Proceedings of USITS' 99: Th& 2ISENIX Symposium on Internet Technologies & Systems

Boulder, Colorado, USA, October 11-14, 1999

PERSON-LEVEL ROUTING
IN THE MOBILE PEOPLE ARCHITECTURE

Mema Roussopoulos, Petros Maniatis, Edward Swierk, Kevin Lai,
Guido Appenzeller, and Mary Baker

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 1999 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WhttZ// www. usenix.org

Rights to individual papers remain with the author or the author's employer.
Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Person-level Routing in the Mobile People Architecture

Mema, Roussopoulos
Kevin Lai

Petros Maniatis
Guido Appenzeller

Edward Swierk
Mary Baker

Department of Computer Science
Stanford University
Stanford, California, 94305

{mema, maniatis, eswierk, laik, appenz, mgbaker}@Qcs.stanford.edu, http://mosquitonet.stanford.edu/

Abstract

Ubiquitous network connectivity for devices does
not automatically imply continuous reachability for
people. People move from place to place and switch
from one network device to another. As a result,
phones ring in empty offices, email cannot reach
most cell phones, and spam clogs expensive, low-
bandwidth links to laptops. Whereas existing mech-
anisms have addressed host mobility or the mobil-
ity of people within one network, few have allowed
people, the ultimate and most important endpoints
of communication, to roam freely, without being
constrained to one location, one application, one de-
vice, or one network.

We have designed the Mobile People Architecture
(MPA) to maintain person-to-person reachability.
The central component of MPA is a person-level
router called the Personal Proxy. It tracks a mo-
bile person’s location, accepts communications on
his behalf, converts them into different application
formats according to his preferences, and forwards
the resulting communications to him. In contrast
to similar systems, the Personal Proxy protects the
user’s privacy, is easily extensible to new network
devices and applications, and has been deployed
with no modifications to the existing network and
telecommunications infrastructure. In this paper,
we describe the design, implementation, and prelim-
inary evaluation of our prototype Personal Proxy, a
service that integrates Internet and telephone com-
munication and addresses the need for person-to-
person reachability.

1 Introduction

One of the defining trends of this decade has been
the explosive growth of the Internet and other com-

munication networks. People have access to a grow-
ing number of networks (e.g., Internet, cellular,
pager) on a growing number of devices (e.g., per-
sonal digital assistants, cell phones, smart cards) at
a growing number of locations (e.g., work, home,
on the road). Unfortunately a growing problem for
these people is maintaining reachability: as network
devices, applications, and accessible locations prolif-
erate, it becomes less likely that other people (cor-
respondents) can get in touch with a mobile per-
son at any particular time. For example, a corre-
spondent might not have the mobile person’s hotel
phone number, or the correspondent’s email appli-
cation might not interoperate with the mobile per-
son’s phone. We therefore believe that there is a
need for a person-level router that meets the follow-
ing goals:

Maintain person-to-person reachability. The router
should direct the correspondent’s communications
to the mobile person, regardless of whether the two
participants have direct access to the same kind of
network, device, or application.

Protect the mobile person’s privacy. To route com-
munications to a mobile person, a person-level
router must track the devices and applications
through which the person is currently reachable.
The router should not reveal this tracking informa-
tion, whether current or historical, because it could
be used to deduce the person’s location and compro-
mise his privacy. In addition, receiving unwanted
messages is also an invasion of privacy. Many ap-
plications, such as those in many phone systems,
have no way to deliver high priority communication
intrusively while delivering low priority communi-
cation unintrusively. Users should be able to have
all their incoming communications prioritized and
filtered according to their preferences.

Ezxtend easily to new network devices and appli-
cations. Given the rate at which communication

networks, devices and applications proliferate, it is
essential that a person-level router be easily exten-
sible.

Be deployable without modifying existing infrastruc-
ture. Considering the fast pace at which new net-
working technologies develop, a communication sys-
tem that requires changes to the existing network
and telecommunications infrastructure is difficult to
deploy and runs the risk of becoming obsolete before
it is widely available. A person-level router must be
easily and rapidly deployable to benefit the greatest
number of people.

In this paper, we describe the design and implemen-
tation of the Personal Prozy, a person-level router
which we believe meets all of these goals. In Sec-
tion 2, we give an overview of the Mobile People
Architecture (MPA), which includes the Personal
Proxy. In Section 3, we describe the Personal Proxy
in detail. In Section 4, we evaluate our prototype
using our design goals. In Section 5, we describe
related work. Finally, in Section 6 we conclude.

2 Architecture Overview

In this section, we describe how person-level routing
fits into the overall picture of networking and argue
that the Mobile People Architecture [MRS*99] is a
logical extension of the current model of networking.

Networking systems are traditionally organized us-
ing a layering model composed of Application,
Transport/Network, and Link layers (Figure 1).
This model is useful in clearly defining the respon-
sibilities and restrictions of software that exists at
each level. To be implemented fully, a layer needs a
naming scheme, a way to resolve those names, and
a way to route communications.

