104

Configuration Management Summit

June 24, 2010

Boston, MA
Summarized by Aleksey Tsalolikhin
(aleksey.tsalolikhin@gmail.com)

On Thursday, June 24, USENIX hosted the first Configura-
tion Management Summit, on automating system adminis-
tration using open source configuration management tools.
The summit brought together developers, power users, and
new adopters. There are over a dozen different CM tools
actively used in production, and so many choices can be-
wilder sysadmins. The workshop had presentations of four
tools, a panel, and a mini-BarCamp. This summary covers
the four tool presentations and includes some brief notes on
the BarCamp.

Bcfg2
Narayan Desai thinks of configuration management as an
API for programming your configuration. Befg2’s job is to be
configuration management “plumbing”—it just works.

Centralized and lightweight on the client node, each server
can easily handle 1000 nodes.

Befg2, pronounced be-config-two, uses a complete model of
each node’s configuration, both desired and current. Models
can be compared (with extensive reporting on differences),
or you can designate one node as exemplar and its configu-
ration will be imposed on other nodes.

To facilitate learning, the Befg2 client can be run in dry-run
(no changes, print only), interactive (are you sure you want
to do this?), and non-interactive modes.

Befg2 supports extensive configuration debugging to help
the sysadmin get to the bottom of things quickly, with full
system introspection capability (why is Befg2 making the
decisions that it is?).

Strengths: Reporting system. Debugging.

Weaknesses: Documentation (new set of documentation
is coming out now, but still weak in examples). Sharing



policies between sites is not easy; group names need to be
standardized first.

Cfengine
Mark Burgess explained the underlying philosophies of
Cfengine:

Promise theory: Files promise to be there, packages prom-
ise to be installed, processes promise to be running—or
not, etc. Cfengine is the promise engine to fulfill those
promises.

Convergence: Describe an ideal state and Cfengine will get
you there, as opposed to a roadmap/log of system changes
necessary to bring a system to a configured state from a
known starting state—Cfengine will get you to an ideal
state from a known or unknown state.

Self-healing: Assume the environment is hostile and en-
tropy exists, and take measures to continuously check and
restore the integrity of the system.

Pragmatism: Environments can be participated in but not
controlled; constrain rather than control the environment;
cooperation will take you further than enforcement.

Strengths: Highly multi-platform: runs on very old and
very new systems, the full gamut—underwater unmanned
vehicles, Nokia cell phones, and supercomputer clusters;
lightweight (1.9 MB footprint). The only prerequisites are
Berkeley DB library and crypto-library. Cfengine has the
largest user base—more companies using it than all the
other tools combined. Resilient—able to continue operat-
ing under degraded conditions (e.g., if the network is down
and server is unreachable, node agents will used the cached
policy; Chef and Puppet run the same way). Secure—Cfen-
gine has a healthy paranoid streak (assume they’re out to get
yow) and an impressive security record (only three serious
vulnerabilities in 17 years). Commercial version addresses
knowledge management—ISO standard topic maps, etc.

Weaknesses: Hard to get started because there is a lot to
learn.

Chef
Aaron Peterson, Opscode Technical Evangelist, presented
Chef, primarily a configuration management library system
and system integration platform (helps integrate new systems
into existing platforms).

Chef is data-driven. Configuration is just data. Enable
infrastructure as code to benefit from software engineering
practices such as agile methodologies, code sharing through
github, release management, etc. You manage configuration
as resources (files, packages, processes, file systems, users,
etc.), put them together in recipes (lists of resources), and
track it like source code to configure your servers. Cook-
books are packages of recipes. Chef has been out since 20009.

Chef grew out of dissatisfaction with Puppet’s non-deter-
ministic (graph-based) ordering. Sequence of execution in
Chef is tightly ordered.

Strengths: Cloud integration (automating provisioning and
configuration of new instances). Multi-node orchestration.

Reusable policy cookbooks and highest degree of recipe
reuse between sites (compared to the other three tools).

Weaknesses: Attributes have nine different levels of prece-
dence (role, node, etc.) and this can be daunting.

Puppet
Michael DeHaan explained that Puppet grew out of dissat-
isfaction with Cfengine 2. Puppet has a centralized model:
a server detects deltas from the desired configuration and
instructs the node agent to correct them. Chef works the
same way.

Puppet’s internal logic is graph-based. It uses decision trees
and reports on what it was able to do and on what failed
(and everything after it). Manual ordering is very important,
as decision trees will be based on it. Ordering is very fine-
grained.

The Puppet language is a datacenter modeling language rep-
resenting the desired state. The Puppet language is designed
to be very simple and human readable. This prevents you
from inserting Ruby code but it also makes it safer (prevents
you from shooting yourself in the foot). However, you can
still call external (shell) scripts. Also, an upcoming version
(2.6) will support programming in a Ruby DSL.

The server gets the client to tell the server about itself.
These are facts in Puppet. The configuration policies are the
manifests. The server compares the facts to the manifests
and, if necessary, creates instructions for the clients on the
managed nodes to move from what is to what should be.
These instructions are encoded as a JSON catalog.

Strengths: Large community of users (over 2000 users on
the Puppet mailing list).

Weaknesses: The Puppet server right now is a potential
bottleneck, which is solved by going to multiple servers. Ex-
ecution ordering can be non-deterministic but reports will
always tell you what succeeded and what failed, and order
can be mandated.

BarCamp
A BarCamp is an informal colloquium where the audience
members take turns presenting to the audience (http:/
en.wikipedia.org/wiki/BarCamp).

There were a total of five 15-minute presentations from the
audience during the final part of the summit. Matt Richards
presented “Converting an Ad-Hoc Site to CM: The Story,”
narrating a successful Cfengine deployment with resulting
increase in stability and uptime. Aaron Peterson gave a Chef
demo. Michael DeHaan presented “Cobbler: Automated

OS Installs,” a Linux installation server. David Pullman
presented “Cfengine: Complexities of Configuring Differ-
ent Operating Systems.” Finally, Michael DeHaan presented
“Func—Attack!!!'—Your Systems!!!”—Func is a distributed
one-time command or query tool for Red Hat systems.

You can find a much more detailed report at http:/www
verticalsysadmin.com/config2010/.

105



