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Abstract

Clustered server architectures have been employed for
many years on the Internet as a way to increase
performance, reliability and scalability in the presence
of the Internet’s explosive growth. A routing
mechanism for mapping requests to individual servers
within cluster is at the heart of any server clustering
techniques. In this paper, we first analyze the
deficiencies of existing request-routing approaches.
Based on these observations, we argue that the request
routing mechanism in a cluster-based server should
factor in the content of a request in making decisions.
Thus, we designed and implemented a new mechanism
to efficiently support content-aware routing in Web
server clusters. With this mechanism, we also built in a
number of sophisticated content-aware intelligence for
making routing decision. Performance evaluation on a
prototype implementation demonstrates substantial
performance improvements over contemporary routing
schemes. The proposed mechanism can also enable
many new capabilities in cluster-based servers, such as
sophisticated load balancing, differentiated service,
special content deployment, session integrity, etc.

1. Introduction

The Internet, in particular the World Wide Web, has
experienced explosive growth and continues to expand
at an amazing paces [1]. This has resulted in heavy
demands being placed on Internet servers and has raised
great concerns in terms of performance, scalability and
availability of Web services. A monolithic server
hosting a service is usually not sufficient to handle
these challenges. Cluster-based server architecture has
proven [2,3,4] a successful and cost effective alternative
to build a scalable, reliable, and high-performance
Internet server system. In fact, popular Web sites are
increasingly running Internet services on a cluster of
servers (e.g., Alta Vista [5], Inktomi [6], Netscape [7]),
and this trend is likely to accelerate.

An important issue that arises in such clustered

architectures is the need to dispatch and route incoming
requests to the server best suited to respond. Over the
past few years, a considerable number of researchers
and vendors have proposed methods for distributing the
user requests in such clustered server. We classify these
schemes based on where in the layer the request-
distribution function is applied:

® Client-side approach
First, request routing can be achieved through a
Java applet that is downloaded and executed at
client side (e.g., [8,9]). The applet provides
service-specific customizations that forward each
client request to an appropriate server.

® DNS-based approach
When a client tries to request a document from a
Web server, the client-side browser first has to
construct a DNS query to resolve the mapping of
server hostname (from URL) to IP address. The
DNS-based approach [10,11,12] performs routing
decisions at this name resolution level. The name
server at the server side can be customized to
resolve the same name to different 1P addresses for
the purpose of request distribution.

® TCP connection routing
Once the [P address is resolved, the client will try
to establish a TCP connection to the server with the
designated [P address. A number of researchers
[4,13,14,15] and vendors [16,17,18,19,20] have
proposed a connection-routing frontend to route
user requests at this stage. These front-end devices
make parallel services on different servers appear
as a virtual service on a single IP address.

® HTTP redirection
After the TCP connection setup is completed, the
client then issues the HTTP request. At this stage,
the HTTP redirection approach (used in [21]) may
use one special response code URL Redirection
(defined in the HTTP protocol [22]) to perform
request routing. This is achieved by returning the
address of the selected server instead of returning
the requested data, asking the client to create a
second connection and resubmit its request to that



SCrver.

We have previously designed and implemented a
cluster-based framework [4,23] for building a scalable
and highly available Internet server. From our
experiences using this framework to build many large-
scale Internet service sites, we found a number of
important issues that cannot be effectively addressed by
existing routing mechanisms. Examples include session
(or transaction) integrity, sophisticated load balancing,
quality of service, and content placement. We discuss
these issues in section 2. Based on these observations,
we argue that in many cases the routing mechanism in a
cluster-based server should factor in the content (e.g.,
URL or service type) of a request in making decisions.
We refer to this concept as “content-based routing.” We
propose a new mechanism to efficiently support
content-based routing in Web server clusters. The
design of the proposed mechanism is presented in
section 3. We implemented the mechanism as a
specialized software component called content-aware
distributor, which is a software module for kernel-level
extension. We present the key portions of the
implementation in section 4. Section 5 presents the
results of performance evaluation of the prototype
system. The results demonstrate  substantial
performance improvements over contemporary routing
schemes. We compare our system with related work in
section 6, and then present the conclusion in section 7.

