
user will be drawn in to the site and request additional
pages. So we expect that the longer it has been sin&uring production operation we have noted that a good
we've heard from a client the less likely it is that we will percentage of the DNS requests generate a failure
hear from it again in the near future. (response code SERVFAIL). In a typical week we mea-
sured that an average 12% of the DNS queries resulted

The fixed size insures that the stack will not grow with-in @ SERVFAIL, with a peak at 19.4%. Currently we
out bound. As newer requests enter the bucket, olddgnore such responses, and consequently the address
ones are forced to wait. With each new request the likethat failed will be re-queried in as little as two minutes.
lihood that the request at the bottom of the bucket wiliThe high percentage of such answers implies a potential
get serviced decreases. Since requests at the bottom Rgrformance benefit from caching them. Since this is
the stack are least likely to ever get serviced they mighgonsidered to be a transient error, such entries would
as well be discarded. The impact of discarding a reque§@ve to be cached with a much lower time to live than
in the bucket is that a future request may miss in th&@egative answers.

cache lookup rather than hit. The result is an “I don’t

know” answer, which is not a serious concern. As a con8 Performance Results

nce, however, the IP r will on ain . . .
sequence, however, the |P address once ag SIfach Rapid DNS server in the CNN web farm routinely

entered at the top of the stack and will have anoth . . .
chance at getting Eerviced handles 250 client connections. Many web servers in the
' CNN farm are configured to create multiple Netscape
i ) , rocesses (or “instances”), and each process needs to
A request t[hat MISSES In the. caghe wil cause an entry pen a separate connection. So although there are over
be placed in .the. bucket, but it m|ght be some.tlme b_efor%o client connections on a Rapid DNS server, in reality
that request is filled by DNS. During that period of time ;, may only be serving 50 to 70 machines. The current

many more requests for the same address may arrive. Tr?stallation utilizes three Rapid DNS servers, and the
help suppress duphcatgs in the bucket, the back end W'glients load balance across the servers. Each server is a
.crea}te an empty entry in the cache for the address., ISyun SPARC Ultra 2200 with two 200 MHz processors
ing it two minutes toll|ve. When the back end receives, ¢ gigabyte of physical memory. Clients are config-
the DNS answer, it simply replaces the null cache ent red to perform Rapid DNS queries only for http pages
with the actual data and adjusts the TTL. If the back er:%{nage retrieval does not generate a query).

sees a request in the bucket for an address that is already

in the cache (even if the cache entry is empty), it will nofThe cache carries approximately 2.5 million entries
send out a DNS query and instead log the event as (aegative information excluded) while the correspond-



ing executable consumes 260 megabytes of virtualith the result that some will never get answered. Given
memory. Due to the generous server configuration and query interval, one can easily compute an upper bound
Unix paging policies, all of the virtual memory typically on the frequency of DNS queries that can be accommo-
remains resident. Round trip times for client requestsiated without the risk of leaks. This rate is simply the
average 2 milliseconds even during heavily loaded perireciprocal of the frequency:
ods of the day. Measurements have shown request rates _
as high as 1,611,180 requests per hour. This corresponds r(f) =
to an average of 26,853 requests per minute or 447 per

second.*

=l

Measurements show the expected behavior: a 90 milli-
. . . second delay results in a maximum rate of 11.11
8.1 One Week with Standard Configuration requests per second. Given a cache hit ratio of 90% we
The standard configuration for Rapid DNS servers inwould expect to see this rate when the number of client
the CNN Web Farm uses a hash table with 400,009equests is approximately 111, a figure that is routinely
slots, a request bucket size of 4096, a 7-day time to livexceeded during the day. As predicted, a configuration
for cache entries, and a DNS query interval of 50 milli-using 90 milliseconds saw a substantial number of
seconds. Negative caching is enabled in the standafslcket leaks. Figure 4 shows an average day running
configuration with a 90 ms interval. The top line depicts the number of

o h f K . iod .trequests, the lightly shaded area shows the cache hits,
ver the course of a one week measuring period wi t&nd the dark shading indicates the resulting number of

measurements taken hourly, the Rapid [.)NS SEVELucket leaks. Figure 5 compares the number of actual
served an average of 5902 requests per minute (98 PR

NS t inst the leaks for the same period of
second). The peak hourly rate was 862,500 requests requests against the 1eaks P
equivalent to 14,375 requests per minute (240 reques
per second). During the same measuring period th

me. The ceiling on the request rate is evident, and the
Esorresponding leaks show the expected behavior. Subse-

. . . uent measurements using query intervals between 60
cache hit ratio ranged from 86.5% to 94.5% with an‘a g query

. I nd 80 ms showed negligible leaks during an average
average ratio of 92.4% and a standard deviation Ogveek with an acceptablg I?)ad on the DNS gerver g

1.5%. The measuring period also saw no bucket leaks,
except for those caused by a server restart in the midd

| _ :
of the week. 8.3 Effects of Negative caching

Hourly performance measurements are presented iho show the benefits of negative caching, we ran one

Figure 3, where the top line shows requests and thaerver with negative caching disabled for a one-day

lightly shaded area represents cache hits. The diurngleriOd' Figure 6 shows a comparison between this

access behavior observed by Gribble and Brewer [5] igerver (the supject) and one which was still qaching neg-
evident in these measurements: peak access times Rve information (the cqntrol) for the same time period.
the web servers are reflected in the quantity of Rapi@Oth servers were configured to use a query interval of

DNS requests. 50 milliseconds.