The Name Types column of Figure 1 shows the nam-
ing scheme that Internet email uses at each layer.
Some examples of names are shown in the Packet
Headers column. These naming schemes usually
mandate that the names are unique and change in-
frequently. In addition, each layer in the figure has a
protocol to map its names to lower-layer names (the
Name Lookup column in Figure 1). This mapping
facilitates routing a communication to its destina-
tion.

Lavers Name Name Packet
Y Types Lookup Headers
person's Dan
Person name Mobile
LDAP, address book
- email danl6@ B;nmi
Application address yahoo.com | Mobile |
DNS, /etc/hosts
Transport/ | TCP/IP 10.0.0.2 | danl6@ | Dan |
Network address port 25 | yahoo.com | Mobile |
ARP
Link Ethernet 00:20:24: | 10002 | dani6@ | Dan |
in address 96:40:df | port 25 3yahooAcom Mobile
Figure 1: The Layering Model. We show the tra-

ditional networking layers, extended with the Person
layer. Name Types shows examples of the kinds of names
used at each layer. Name Lookup shows some methods
of mapping names from each layer to names in the next
lower layer. Packet Headers shows examples of actual
names at each layer, and their relative locations in a
typical email packet.

To model the full process of person-to-person com-
munication, we need to extend the model to in-
clude people (the new Person layer, as shown at
the top of Figure 1), since most important commu-
nication is ultimately from one person to another,
rather than merely from one device to another. Cur-
rently, the Person layer is implemented in an ad hoc,
non-unified way. People are not always named in
a unique way, although a name or nickname is of-
ten unique among those with whom a person com-
municates frequently. These names (e.g., Dan Mo-
bile) are resolved into application-specific addresses
(ASAs, e.g., dan16@yahoo.com) using a directory
service (e.g., LDAP [WKH97]), an address book, or
simply from a person’s memory.

Consequently, applications have difficulty deliver-
ing communication to people who move from one
application-specific address to another. For exam-
ple, if Dan Mobile stops using his cell phone be-
cause he entered his office building—where land-line
phones are cheaper and have better quality—and
starts using his office telephone, he might not re-
ceive Jane Sender’s phone call in a timely manner.
Furthermore, if Dan is temporarily unavailable by
phone but is reachable by email, Jane, who may
not be near an email terminal, cannot communicate
with him until he is available by phone. Unfortu-
nately, even in the case where Dan’s cellular carrier

allows him to forward his missed phone calls to his
office email address, Dan will still be unreachable
when he moves from his office to a conference room.
The problem is that Jane cannot identify Dan in a
way that is independent of how he is reachable.

The solution is to create a unified implementation
for the Person layer. Such an implementation needs
to name people, map people’s names to application-
specific addresses, and route communications be-
tween people (which we refer to as person-level rout-

ing).

There are naming schemes that assign unique iden-
tifiers to people; we call such names Personal Online
IDs (POIDs). A POID maps to those ASAs through
which a person is reachable. The use of POIDs is
discussed in [MRS'99]. However, the design and
implementation of our person-level router does not
depend on a particular naming scheme.

The role of a person-level router is similar to that
of an IP router: it takes communication from a va-
riety of interfaces and directs it out one or more
interfaces, based on the recipient’s preferences and
on characteristics of the communication itself. The
closest current approximation is a human assistant
who answers Dan’s phone, reads his email and for-
wards his messages by calling, emailing, or paging
him. Aside from wasting the assistant’s time, the
human approach would have difficulty handling real-
time communication (e.g., forwarding an IP tele-
phony call to Dan’s cell phone).

The Personal Prozy (see Figure 2) is our implemen-
tation of a person-level router. It performs three dis-
tinct tasks: tracking, converting, and forwarding.
As a tracker, Dan’s Personal Proxy maintains his
current accessibility information (see Section 3.2).
As a converter, the Proxy converts communication
into a form that can reach Dan, regardless of how
he is currently reachable (see Section 3.4). As a
forwarder, Dan’s Personal Proxy ensures that Dan
is reachable only in the ways he wishes (see Sec-
tion 3.3).

3 Design and Implementation

The Personal Proxy is the online analog of a mo-
bile person’s human assistant. It has its own set
of application-specific addresses (ASAs), which the

Jane Sender

Dan Mobile Dan Mobile

Personal
Proxy

Under Dan's
Physical Control

Figure 2: The Personal Proxy acts as Dan’s online per-
sonal assistant. It forwards Jane’s phone call to Dan’s
cell phone, while he is using it. When Dan stops using
his cell phone and starts reading email on his laptop,
the Proxy converts Jane’s next call to an email message
and forwards it on to the email address through which
Dan is now reachable.

mobile person distributes as his own. Correspon-
dents use these ASAs when they wish to contact
him. Because the ASAs that the mobile person is
really using are never revealed, his location privacy
is preserved.

The Personal Proxy requires three types of informa-
tion to determine how to route communication to
a mobile person: the current applications through
which he is available, his preferences in the form of
rules, and the types of conversions the Proxy can
perform. This information is used by the Track-
ing Agent, the Rules Engine, and the Dispatcher,
respectively, and configured through a User Inter-
face. In this section we present our extensibility
model and describe each of these components.