2. Issues Ignored by Existing Routing
Schemes

Existing approaches for routing requests to individual
servers within cluster have typically concentrated on
\user transparency, load distribution, and scalability.
From our experience of running Internet services on a
cluster architecture, we argue that a number of other
issues are very important as well:

Session Integrity: Currently, the HTTP protocol is
stateless, i.e., a Web server fulfils each request
independently without relating that request to previous
or subsequent requests. However, there are many
situations (e.g., electronic commerce) where it is
essential to maintain state information from previous
interactions between a client and a server. For example,
such state might contain the contents of an electronic
"shopping cart" (a purchase list in a shopping mall site)
or a list of results from a search request. When the user
checks out of the shop, or asks for the next 25 items
from a search, the state information from the previous
request is needed. A number of schemes are
employed (e.g., cookies [24] or hidden variables within

HTML FORM [25]) or proposed [26] for handling state
on the Web. Unfortunately, these methods might not be
processed properly in a cluster-based server. If the
routing mechanism do not examine the content of each
request in selecting a server, it is possible a request
belonging to a session is dispatched to the wrong server.
This could limit the usefulness of cluster architecture
because the state concept is an increasingly critical part
of Web behavior for e-commerce, Web-oriented
database, and other dynamic transaction applications.

Sophisticated Load Balancing: A server cluster
requires some sort of load-balancing mechanism for
directing requests in a way that utilizes the cluster
resources evenly and efficiently. In current Web sites,
the service type of incoming requests can be as varied
as static Web pages, dynamic content generated by CGI
scripts, or multimedia data such as streaming audio or
video. The service time and the amount of resources
consumed by each request vary widely and depend on
several factors. For example, a request for executing a
CGI script normally requires much more computing
resources compared to static file retrieval requests [27].
This heterogeneity in request often causes skewed
utilization of the server cluster. As a result, a more
sophisticated load-balancing mechanism based on the
service type of each request is essential. The load-
balancing capability provided in many existing systems
is still limited because they do not consider the service
type of each request. Typical load-balancing strategies
used in these systems include Round Robin [11, 14],
Weighted Round Robin [17], Least Connections [18],
Weighted Least Connections [17], and Monitored
Server Load [17,18]. We previously implemented these
mechanisms in our Web server cluster, and observed
that these techniques still cannot deliver satisfactory
performance when the workload characteristics of each
request change significantly. Others have made similar
observations [28, 29].

Differentiated Services: The Web continues to evolve
from its initial role as a provider of read-only access to
static documentation-based information, and is
becoming a platform for supporting complex services.
However, most current Web servers, both cluster-based
and monolithic, provide service in a best-effort manner
that does not differentiate between the requirements of
different requests. This approach does not work well
with advanced services and potential future needs.
Different services may have different requirements for
quality of service. If the routing schemes do not take
the service type of each request into consideration, it is
difficult to enforce priority policies and to provide the
desired quality of service. Otherwise, not all content are



equally important to the client and service provider.
However, we notice that requests for popular pages
have the tendency to overwhelm the requests for other
critical pages (such as product list or shopping-related
pages). As a result, enterprises and service providers
(e.g., Web content hosting service providers) may want
to exert explicit control over resource-consumption
policies, to provide differentiated quality of service due
to the variety of content.

Content Deployment: Given a cluster-based server,
how to place and manage content in such a distributed
system is an important and challenging issue. Because
the incoming requests may be distributed to any server
node in the cluster, each participant server must have
the same capability for responding to requests for any
portion of resource that the Web site provides.
Typically, this requirement can be achieved by a shared
network file system or full replication of all content on
each server. However, neither of these two schemes is a
satisfactory solution. The networked file system
approach will suffer from the single-point-of-failure
problem and increase user perceived latency by
accessing data over the network file system. Full
replication of content is expensive in terms of space
utilization, and will not work for some Web services
(e.g., a Web service using a commercial database).
Thus, there are times when either to reduce space
requirements or for performance reasons, a Web site
administrator wants to place different functions or
content on different sets of servers. In cases where this
is done for performance, specific machines can be
dedicated to a particular task (e.g., executing CGI
scripts) for performance optimization. To support such
flexible content deployment, the routing scheme must
be content-aware so that it can know which server hosts
the requested content.