; It is immediately noticeable that the cache hit rate is sig-
8.2 Varying the Query Interval nificantly lower without negative caching. The subject
The rate at which the server sends out DNS queries, thfiachine had an average rate of 78.9% while the control
query interval, can be tuned to avoid swamping the DNSaw 90.45%. The subject never exceeded a cache hit
server during peak loads. Initially this interval was set torate of 89% and saw a low of 61.2%, while the control
80 milliseconds, but it was discovered that this Se'[ting']ad a much more compact range from 84.4% to 93.1%.
would cause bucket leaks during normal daytime loada comparison of the cache hit rates is given in Figure 7.
ing. Because of the lower cache hit rate, more DNS queries
enter the bucket and the configuration cannot get all of
The query interval defines the rate at which requests ithem out. Consequently there is a corresponding
the bucket are processed. If it is too slow the server wilincrease in the number of bucket leaks. The subject
be forced to let requests leak out of the bucket. Smalleserver peaked at 175,906 leaks in an hour where the
intervals may send too many requests to the DNS servebntrol server experienced 75,309 in its worst hour.

* During early development we ran with only two Rapid DNS serv- AlSO of interest is the fa}Ct th"f‘t the peak in nqmber of
ers, and it was common to see hourly rates between 1.5 and 1f€quests for the subject is noticeably lower. This can be
million. attributed to the load balancing code used in the client,



900000 ORequests
800000 O Cache Hits
— 700000 m
2 /
T 600000
2 500000
2
s 400000
T 300000
(]
& 200000 -
100000
OIS e L L e B B A e B B A A A A
o N o N o N o N o N o N o N
s} — S — ] — S — S — S — S —
N N ™ ™ < < [Te] [Te] [{e] [{e] ~ ~ [ee] [ee]
o o o o N N N N N [N N N N (3]
[c] [c] [c] [c] [ee] [c] [c] [ce] [ce] [ce] [ee] [e] [ee] [ee]
o o o o o o o o o o o o o o
Date and Hour
Figure 3: Rapid DNS Server Performance for One Week
ORequests [ Cache Hits M Leaks OLeaks DOQuestions
800000 60000
700000 N s 50000 1
> o
600000 -
£ T 40000
s 500000 o
o 30000 -
o 400000 &
c .8
2 300000 = 20000
(5 —_
e (]
© 200000 | 8_ 10000 |
O 100000 |
— 0 ‘ ‘ ‘
0 - o © N © o
o © o~ o o N N - - <
3 3 by by pd S S S S 8
% % % % % 8 8 8 8 8
Date and Hour
Date and Hour

Figure 4: Performance with 90 ms Query Interval Figure 5: DNS Questions with 90 ms Query Interval




With Negative Caching

800000

700000
600000 -
500000 -
400000 -
300000 -

200000

Operations per Hour

100000 H

o—————ﬁh—

0803.00
0803.06
0803.12
0803.18
0804.00

Date and Hour

No Negative Caching

800000

700000
600000 -
500000 -
400000 -
300000 -

200000

Operations per Hour

100000 H

0,

0803.00
0803.06
0803.12
0803.18
0804.00

Date and Hour

Figure 6: Impact of Negative Caching on Server Performance

95%

90% \ /__,
85%

o
©
[
= —_——~
T 80% {,— = 5
© 17 \ /z -
S 75% \ ,
3} \
70% =
65% : :
o (e} N [oe] o
<} S — = <}
[a2] [a2] [a2] [a2] <
o o o o o
[e6] [e6] [e6] [e6] [e6]
o o o o o

Date and Hour

Figure 7: Negative Caching Effects on Cache Hits

This ability has enabled it to provide more accurate
demographic information and to enable targeting of
advertisements by domain name. It is unlikely that
direct use of the DNS name servers would have been as
effective, given the latency inherent in any domain
lookup. The system has met and exceeded expectations
since its deployment in March of 1999. One or two web
server outages were attributed to the Rapid DNS ser-
vice, but were caused by simple programming bugs and
not by flaws in the design. The system has proven its
viability over the course of six months.