3.1 Application Drivers

Application Drivers form the basis of our extensi-
bility model. They are interchangeable components
of the system, supporting specific programming in-
terfaces for tasks such as protocol parsing, data
transport, and filtering. Application-specific imple-
mentations of these programming interfaces can be

Dispatcher
Session

Protocol

Conversion

Rules Engine
Condition

Action

Input Session drivers receive incoming communication. Qutput Session drivers gen-
erate and send out communication in application-specific formats.

Parses metadata and content from application-specific communication formats.

Converts data from one content type to another.

Checks a communication for particular properties.

Modifies a communication in a particular way.

Figure 3: The basic programming interfaces for Application Drivers, defined for each component of the Personal

Proxy.

plugged into the system at runtime and are imme-
diately operational. Application Drivers follow the
traditional object-oriented model; abstract compo-
nents are created for each programming interface,
which are then subtyped for specialization. Fig-
ure 3 briefly describes the driver interfaces, their
functions, and the components in which they reside.
The following sections will present how Application
Drivers are used in more detail.

3.2 Tracking Agent

The Tracking Agent monitors the mobile person’s
connectivity state. This is a list of applications
through which the mobile person can currently re-
ceive communications. For each receiving applica-
tion, the Tracking Agent keeps an ASA, a protocol
type and a list of communication formats, such as
HTML text or JPEG image, that can be handled
by the application at that ASA.

To track a user’s location accurately, the Tracking
Agent supports three registration methods: sched-
uled, manual, and automatic. The scheduled reg-
istration method simply assumes a change in the
user’s location according to a preset schedule. Man-
ual registration requires that the user manually send
a registration message to the Personal Proxy by, for
example, filling out a secure web form, calling the
Personal Proxy’s phone number, or sending it regis-
tration email. Automatic registration is more con-
venient for the user, but is feasible only if the device
is able to determine the user’s availability and send
a registration message automatically. Whatever the
registration method, all registrations must be au-
thenticated and encrypted to preserve the user’s lo-
cation privacy and to prevent false registrations.

3.2.1 Registration API

The Tracking Agent requires all registration clients
that register on behalf of the user to conform to
a specific registration Application Programming In-
terface. The main types of functionality included in
this APT are as follows:

Introspection A registration client must be able
to inform the user what kinds of communica-
tion protocols (e.g., email, telephony, fax), con-
tent types (e.g., GIF89 image, RIFF audio), de-
vices (e.g., Nokia 6190, PalmPilot V) the Per-
sonal Proxy knows about.

Customization A registration client must be able
to make it easy for the user to create an ini-
tial, custom environment that can be reused in
the future with minimal tweaking. More specif-
ically, frequently-used endpoints, i.e., combina-
tions of devices, protocols and content types,
should be easy to alias and reuse. Similarly,
frequently-used ASAs (e.g., the mobile person’s
work phone or instant messaging ID) or POIDs
(e.g., mom’s, or an employer’s) should be easy
to alias.

Activation Given the two functions above, a regis-
tration client must be able to mark a nicknamed
endpoint as active or inactive. It should also be
possible to create and activate a single-use end-
point, without having to define an alias for it
first.

Our prototype currently implements two forms of
manual registration: the user either indicates his
connectivity state by accessing a secure web page

Rule #1:
IF From = “mom@home.net” AND

THEN send-to “work email”

Rule #2:

IF content contains “make” AND
content contains “money” AND
content contains “fast”

THEN drop

(content contains “emergency” OR content.audio audio.pitch-is “high™)
THEN content.text truncate-to “5 KB" AND send-to “cell phone 1"

Figure 4: A symbolic example of some rules accepted by the Rules Engine. Italics designate Condition or Action
Drivers. Contains is a polymorphic condition (it can refer to text, audio, image, etc.). Pitch-is is a type-specific
condition, as it refers only to audio content; it determines whether the pitch of the voice is relatively high. Truncate-
to causes a content to be truncated. Send-to forwards a communication to the named aliased endpoint. Drop causes

a communication to be discarded.

and downloading an applet that makes authenti-
cated Java RMI calls to the Tracking Agent through
the registration API, or sends signed email with his
connectivity state. We plan to add other registra-
tion methods, including an automatic method where
the user’s location is tracked via a “smart badge.”

3.3 Rules Engine

The Rules Engine uses the current connectivity
state and the user’s preferences to direct the rout-
ing decisions made in the Personal Proxy. The user
enters routing preferences through the User Inter-
face as an ordered list of rules. We first describe the
structure of a rule. We then describe how the Rules
Engine creates a set of directives that the Dispatcher
will use when routing communication.

3.3.1 Rule Structure

Rules in the Personal Proxy follow the form

IF condition THEN action
THEN action ...

(see Figure 4 for an example).

Conditions are generic, type-specific or polymorphic
and can be simple or composite (i.e., simple condi-
tions combined using the logical connectives AND,

OR, NOT). A generic condition is defined on the
metadata of a communication. It is formed as a
logical predicate on properties shared by all commu-
nication protocols and content types, such as size,
sender or send date.