These observations lead to the inevitable conclusion
that in many cases the routing mechanism in a cluster-
based server should factor in the content of requests in
making decisions. However, this requirement cannot be
effectively addressed by existing routing mechanism. A
routing mechanism generally has to collect some
information about server’s state to perform routing
decisions. When request routing is performed at the
client side, the status information that is collected
remotely may be stale, resulting in bad routing
decisions. For example, servers that appear to be
underutilized may quickly become overloaded because
everyone sends their requests to those machines until
new load information is propagated. Both DNS-based
and connection-router approaches are content-blind,

because they determine the target server before the
client sends out the HTTP request. HTTP redirection
might be used for content-aware routing. However, we
do not prefer HTTP redirection because this mechanism
is quite heavy-weight. Not only does it necessitate the
use of one additional connection, which introduces an
extra round-trip latency, but also the routing decision is
performed at the application level and uses the
expensive TCP protocol as the transport layer.
Motivated by these observations, we propose a new
mechanism, called a content-aware distributor, to
effectively support content-based routing.

3. The Content-Aware Distributor

The major challenge in designing the content-aware
mechanism is the connection-oriented semantics of
TCP protocol that the Web service is based on.
Whenever a client tries to issue a request to the Web
server, it must first establish a TCP connection to the
server. As a result, the dispatcher node has to establish
a TCP connection with the client so that it can examine
the subsequent HTTP request to perform content-based
routing. When the routing decision has been made,
relaying the HTTP request (or migrating the established
connection) from the dispatcher to the selected server
becomes a challenging problem. In particular, such a
mechanism should be transparent to users and efficient
enough to not render the dispatcher a bottleneck.
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Figure 1 shows our design of the content-aware
distributor. The operation of the content-aware
distributor (distributor for short) is largely based on the
following three data structures that hold vital
information for routing a request: the cluster table, the
mapping table and the URL table. Each entry in the



cluster table represents one participant server in the
cluster. The most important fields of the cluster-table
entry include the IP address and MAC address of one
participant server, a timer for failure detection, the load
index (a measure of current load), and the available
connection list (which will be described later).

The distributor also maintains and manipulates the
mapping table for directing a request to the selected
server. Each entry in this table is indexed by the source
IP address and source port of the client, and also
includes the IP address and port number of selected
server, a state indication, TCP state information for the
client and the selected server, and a timestamp. The
URL table holds information (e.g., location of the
document, document sizes, type, priority, etc.) that
helps the dispatcher to make routing decisions.

To explain the operation of the distributor, we look at
the sequence of events when a client requests a
document from a Web server, and then show how the
distributor operations fit into the packet exchange (see
Figure 2).
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Figure 2. Operation of Content-Aware Distributor

3.1 Connection Setup

Whenever a client tries to initiate an HTTP request
(position 2 in figure 2), the client-side browser first
opens a TCP connection, resulting in an exchange of
SYN packets as part of TCP’s three-way handshake
procedure [30].

For each incoming packet, the packet analyzer inspects
the information embedded in the IP and TCP header. If
this packet is not destined for the Web service, the
packet is passed up to the normal protocol stack.
Otherwise, the mapping table is consulted to find the
corresponding mapping information. If no information
about this packet is found, the packet analyzer checks
the SYN flag in the TCP header. If the SYN flag is set,
representing the arrival of a new TCP connection, the
handshake-handler module is invoked. The handshake-
handler module first creates an entry in the mapping
table for this connection and sets the status of this entry
to SYN _RCVD. Then it handshakes with the client to
complete the TCP connection setup. When connection
establishment is completed, the status is changed to
ESTABLISHED and the TCP state information (e.g.,
sequence number, ACK number, etc) is recorded in the
mapping-table entry.

3.2 Transmitting the HTTP Request

After the TCP connection setup is completed, the client
sends packets conveying the HTTP request for the
specific content it is looking for. Once such a packet
arrives, if the packet analyzer can find a corresponding
entry in the mapping table and the status of this entry is
ESTABLISHED, then the dispatcher module is invoked.
The dispatcher parses the URL of this request, and then
looks up the URL table and cluster table to select the
server that possesses the requested content and is least
loaded.

The cluster table is maintained by the workload
manager which performs the following three functions.
First, it estimates the current load on each server node
to help the dispatcher make the optimal decision.
Second, it monitors the health of the server nodes to
bring them transparently in and out of service. Third, it
pre-forks (i.e. creates a socket and establishes a TCP
connection) a number of TCP connections to each
server (position 1 in figure 2). These pre-forked
connections are kept long-lived.

Once the dispatcher selects a target server, it also
chooses an idle pre-forked connection from the
available connection list. Then the dispatcher stores
related information about the selected connection in the
mapping table and changes the state to ACTIVE, which



will bind the user connection to the pre-forked
connection (position 4 in figure 2). The first objective
behind such a design is to avoid the overhead of
initiating a new connection to the selected server every
time an HTTP request is made. Otherwise, it can
increase user perceived performance by avoiding
multiple slow-starts [31], because multiple successive
requests conveyed by different user connections will be
served by the same long-lived connection. We will
demonstrate the advantages of this approach in section
5.