Some observations have come out of analysis of the
server data.

The use of negative caching has a marked impact on
performance of this particular application.

which would imply that the average round trip time for
the server without negative caching was higher. A
higher round trip time would lead to a larger backlog of’
requests in the client, which in turn would schedule
around the backlog and allocate fewer requests to the
slower server. The implication is that the added work-
load caused by processing additional DNS queries ant
responses had an impact on its ability to provide timely
answers to queries.

9 Conclusions

Rapid DNS has provided the CNN Web Farm with a
viable mechanism for obtaining client domain names.

Very high cache hit rates have been realized by the
system, minimizing direct load on the DNS name
servers.

Even with over 250 client connections, the servers
are able to sustain in excess of 400 operations per
second.

A built-in mechanism for throttling outgoing DNS
queries controls the load on the name server with a
negligible loss of data, especially using query inter-
vals of 80 ms and lower.



10 Further Work Architectures and Protocqlpp. 281-292, August

. 1992.
There are several areas that can benefit from further

study. The_justification for using a FIFO bupket to queu 5] S. Gribble, E. Brewer, “System Design Issues for
DNS queries should be tested by comparing the perfor- Internet Middleware Services: Deductions from a

manlc;ebof different th)JIeL{elng pohmes;._V\:ﬁ suspﬁct_tthetre Large Client Trace,Proceedings of the USENIX
would be a measurable improvement in the cache itratio g oG on Intemet Technologies and Sys-

if SERVFAIL responses (Section 7) were cached, and a tems Monterey, California, December 1997
study to determine this would be beneficial. Ignoring the ' ' ’ '
time to live field in the DNS reply (Section 5) sacrifices ]
some accuracy to improve performance. The extent o[f6
the inaccurate information is not known, but could be
easily measured. The very high cache hit ratios seen by
this study imply a high locality of reference for web cli-
ents. It would be interesting to know if this is a phenom-m
enon peculiar to CNN or if and to what extent this
pattern is present at other sites.

T. T. Kwan, R. McGrath, D. Reed, “NCSA’s
World Wide Web Server: Design and Perfor-
mance,”Computer 28(11), pp. 68-74, November
1995.

P. Manning, P. Vixie, “Operational Criteria for
Root Name Servers,” RFC 2010, October 1996.

oL [8] P. McKenney, “Selecting Locking Primatives for
Availability Parallel Programming,"Communications of the
The code for this project was developed under contract ~ACM, 39 (10), pp. 75-82, October 1996.

with Cable News Network and remains proprietary. It is

not available for public distribution. [9] P. Mockapetris, “Domain Names — Implementa-
tion and Specification,” RFC 1035, November
Acknowledgements 1987.

The authors would like to thank Steve Brunton for doing[10] Netscape Communications Corporatidietscape

troubleshooting the servers. He performed every soft-  1996.

ware and configuration change we requested without a
word of complaint. Thanks are also extended to Payli1] R. Schemers, “lbnamed: A Load Balancing Name

Holbrook for inspiring us to submit the work. Many of Server in Perl,Proceedings of the Ninth Systems
the ideas that went in to Rapid DNS, especially the  administration Conferengepp. 1-11, September
leaky bucket, are due to Monty Mullig and Sam Gassel. 1995.

Bibliography

[1] D. Andresen, T. Yang, V. Holmedahl, O. H.
Ibarra, “SWEB: Toward a Scalable World Wide
Web Server on MulticomputersProceedings of
the 10th International Symposium on Parallel
Processingpp. 850-856, April 1996.

[2] T. Brisco, “DNS Support for Load Balancing,”
RFC 1794, April 1995.

[3] V. Cardellini, M. Colajanni, P. Yu, “Redirection
Algorithms for Load Sharing in Distributed Web-
server Systems,” Proceedings of the 19th IEEE
International Conference on Distributed Comput-
ing Systems, 1999.

[4] P. Danzig, K. Obracza, A. Kumar, “An Analysis
of Wide-Area Name Server Traffic SIGCOMM
‘92 Conference Proceedings: Communications,



	Abstract
	1 Introduction
	2 Related Work
	3 Premise: “I don’t know” is acceptable
	Figure 1: Inter-Server Relationship

	4 Design of the Rapid DNS
	Figure 2: Flow of Data through the Rapid DNS Server

	5 Cache Management
	6 DNS Request Bucket
	7 Negative Caching
	8 Performance Results
	Figure 3: Rapid DNS Server Performance for One Week
	Figure 4: Performance with 90 ms Query Interval
	Figure 5: DNS Questions with 90 ms Query Interval
	Figure 6: Impact of Negative Caching on Server Performance
	Figure 7: Negative Caching Effects on Cache Hits

	9 Conclusions
	10 Further Work
	Availability
	Acknowledgements
	Bibliography