A type-specific condition is defined on one partic-
ular content type or communication protocol. For
instance, such a condition could be placed on par-
ticular headers of an RFC822 email message (such
as the X-Face header, which carries a low-resolution
picture of the sender’s likeness), or properties of an
image (such as its color depth).

A polymorphic condition can be defined on many
content types but has a different implementation
for each one of them. Containment or similarity
conditions fall within this category. Some exam-
ples are “Does the communication contain my com-
pany’s logo?” or “Does the communication contain
the words ‘make,” ‘money,” and ‘fast’?” Contain-
ment in the former case invokes an image pattern-
matcher whereas in the latter case it invokes a text
matcher.

Actions serve two functions: routing and content
conversion. Routing actions change the way a com-
munication is delivered (or not) to the mobile per-
son. For example, a simple one would be forward-
ing to a different person and a complex one would
be prioritized forwarding requiring explicit acknowl-
edgements. Content actions modify the data or con-
vert the format of a communication. They try to
massage contents to fit a particular format or set

of requirements specified by the user or obtained
from the properties of the receiving application. Ex-
amples include truncating a large email sent to a
pager or reducing the resolution of an image sent to
a PDA.

There are two ways actions can be combined within
arule. First, actions can be composed, as is the case
with the first THEN clause in Rule #1 of Figure 4.
Here, the truncation occurs first and its result is sent
to the application represented by the nickname “cell
phone 1”. Second, actions can be juxtaposed inde-
pendently. In the same rule, the two THEN clauses
are applied independently, in parallel or serially; the
side effects of the former do not affect the latter and
vice versa.

Type-specific and polymorphic conditions, as well
as content actions can be installed and removed at
runtime (see Section 3.1).

3.3.2 Creating Directives

When a communication arrives at the Personal
Proxy, the Rules Engine determines where the com-
munication will be routed. It evaluates the generic
conditions of each rule one at a time. Conditions
dependent on the type of the content (i.e., type-
specific or polymorphic conditions) are evaluated as
part of the conversion planning process (see Sec-
tion 3.4.1). When the Rules Engine encounters a
rule whose generic conditions evaluate to true, it as-
sembles a set of directives derived from the remain-
ing conditions as well as the actions of the rule. A
directive consists of a destination and a goal state.
A destination is a set of ASAs where the commu-
nication should be routed. This set is determined
by the routing actions of the rule. The goal state
contains certain requirements the Dispatcher must
fulfill when handling a communication:

1. the required output content type,

2. the as yet unresolved conditions of the rule that
must evaluate to true before the communica-
tion is routed, and

3. the content actions that are to be applied to
the communication before it is routed.

Independent actions of a rule result in multiple di-
rectives. For example, Rule #1 in Figure 4 would

result in two directives, one corresponding to each
THEN clause. Conflicting goal states are resolved
at the Dispatcher.

3.4 Dispatcher

The Dispatcher routes incoming communications to
one or more ASAs, possibly converting from one
application type to another along the way.

The typical path of a communication through the
Dispatcher is the following (see Figure 5):

e An Input Session Driver (see Figure 3) receives
the incoming communication.

e A Protocol Driver parses the communication
into its metadata and its content.

e The Dispatcher queries the Rules Engine for the
directives that pertain to this communication.

e The Conversion Planner (see Section 3.4.1) con-
structs a path through Conversion, Condition
and Action drivers to bring the communication
into the desired format.

e An Output Session Driver sends out the result-
ing communication to its destination.

3.4.1 Conversion Planning

The heart of the Dispatcher is the Conversion
Planner, which transforms incoming communica-
tion from the sender into a form understandable
by the mobile person’s current applications or de-
vices. The Conversion Planner has two tasks. First,
it must plan and invoke a sequence of conversion
drivers that implement specific transformations on
the incoming communication. Examples of trans-
formations are converting from one data type to an-
other (for instance, text to an audio format through
speech synthesis) or reducing the size of the com-
munication (for instance, cutting all but the first
100 bytes of text, reducing the sampling frequency
of a sound, or increasing the compression levels of
an image). Some of the transformations might be
inherently required by the mobile person’s device or
application (for example, the available display might
have a limited color depth), some are used in a pre-
ventive manner (for example, to avoid overloading

Rules Engine: "Send to 555-1234 AND

if audio, truncate to 2 minutes"

PSTN PSTN
Inout Phone metadata] Phone Outout
SesZion Protocol ‘ Protocol Sesspion
Driver Driver Driver Driver
audio/rmd content,
guaranteed to be
llcQ,[ICQ under 2 minutes Email gNlTPt
Ser:;]on Protocol long Protocol SeL;sF:Sn
R Driver Driver R
E Driver ~ T Driver
[}
g Text to .
= Fax to Audio
IMAP . IC
o Email GSM TIFF Cho ICQ Q
< Input Audio P Output
2 Session Protocol : Protocol Session
@ A Driver audio/rmd | T Driver >
g— Driver GSM content PCM Driver
® _ Text to i e
= b
< text/plain | HTML
© content PCM RMD

Conversion Drivers

Figure 5: The Dispatcher. This figure shows how the Dispatcher routes email arriving at the Personal Proxy’s email
address to the telephone number at which Dan can be presently reached. Thin light arrows indicate content flow.