After the connection binding is determined, the packet-
rewriter function is invoked to change the packet’s IP
and TCP headers for relaying the packet from the user
connection to the pre-forked connection. After the
packet’s header is modified, the packet transmitter
function is invoked for directing the packet to the
selected node. The packet transmitter will find the
network interface on which this packet should be
forwarded. Then it constructs a network frame for
transmission to the indicated interface. The forwarded
frame has the MAC address of the network interface of
the selected server.

3.3 Subsequent Data

When the designated server receives the request, it
parses the URL to determine the content requested. It
then fulfills the request and transmits the response to
the client. The distributor also intercepts these response
packets and performs the reverse packet modification
so that the client can transparently receive and
recognize these packets.

The distributor also handles the persistent connections
suggested by HTTP 1.1 [22]. HTTP 1.1°s persistent
connections use one TCP connection to carry multiple
HTTP requests, thereby reducing server load and client
perceived latency [32]. Our mechanism inherently
supports persistent connections. For HTTP 1.0 requests
(non-persistent connections), the distributor can reuse
the pre-forked connection to carry these requests, which
will avoid extra TCP 3-way handshakes and multiple
slow-starts. Otherwise, the distributor splits multiple
HTTP 1.1 requests within a persistent connection into
single requests. If these requests belong to the same
session, the dispatcher routes them to the server
assigned to the same session. Else, it schedules the
individual HTTP 1.1 requests to different servers based
on content of these requests.

3.4 Connection Termination

If the packet analyzer receives a FIN packet, which
indicates that one host participating in this TCP
connection intends to close this session, the state of
corresponding entry in the mapping table will be
changed to FIN RECEIVED. Later, when the peer
responds with an ACK packet to the FIN packet
(position 6 in figure 2), the state is changed to
HALF_CLOSED. When both FIN and ACK from two
participating hosts in this TCP session arrive (position 7
in figure 2), the state is changed to CLOSED, and then
the entry associated with this connection will be deleted
after 2MSL (Maximum Segment lifetime, which is used
to handle wandering packets in the Internet [30]).

If the client fails or loses connectivity with its server,
there may be no FIN or ACK to arrive as anticipated
above. This will result in accumulation of stale entries
in the mapping table. To solve this problem, we
maintain a timestamp for each TCP connection in the
mapping table, which will timestamp the connection
records each time a packet flows through them. The
timer function periodically checks and deletes expired
entries, defined as those that have been idle for a
configurable amount of time. When one entry is deleted,
the bound pre-forked connection is released to the
available connection list, and it remains open for next
client.

4. Implementation

For both efficiency and elegance, we implemented the
proposed mechanism as a loadable module for Linux
kernel. The kernel loadable module is a software
component that can be dynamically loaded into kernel
for the purpose of kernel extension. The distributor
module inserts itself between the network interface
(NIC) driver and the TCP/IP stack. By processing
packets at this level, preventing them from traversing
the protocol stacks, the distributor can analyze and
route packets quickly. This effectively reduces the
overhead of the distributor. To route incoming Web
requests, all packets relating to Web service should go
through the content-aware distributor. To achieve this,
we can load the content-aware distributor module into
the default router of the clustered Web servers.

Due to space limitations, we only present the key
portions of the implementation. In particular, we focus
on describing how the proposed mechanism can be
implemented efficiently without imposing a significant
amount of overhead. Because the ideas and mechanisms
adopted in the content-aware distributor are generic,
they should be applicable to other systems (e.g., BSD or
Windows NT) as well. Some functions of the content-



aware distributor are derived from our previous work
[4,23]. Examples include failure detection and handling,
workload evaluation and balancing, and a primary-
backup mechanism for circumventing the single-point-
of-failure problem. We do not describe these functions
in this paper. For a detailed description, see [4, 23].

4.1 Hash Search

For all incoming packets, the mapping table must be
consulted to find the corresponding mapping
information. As a result, the process of locating the
entry (binding information) relevant to each incoming
packet can become a significant performance factor. To
facilitate efficient access, insertions, and deletions to
corresponding entry, we implemented the table as hash
tables [33, 34] with doubly linked lists as collision
resolution chains. Otherwise, we also implemented a
mechanism to cache recently accessed entries, which is
a proven [35, 36] technique for demultiplexing
speedup.