Thin bold arrows indicate metadata flow.

the network connection or device memory), while
others just aim to summarize unimportant com-
munication selectively (for example, remove decora-
tions from an incoming fax transmission, only leav-
ing the text behind).

Second, the Conversion Planner must deal with
type-specific and polymorphic conditions as well as
content actions imposed on a communication by the
Rules Engine. Such conditions or actions cannot al-
ways be applied by the Rules Engine because they
might require a conversion first. For example, con-
sider a scenario where the condition is “contains
the word ‘emergency’” and the incoming commu-
nication is fax. To evaluate this polymorphic con-
dition when it has only been defined on text (i.e.,
when there is only a textual pattern-matcher avail-
able), the Rules Engine must invoke an optical char-
acter recognition utility to perform an image-to-
text conversion, and then use the textual pattern-
matcher to check for the word “emergency.” To per-
form the appropriate invocations, the Rules Engine
would in general need to implement its own plan-
ner. Rather than duplicating the planning work,
the Rules Engine simply passes along to the Dis-
patcher those type-specific conditions, polymorphic
conditions and content actions, that require some
conversion before they can be used.

For each directive obtained from the Rules Engine,
the Conversion Planner constructs a separate plan
in three phases. In the first phase, the Conversion
Planner constructs a sequence of conversion drivers.
This is done through a simple breadth-first search
of the conversion driver space. The end result is a
sequence whose starting point is the incoming con-
tent type and whose endpoint is the required output
content type listed in the goal state of the directive.

Conversion drivers are each given equal weights
currently, although it would make sense to favor
“cheaper” conversion drivers over more “expensive”
ones, for whichever cost metric the user finds impor-
tant. For example, postscript-to-text conversions
require far less computation than text-to-speech
conversions and if cycles are at a premium, we might
want to favor the former over the latter.

In the second phase, the Conversion Planner de-
termines when type-specific and polymorphic condi-
tions (listed in the goal state of the directive) are to
be evaluated in the sequence. If a condition cannot
be evaluated anywhere in the sequence of conversion
drivers, then the Conversion Planner inserts addi-
tional conversion steps to the sequence of drivers to
ensure that the condition is evaluated. This might
create a new branch in the sequence of drivers, since

the conversion path to check a condition might not
be the same as the path needed to dispatch the con-
tent to its destination. In the example described
above, where we need to use a textual condition on
a fax, if the destination is also fax there is no need
to go back from text to image; as soon as the textual
condition is evaluated (and provided it evaluates to
true), the fax can just be dispatched as is, discard-
ing the image-to-text conversion step. Otherwise,
the whole process is aborted.

In the third phase, the Conversion Planner deter-
mines when the content actions (listed in the goal
state of the directive) are to be performed. This in-
volves adding action drivers to the sequence. To be
applicable, content actions might also require ex-
tra conversions. Unlike the case with conditions,
however, extra conversions inserted to accommo-
date content actions do not create a new branch
in the converter sequence, since the results of the
content actions must be included in the outgoing
content. Again, in the fax example above, if it is re-
quired to use a textual spell checker before the fax
is forwarded, then an image-to-text converter, the
spell checker, and a text-to-image converter have to
be inserted in the conversion sequence.

We plan to explore the utility of associating an im-
portance factor with each condition or action af-
fecting the conversion path. This would allow low-
priority conditions or actions to be ignored if they
cannot be used without adding extra conversion
steps.

3.5 User Interface

Unlike a network-layer router, which is usually
maintained behind the scenes by a system adminis-
trator, the Personal Proxy must be configured with
personal information specific to its user most likely
by its user, to route communications effectively.
Since no single user interface can work on every
device from which the user might want to config-
ure the Personal Proxy, multiple user interfaces are
supported via the Tracking Agent and Rules Engine
APIs. In this section we describe the design prin-
ciples underlying our development of the Personal
Proxy user interfaces.

3.5.1 Functionality

Two key sets of information are required of the user:
application and device registrations, which are sent
to the Tracking Agent, and routing rules, which are
sent to the Rules Engine.

Additional information is requested from the user
to make the interface easier to use. When the user
first configures the Personal Proxy, he is asked to
select from a list of all the devices or applications
that he might use, and assign each of them an easy-
to-remember nickname. When he later registers an
application as active, he can simply choose one of
the previously configured nicknames. The user can
also set up an address book containing the ASAs or
POIDs of people to whom he might want to forward
communications via routing rules.

3.5.2 Supporting Different Interfaces

In keeping with the extensible nature of the system,
the Personal Proxy supports any kind of user in-
terface as long as it conforms to the APIs for the
Tracking Agent and the Rules Engine.

The user interfaces we are currently prototyping
are an interactive, Web-based interface which pro-
vides full configuration functionality, and a non-
interactive, email-based interface which only allows
registering previously configured applications.

3.5.3 Design Issues

User interfaces for communication filtering have
been notoriously hard to design for several reasons.
First, the structural information enclosed in filtering
rules is complicated, sometimes consisting of multi-
ple levels of a logical tree. Second, it is difficult to
give the user an intuitive idea of what a certain set
of rules will do when applied to a particular commu-
nication, since many rules might participate in the
decision and some of their mandated actions might
be mutually contradictory. Third, in an extensi-
ble filtering system such as the Personal Proxy, the
interface must be flexible enough to accommodate
rule components (conditions or actions) that might
not have been defined at the time of interface design.
The usual result is that user interfaces are either too
complex for the uninitiated to use, or too simplis-

tic for experienced users to perform more ambitious
tasks.

In the Web-based interface we are currently proto-
typing, we attempt to address each of these prob-
lems. To deal with the complex structure of filtering
rules, the interface presents a two-pane display. For
context, one pane shows the hierarchy of objects to
which rules can be applied; the other contains the
set, of rules for the object currently in focus. To help
the user anticipate the effect of a set of rules, the
interface allows the user to send “preview” commu-
nications through the Personal Proxy and view the
results without actually completing delivery. For
real communications, the Dispatcher records the se-
quence of applied rules and conversions so that the
user can later determine what went wrong if they
are delivered improperly. Finally, we attack the ex-
tensibility problem by allowing developers of new
rule components to override methods which define
the visual presentation of each component.

4 System Evaluation

We evaluate our system using three criteria: preser-
vation of privacy, extensibility, and ease of deploy-
ment.

4.1 Preservation of Privacy

A primary goal of our system is to preserve the pri-
vacy of the mobile person. While complete preser-
vation of privacy is impossible [Lam73], our system
goes much further towards this goal than current
systems do (see Section 5). This is mainly accom-
plished in two ways: first, by hiding all locations
visited by the mobile person and, second, by fil-
tering incoming communications and routing them
according to their desirability.

The only ASAs for Dan that Jane Sender knows of
are those of his Personal Proxy. The Proxy can re-
ceive and forward all of his communications to his
undisclosed, current ASAs. In addition, his regis-
trations are encrypted and authenticated (see Sec-
tion 3.2). The Proxy prevents Jane from determin-
ing Dan’s exact network location, device or appli-
cation, thus protecting his location privacy. Dan’s
location privacy is as secure as his Personal Proxy.

Table 1: Lines of code in selected Application Drivers.

Driver Code | Doc | Total
Email Protocol 139 | 135 274
IMAP Input Session 108 | 119 277
SMTP Output Session 169 52 221
Phone Output Session 100 56 156
Text-to-Audio Conversion 39 6 45

The Proxy can run on a single host under the com-
plete physical control of its user (although several
users could share a Personal Proxy for lower cost).
Consequently, our system is more secure than others
that depend on several nodes, which are not all un-
der the control of the user (or trusted third party),
or of whose existence the user is not aware.

One unresolved issue concerns an adversary residing
on the path between Dan and his Personal Proxy.
In this case, encryption cannot preserve Dan’s loca-
tion privacy if registration flows are identifiable. So
far we are considering disguising the flows or trans-
mitting decoy registrations, but the adversary issue
is known to be a difficult problem.

The Personal Proxy prevents unwanted communi-
cation by allowing the user to define content-based
rules governing how unwanted or low-priority com-
munication should be handled (see Section 3.3).
Since rules can handle any protocols or content
types, they can filter the user’s communications
more comprehensively than traditional filtering sys-
tems.

4.2 Extensibility

As explained in Section 3.1, extending support to
a new messaging or transport protocol, or even a
new content type, is merely a matter of writing ap-
propriate new Application Drivers. The new drivers
can be introduced to the running system, without
requiring a restart.

We measured the extensibility of our system as the
amount of programmer time and lines of code re-
quired to add functionality. Given a preexisting
unofficial Java API for ICQ transport and messag-
ing, an experienced programmer was able to create
a working set of drivers for input/output sessions

and messaging in less than an hour. (ICQ [ICQ] is
an instant messaging program.)

The code required to glue various other functional-
ity into the architecture is given in Table 1. The
number of lines of code and the totals for code and
comments measure approximately the difficulty of
adding new functionality to the architecture.

Although this gives only a rough measure of the ex-
tensibility of the system, it is safe to say that extend-
ing the system does not require bringing the system
down and can be done easily, using off-the-shelf soft-
ware and hardware components. It is straightfor-
ward enough that an advanced user can add func-
tionality without days of development.

4.3 Ease of Deployment

The most important metric of a communication sys-
tem is the number of people who can use it. The eas-
ier a communications system is to deploy, the more
people can benefit from using it. In addition, given
the rate of development of new networking technolo-
gies, a system that is difficult to deploy may become
obsolete before it is widely available. The benefit of
such a system is limited. For example, ISDN was
not widely available in the United States until four-
teen years after it was first specified [Sta94] because
it required upgrading phone switches and wiring.
By that time, faster technologies like cable modems
and DSL were already emerging. In contrast, the
World Wide Web was deployed widely in less than
four years, in part because an individual can set up
a web server without modifying the network infras-
tructure.