The dispatcher also relies on information provided by
URL table to make the routing decision. The URL table
is implemented as a multi-level hash table, in which
each level corresponds to a level in the content tree.
Each item of content in the Web site has a record
corresponding to it in the URL table. Each entry
includes information for making an intelligent decision.
Examples include locations of the content, document
sizes, type, priority, etc. The URL table is initialized
and computed upon initialization of the distributor by
scanning and parsing the content tree.

4.2 Packet Rewriting

To relay a packet from the user connection to the pre-
forked connection correctly (vice versa), the packet
rewriter must modify the packet’s IP and TCP header
before forwarding;:

@® Change source and destination IP address to that of
the pre-forked connection.

® Update checksum in the IP header.

® Change source and destination port number (if
necessary) to that of the pre-forked connection.

® Map the packet sequence number from the user
connection to the pre-forked connection.

® Map the packet ACK number from the user
connection to the pre-forked connection.

® Map TCP options (e.g., timestamp, window scale,
and maximum sequence size) as needed.

® Update the TCP header checksum.

We have designed and implemented an algorithm to
map the sequence number, ACK number, and TCP
options from the user connection to the pre-forked
connection. We find the idea behind the algorithm is
similar to the TCP-splicing technique proposed by [37].
For the sake of brevity and space limitations, we
omitted the description of this algorithm. The reader
can see [37] for further information. In addition,
changing these headers requires that the IP checksum
and the TCP checksums be updated. Re-computing the
entire checksum is expensive [38]. We implemented a
method (described in [39]) to incrementally update the
checksum.

4.3 Connection Management

The rationale of pre-forking long-lived connections
(described in section 3.2) is to reduce overhead and
latency of establishing a second connection. However,
an idle open TCP connection incurs a system-resource
cost (e.g., socket, buffer space, and PCB entry [40]).
Thus, we designed and implemented a connection-
management mechanism in the workload manager to
strike a good balance between the benefits and costs of
maintaining open connections. The connection-
management module uses two parameters to control the
number of pre-forked persistent connections: maximum
number of connections (MAX for short) and minimum
number of connections (MIN for short).

MAX defines the threshold between system trashing
and maximum optimization of system resources. The
workload manager periodically queries each server
node for its current load to determine the value of MAX.
The connection management mechanism keeps a fixed
limit (MIN) on the number of available persistent
connections. When the total connections (used and
unused) reach MAX, it stops pre-forking connections.
To date we use a trivial fixed length timeout policy for
closing idle connections. An adaptive timeout
mechanism may be more appropriate in some cases.
This is an area of further research and beyond the scope
of this paper.

4.4 Dispatcher

The dispatcher is responsible for making routing
decisions based on content-aware intelligence. Up to
now, we have implemented the following content-
aware intelligence:

® Affinity-Based Routing
A request routing function can reduce retrieval
latency not just by balancing loads and maintaining



low overhead but also through a third mechanism:
affinity-based routing. An important factor to consider
is that the latency for the server to serve a request
from the disk is far longer than the latency to serve the
request from the memory cache. With the content-
aware mechanism, it is possible to direct requests for a
given item of content to the same server so that the
server can respond more quickly, due to an improved
hit rate in the memory cache. In other words, requests
are always dispatched to servers that already have data
cached in main memory. Due to significant locality
presented in user's references [41], the overall
performance can benefit quite strongly from such a
design. However, naively affinity-based routing
achieves higher cache hit rates at the possible expense
of load balancing. A number of algorithms have been
proposed to overcome this problem. Examples include
[42, 43]; our implementation is based on [42].

® Dispersing Content Placement

The content-aware mechanism enables a new
content placement scheme, which allows the
administrator to partition the content by hosting
portions on different servers. The content partition
may be governed by type (e.g., static HTML pages,
CGI scripts, multimedia files, etc.) or by some other
policy (e.g., priority). We implement some
administration functions for administrator to configure
the URL table to deploy the content tree. The new
content-placement scheme offers several advantages
over the traditional schemes. First, compared to full
replication, this scheme yields better resource
utilization and scalability while also avoiding the
overheads associated with NFS approach. According
to the traffic characterization of a modern Web site
[44], large files (up to 64 KB) make up only 0.3% of
the content but consume 53.9% of the required storage
space. In addition, these large files receive only 0.1%
of all client requests. Thus, full replication of these
files is not cost-effective. We can just place these files
on some nodes in the cluster. Second, we can place
different content on different server optimized to
address the requirements imposed by various data
types. For example, we can place multimedia content
on a server optimized for stringent real-time
requirements. Finally, it provides the Web site
manager with greater flexibility in selecting the
optimum cost/performance configuration for their
Web server. This is an important feature for cluster-
based servers. Cluster-based servers tend to be
heterogeneous  because they generally grow
incrementally as needed. In such a heterogeneous
environment, some nodes may not be powerful
enough to support an entire service, but can probably
support some components of the service. The content-

aware mechanism enables the administrator to place
different content on different nodes according to their
capability, which can maximize server investment
returns.