We have designed the Personal Proxy to be as easy
to deploy as a web service. It is a single Java server
that can be installed by an individual on any Java-
compatible host with no special support from the
underlying network infrastructure. The only re-
quirement is that the Proxy be able to communicate
with each device through which the mobile person
expects to be reachable. In general, if a mobile per-
son expects to communicate through a particular
network (e.g., the telephone network or the Inter-
net), he probably already has connections to those
networks in his home or at work.

5 Related Work

Many existing solutions allow user mobility among
devices in a network of a single type. Examples
include the GSM and UMTS [UMT] cellular tele-
phony systems and the Personal Mobile Telecommu-
nications option of the Japanese cellular telephony
system (PDC). All use smart cards to identify the
user currently using a phone. Unlike MPA, these
solutions provide user mobility within only one net-
work type. MPA provides user mobility across all
network types.

The Iceberg [JBK98] project has goals similar to
those of MPA, but takes a different approach.
Iceberg’s functionality depends heavily on a pre-
existing network infrastructure involving a large
number of nodes called Iceberg Access Points
(IAPs). The Iceberg design calls for tracking infor-
mation and user preference information to be dis-
tributed among IAPs throughout the network in-
frastructure. As a result, the IAPs can avoid the
level of indirection and delay added by our Personal
Proxy by setting up direct and possibly shorter com-
munication paths between the sender and receiver.
However, the Iceberg design also requires that TAPs
be installed in each type of network supported. For
PSTN (Public Switched Telephone Network) or cel-
lular networks, this requires modifying switches or
base stations. Many small service providers may
have trouble convincing telephone companies to give
them access to their base stations. Given the large
number of international telephone standards and
network operators, it may be difficult to deploy Ice-
berg widely. Furthermore, Iceberg requires the user
to trust several entities (the TAPs) that are not un-
der the user’s (or even necessarily a trusted third
party’s) complete physical control.

The TOPS architecture [AGK'99] provides both
host and user mobility for telephony over packet
networks. It shares with MPA the notions of a
person-level addressing scheme, translating online
IDs into application-specific addresses, tracking the
current location of users, and converting between in-
compatible formats. An important aspect of TOPS
that we would like to incorporate into MPA in the
future is its support for capability negotiation be-
tween the caller and the callee. A key difference
between TOPS and MPA is that TOPS mainly
targets telephony-like applications, where real-time
voice and video are the predominant content types,
whereas MPA targets all communications applica-
tions, synchronous or asynchronous. Also, TOPS

pushes all filtering functionality into the Directory
Service. MPA requires a Directory Service only to
locate a Personal Proxy; all subsequent computa-
tion, including filtering and authentication is han-
dled by the Personal Proxy instead. We believe
this is the only way to allow directory servers to be
fast and efficient, without curtailing the functional-
ity delivered to the end user. Furthermore, TOPS
exposes a person’s point of attachment to others.
MPA presents a black-box view to callers, allowing
for better protection of the mobile person’s loca-
tion privacy. Another key difference is that TOPS
requires all end-user applications to be rewritten.
MPA can be fully operational using current appli-
cations and a Personal Proxy, which makes it much
more readily deployable.

The SPIN project [LRQS97] at the Canadian Na-
tional Research Council has designed a seamless
messaging system whose goal is to intercept, filter,
convert and deliver “multi-modal” messages includ-
ing voice, fax, and email messages. Like MPA, the
system performs tracking to determine the availabil-
ity of the user and places emphasis on maintaining
application-independent filtering rules. However the
SPIN project does not try to preserve a user’s loca-
tion privacy. Instead this information is made glob-
ally available throughout the system. SPIN also as-
sumes that for every data format, there will be a
converter that transforms the format into a stan-
dard text format. The filtering rules are then ap-
plied to the standard format. While this eliminates
the need for path planning, it introduces two prob-
lems. First, there are some data formats such as
images that cannot be converted to the standard
text format. Second, adding a new data format re-
quires writing a new converter, because existing off-
the-shelf converters are not likely to transform their
input into the standard SPIN format. In MPA, we
leverage off of existing converters and simply write
wrappers around them to integrate them into the
Conversion Planner.

Transcoding proxies have been researched exten-
sively. In work by Fox et al. [FGBA96, FGCB97]
the goal is to accommodate clients with limited re-
sources and provide ways to make transcoding more
scalable. Our transcoding approach does not try
to improve on the results above; instead, we build
smart transcoding paths, and allow the transcoding
process to be coordinated with filtering and priori-
tization.