® Content Segregation

From our previous experiences, we noticed that
resourceintensive dynamic content processing (e.g. a
complex database query) has the tendency telow
down the requests for static content, resulting in
longer response times for these short requests. As a
result, we suggest that the dynamic content should be
segregated from the static content on different nodes.
Another reason supporting the idea of content
segregation is that the dynamic content is generally
non-cacheable, so the affinity-based routing strategy
is not directly applicable to it. We implemented a
Weighted Least Connections algorithm to dispatch the
requests for dynamic content. For requests to static
content, the dispatcher performs routing decision with
the affinity-based routing mechanism.

4.5 Future Directions

Because the function of the distributor is well defined
and modularized, it could be easily extended or
customized to meet unique system requirements. In the
future, we will enhance the capability of the content—
aware distributor by adding more content-aware
intelligence. We will further explore more sophisticated
load-balancing techniques based on the desired content
of each request.  Further, we will design and
implement mechanisms for supporting session integrity
so that the state shared by multiple requests in a session
not be disrupted or delivered to wrong node. Finally, we
also plan to design and implement some mechanisms to
enable differentiated service in a clustered server. For
example, it is increasingly common for a web site
offering service both to paying subscribers and the
public. Requests by paying customers should be given
preferential treatment over those of nonpaying ones.
The content-aware mechanism can include admission-
control functions to reject some low-priority requests in
highly overloaded circumstances, preventing the server
from thrashing and guaranteeing the responsiveness of
high-priority requests (e.g., requests by paying users,
requests to critical pages such as home page or order
form).

5. Performance Evaluation
In this section, we present our performance evaluation

of the proposed mechanism. We used WebBench 3.0
[45] as the benchmark to evaluate the performance. The



server cluster consists of the following machines
connecting through 100Mbps Fast Ethernet: one
Pentium 150MHZ machine (with 128M RAM) running
the Linux operating system (with a modified kernel)
serves as the distributor, and six Pentium 150MHZ
machines (with 64M RAM) serve as back-end servers.
Some of the back-end servers run Windows NT with
IIS, and the others run Linux with Apache. The reason
for such a configuration is that we want to show that the
servers clustered by our mechanism can be
heterogeneous. We wused 16 Pentium 150MHZ
machines (with 64M RAM), which serve as WebBench
clients.

5.1 Overhead of Content-Aware Routing

To quantify the overhead of the content-aware
distributor, we measure and compare the response time
of a Web request (for static content) traveling either
across or not across a distributor for a variety of sizes.
The overhead is defined to be the difference in response
time between the two situations. We utilize WebBench
to load the two configurations with many concurrent
requests for the same file and then measure the
response time. The results are given in Table 1. The
values in the “baseline” are the response time for
sending the request directly to the Web server. The
additional overhead introduced by the content-aware
distributor is acceptable. The latency via our content-
aware distributor is about 4-10% slower than direct
access. Notice that this experiment is performed over a
local area network, where high-speed connections are
the norm. The overhead would be insignificant when
compared with the latency over wide-area networks
with lower bandwidth. [46].

File size (Kb) 2K 8K 32K
Overhead (ms) 0.224 0.325 0.468
Latency(baseline) | 5.124 ms 5.484 ms 7.42 ms
Percentage 4.8% 5.9% 6.3%
File size (Kb) 64K 256K 1024K
Overhead (ms) 0.767 2.325 9.524
Latency(baseline) | 10.386 ms | 26.973 ms | 93.454 ms
Percentage 7.4% 8.6% 10.2%

Table 1 Overhead of Content-Aware Routing

We conduct another experiment to confirm that our
design can effectively reduce the overhead. We first
disable the pre-forking mechanism. That is, once the
routing decision has been made, then the distributor
creates a second TCP connection to the selected server.
When the second connection has been setup, the
distributor then starts to relay packets to the selected
node. Under such a situation, the overhead increased by

89 psecs. More importantly, such a change obliges the
distributor to allocate memory buffer to queue the
pending packets, increasing the burden of the
distributor.

5.2 Benefits of the Proposed System

To demonstrate the benefits of the affinity-based
routing mechanism, we first conducted experiments in
the following environments: (1) 6 server nodes
clustered by the content-aware distributor; (2) 6 server
nodes clustered by the NAT (Network Address
Translator [11,12]) router. The NAT router is the
implementation in our previous work [4]. In the NAT
router, we implemented a “Weighted Round-Robin”
mechanism for load distribution, which is content-blind.

We used the WebBench benchmark with its standard
static test suites to generate the client workload in these
experiments. This standard static test suites define the
workload WebBench uses to simulate traffic at actual
Web sites. The workload is representative because it
was created by examining log files supplied by many
real Web sites, such as ZDNet, the Internet Movie
Database, Microsoft, and USA Today [45]. Figure 3
shows the results in terms of throughput. It clearly
shows that the server cluster with the content-aware
distributor consistently achieved a greater throughput
than the NAT cluster. The result also indicates that the
additional overhead introduced by content-aware
distributor can be compensated by sophisticated content
intelligence.

—e— NAT —x— Content-Aware

Throughput (Mb/sec)

1 4 8 12 16 20 24 28 32 36 40 44 48

Number of Clients

Figure 3. Benefit of Proposed System (Throughput)

We conducted another experiment to quantify the
performance benefits of content-aware routing
incorporated with content segregation. We used
WebBench with a dynamic test suite (a mix of 20
percent CGI requests and 80 percent static requests) for




this evaluation. We measured the performance under
the same two environments described above. In the
NAT cluster, the content sets are also replicated in each
participating node. For the content-aware cluster, we
separated dynamic content and static content on
different servers.

Figure 4 shows the results. The results show that the
throughput achieved with content-aware routing
outperforms that of Weighted Round-Robin. In the
content-aware router with content segregation, the
average CGI request and average static request
increased by 27 percent and 36 percent respectively.
The reason for this higher performance is because the
content segregation prevents short Web requests (e.g.,
request for static content) from being delayed by long
running request.

A VA colrequest A
HTML Request
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(a)NAT Router with Content Replication (b)Content-aware Router with Content Segregation
Figure 4. Benefit of Content Segregation
(Average request/second)

5.3 Lessons Learned

Examining the results of our performance evaluation, it
is noteworthy that the overhead increases with
document size. This is because our mechanism
performs some data-touching operations such as
forwarding the packet and computing checksums. In
our current implementation, packets from the server to
the client must pass back through the distributor, and
header modification is performed on each packet. If
packets can go directly from servers to the client
without having to pass through the distributor, the
overhead can be further decreased. This is particularly
beneficial while the amount of data sent from the server
to the client is significantly larger than the amount of
data sent from the client to the server.

Thus, we implemented a module that can be loaded into
the kernel of the back-end server. The module can
change the outgoing packets so that they can go directly
to client. However, many Web site builders may not
prefer this approach because it requires modification of
the back-end server’s kernel. In contrast, our previous

implementation can be applied to any existing Web site
without modification of backend server, but it pays a
performance penalty. We suggest that the administrator
can use the first approach for those nodes executing
kernels that cannot be modified, and apply the second
approach to those nodes that we can modify for
performance gain.

6. Comparison

In this section, we compare our mechanism with the
existing methods and related work. We discuss the
advantages and disadvantages of various mechanisms.

NCSA [10,11] first proposed a clustering technique that
uses the DNS-based approach, which has the
advantages of low overhead and ease of implementation.
The main weakness of this approach is that the name-
to-IP-address mapping can be cached by multiple levels
within the hierarchy of DNS service [46], bypassing
address resolution. Thus, all requests behind a
particular name server will be directly sent to the same
server node until the cached address expires. This will
lead to significant load imbalance, which has been
quantified in [48,49], and several researches have
attempted to overcome the problem [50,51,52].
However, another problem is that internal changes of
the clustered server will propagate slowly through the
Internet, due to address caching. That is, if one server
node fails or is removed temporally for maintenance, a
number of clients may continue trying to access the
failed server using the cached address. In contrast, our
mechanism is much faster than the domain name
service in detecting failures and responding to it.