Many applications exist which allow the user to de-
fine rules to filter and categorize electronic mail

based on metadata and keywords. This idea was
explored early on in the Information Lens, a re-
search system whose goal was to facilitate infor-
mation sharing within organizations [MGT86]. Al-
though the system allowed people to compose com-
plex rules for messages written using semistructured
templates, most people created fairly simple rules
for tasks such as processing messages from distribu-
tion lists [MMC™89]. Since the Personal Proxy has
no control over application-specific communication
formats, it must rely on the structure provided by
each application. However, the Proxy can perform
conversions and route between different communi-
cation applications as well as filter and categorize,
so it can provide users with a much richer set of
tools for managing communications.

6 Conclusions

Ubiquitous network connectivity for devices does
not automatically imply continuous reachability for
people. Whereas existing mechanisms have ad-
dressed host mobility or the mobility of people
within one network, few have allowed people, the
ultimate and most important endpoints of commu-
nication, to roam freely, without being constrained
to one location, one application, one device, or one
network.

We propose the Mobile People Architecture (MPA)
to maintain person-to-person reachability. MPA
distinguishes itself from similar systems by its em-
phasis on protecting the user’s privacy, being exten-
sible to new network devices and applications, and
being easy to deploy.

Our prototype person-level router, the Personal
Proxy, currently interoperates with telephony,
email, and ICQ (an instant messaging program).
It filters out spam using a powerful rule-driven en-
gine based on the mobile person’s preferences. We
show that the Personal Proxy restricts the trusted
computing base to a single host under the physi-
cal control of the user. In addition, we show that
given a library to interoperate with a new network
device or application, the Personal Proxy can be ex-
tended in less than 200 lines of Java code. Finally,
we show that a Personal Proxy can be deployed by
an individual and used by all of that individual’s
correspondents without the need to modify the ap-
plications and devices they use.

The latest updates on the Mobile People Architec-
ture can be found at http://mpa.stanford.edu/.

7 Acknowledgements

We would like to thank Ichiro Okajima of NTT Do-
CoMo for providing us with valuable questions and
suggestions during our MPA discussions.

This research has been supported by a gift from
NTT Mobile Communications Network, Inc. (NTT
DoCoMo), a grant from the Keio Research Insti-
tute at SFC, Keio University and the Information-
technology Promotion Agency in Japan, and a grant
from the Okawa Foundation.

References

[AGKT99] N. Anerousis, R. Gopalakrishnan, C.R.
Kalmanek, A.E. Kaplan, W.T. Mar-
shall, P.P. Mishra, P.Z. Onufryk,
K.K. Ramakrishnan, and C.J. Sreenan.
TOPS: An Architecture for Telephony
Over Packet Networks. IEEE Journal
of Selected Areas in Communications,
17(1), January 1999.

Armando Fox, Steven D. Gribble,
Eric A. Brewer, and Elan Amir. Adapt-
ing to Network and Client Variabil-
ity via On-Demand Dynamic Distilla-
tion. In Proceedings of the Seventh In-
ternational Conference on Architectural
Support for Programming Languages
and Operating Systems, pages 160—170,
Cambridge, MA, October 1996.

[FGBA96]

[FGCB97] Armando Fox, Steven D. Gribble, Yatin
Chawathe, and Eric A. Brewer. Cluster-
Based Scalable Network Services. In
Proceedings of the Sizteenth Symposium
on Operating Systems Principles, pages
78-91, Saint Malo, France, October

1997.

[ICQ]
[JBKOS]

ICQ, Inc. http://www.icq.com/.

A. D. Joseph, B. R. Badrinath, and
R. H. Katz. The Case for Services over
Cascaded Networks. In Proceedings of
WOMMOM ’98, October 1998.

[Lam73]

[LRQS97]

[MGTS86]

[MMC*89]

[MRS+99]

[Sta94]

[UMT]

[WKH97]

Butler W. Lampson. A Note on the
Confinement Problem. Communica-
tions of the ACM, 16(10):613-615, Oc-
tober 1973.

Ramiro Liscano, Impey Roger,
Yu Qinxin, and Abu-Hakima Suhayya.
Integrating Multi-Modal Messages
across Heterogeneous Network. In
Proceedings of the IEEE International
Conference on Communications, June
1997.

T. W. Malone, K. R. Grant, and F. A.
Turbak. The Information Lens: An In-
telligent System for Information Shar-

ing in Organizations. In Proceedings of
CHI 86, 1986.

W. E. Mackay, T. W. Malone, K. Crow-
ston, R. Rao, D. Rosenblitt, and
S. Card. How Do Experienced Infor-
mation Lens Users Use Rules? In Pro-
ceedings of CHI ’89, 1989.

Petros Maniatis, Mema Roussopoulos,
Ed Swierk, Kevin Lai, Guido Appen-
zeller, Xinhua Zhao, and Mary Baker.
The Mobile People Architecture. In
ACM Mobile Computing and Commu-
nications Review, July 1999. To appear.

William Stallings. Data and Computer
Communications. Macmillan Publish-
ing Company, 4th edition, 1994.

The Universal Mobile Telecommuni-
cations System. http://www.umts-
forum.org/.

M. Wahl, S. Kille, and T. Howes.
Lightweight Directory Access Protocol
(v3). RFC 2251, 1997.