The connection-routing approach [13-20] can achieve
fine-grained control in incoming requests compared to
the DNS-based approach. However, since all
connections to a server cluster have to pass through the
front-end, it is a single point of failure and may become
a bottleneck at high loads. Additionally, because they
do not look into the content of requests, they are
incapable of using more sophisticated load balancing
policies. The request distribution strategies used in
them generally are variations of weighted round-robin
(or weighted least connections).

The HTTP redirection approach has the potential to
support content-aware routing. The main disadvantage
of this approach is that a request may require two or
more connections for getting the desired service, which
will increase the response time and network traffic.
Furthermore, every request is initially addressed to the
“scheduler” server, which also creates a single point of



failure and the potential for a bottleneck due to
servicing redirects.

The major advantage of our approach is that it can
effectively support content-aware routing. In contrast,
none of the schemes described above actually support
content-aware routing, which will limit the usefulness
of their server clusters. We have shown that content-
aware routing is essential in many cases. Our
implementation can be easily extended or customized to
add more content-aware intelligence.

Recently, some commercial start-up companies have
also proposed similar idea of content-based routing.
Examples include Arrowpoint [53], Resonate [54], and
HydraWeb [55]. Several features of our works
differentiate it from these commercial products. First,
we give a detailed description of implementation and
performance evaluation. We believe that some of our
experience may be helpful in this area. Second, our
approach reuses the pre-forked connection and
seamlessly relays packets from the client-side
connection to a pre-forked connection. We have
demonstrated that such a design can decrease latency.
In contrast, the product by Resonate defers opening the
back-end TCP packet until it sees the content of this
request, and then decides which server to redirect (and
open/SYN) the packet to. It then encapsulates the entire
IP packet, as it was sent from the client, and sends it to
the selected server. Third, we have discussed the
content-aware issue more widespread (e.g., session
integrity, affinity-based scheduling, differentiated
service) and have given some viable solutions to the
problem.

Authors in [43] proposed a routing strategy called
LARD for content-based request distribution. With
LARD, the front-end may distribute incoming requests
in a manner that achieves high locality in the back-ends'
main memory caches as well as load balancing. Their
work is focused on algorithm design and simulation for
validation. Although they proposed a protocol to
migrate established TCP connections, they did not
describe how to implement their approach. In this
aspect, our work is complementary to theirs. We
provide a general and implementable solution for
supporting  content-aware routing and propose
optimization techniques to make the mechanism
efficient. In addition, their protocol requires
modifications to the TCP implementation of backend
server’s kernel.

The major drawback of our approach is the extra
processing overhead. However, this overhead can be

minimized by efficient implementation, which is
discussed in section 4. The performance-evaluation
results show that the overhead is not substantial. In
addition, we also demonstrate that the additional
overhead can be compensated for by sophisticated
content intelligence (e.g., direct requests to the best-fit
node).

A second possible drawback is limited scalability. Due
to the additional processing overhead of examining the
content of each request, the distributor may become the
impediment to scaling the server. To eliminate this
problem, we can combine the proposed mechanism
with a DNS-based scheme to further improve
scalability. That is, a number of distributors can be used
when the single distributor becomes a performance
bottleneck, and the DNS-based approach can be used to
map different clients to different distributors.

Finally, the distributor represents a single point of
failure, i.e., failure of the distributor will bring down
the entire Web server. Questions of fault tolerance are
beyond the scope of this paper, but they will be
discussed in detail in a future work [56]

7. Conclusion

Web server clustering is an important technique for
constructing a high-performance, reliable and scalable
Web server. However, the deficiencies of existing
request-routing mechanisms limit the usefulness of the
cluster-based architecture. In this paper, we analyze
these problems and then argue that the request-routing
mechanism should factor in the content of a request in
making decisions. We designed and implemented an
efficient mechanism to support content-aware routing.
The performance evaluation results show that the
additional overhead introduced by the mechanism is
insignificant. With this mechanism, we also built in a
number of sophisticated content-aware intelligence for
making routing decisions. Performance evaluation on a
prototype implementation demonstrates substantial
performance improvements over state-of-the-art routing
schemes that use only load information to distribute
requests.

Our content-aware mechanism can enable many new
capabilities in cluster-based server, such as
sophisticated load balancing, differentiated service,
special content deployment, session integrity, etc.
While the usefulness of most existing Web server
clustering schemes were constrained by lack of content-
aware intelligence, our mechanism can enable many
new services such as electronic commerce, database
searching, and Web content hosting on cluster-based



servers. This will dramatically increase the usefulness
of the Web-server clustering technique.
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