
	 ;login:  AUGUST 2011   Conference Reports    69

CONFERENCES
In this issue:

13th Workshop on Hot Topics in Operating Systems
(HotOS XIII)   69
Summarized by Sherif Akoush, Suparna Bhattacharya, Rik Farrow,
Lon Ingram, Thawan Kooburat, Derek Murray, Srinath Setty, and
Vasily Tarasov

Conference Reports

13th Workshop on Hot Topics in Operating
Systems (HotOS XIII)

Napa Valley, California
May 9–11, 2011
Sponsored by USENIX, the Advanced Computing Systems
Association, in cooperation with the IEEE Technical Committee on
Operating Systems (TCOS)

Opening Remarks
HotOS XIII Program Chair: Matt Welsh, Google

Summarized by Rik Farrow (rik@usenix.org)

Matt Welsh opened the workshop with a quick description of
how it was structured. Each speaker had only 10 minutes for
his or her presentation, with five minutes allotted for ques-
tions. Participants could interrupt the speaker during that 10
minutes. At the end of two sessions (five or six presentations),
there would be a 45-minute discussion session, where the
topics might involve the previous presentations, or anything
else that was relevant.

At the end of the workshop, Matt announced some awards.
(Yes, I know this is putting the cart before the horse, but I am
not certain you will notice these announcements unless I put
them up here.)

Matt Welsh, who came from Harvard to work for Google,
announced that Peter Bailey, with whom he had worked for
eight years at Harvard, had won a Computer Research Asso-
ciation Undergraduate Researcher of the Year award, which
includes a 500-pound marble obelisk that had already been
delivered to Peter, a certificate, and the support to attend the
conference of his choice. One of Mike Freedman’s students
also won a CRA award this year.

Matt then told us who had won Google Chromebooks by their
workshop presentations; Vijay Vasudevan (CMU) with his
poster that took a position against the paper he presented;
Dave Ackley (U New Mexico) for the most outrageous opin-
ion, best expressed in person, but his paper does nearly as
well. They decided to give two best talk awards, one to Mike

Peter Bailey receiving the Computer Research Association Under-
graduate Researcher of the Year award from Matt Welsh at HotOS XIII

	70    ;login:  VOL. 36, NO. 4

often difficult to assess whether or not a change is feasible,
and the purpose of ASPLOS was to have a program com-
mittee with a range of experience to aid this. Gernot Heiser
(UNSW/NICTA) remarked that some of the architectural
critique—of IPIs, in particular—was x86-specific, since
ARM and MIPS don’t suffer from all of the same problems.
John Ousterhout (Stanford) asked how we can make incen-
tives for architecture people to make changes, and pointed
out that we should be careful to distinguish between the
research community and the people who actually build the
hardware. Jeff pointed out that one of the hurdles is that new
architectures usually need to run a commodity OS, so there
is a chicken-and-egg problem. Finally, Erez Zadok (Stony
Brook) lamented that many architectures have a wide range
of performance counters in hardware, but OEMs selectively
disable many of them in the BIOS. Jeff remarked that some
OEMs might be receptive to changing this.

Operating System Implications of Fast, Cheap, Non-
Volatile Memory
Katelin Bailey, Luis Ceze, Steven D. Gribble, and Henry M. Levy,

University of Washington

Katelin Bailey said that the real-soon-now advent of fast,
cheap non-volatile RAM (NVRAM) may have a disruptive
effect on OS design. Many of the assumptions in current OS
design are based on a two-level memory hierarchy of fast
DRAM and slow disks; NVRAM threatens to shake things
up, because it potentially combines the speed of DRAM with
the persistence of disk—i.e., it offers the best of both worlds.
Existing research has focused on incremental steps, such
as replacing disk with NVRAM and retaining file system
semantics, or using virtual memory to build single-level
store that combines RAM and DRAM. But this isn’t radical
enough: how about replacing all of the memory in a system
with NVRAM?

Such a system would have many desirable properties. For
example, hibernation and reboot would become extremely
efficient, because there would be no need to copy state to or
from a secondary storage medium. The very fast write per-
formance would also make deterministic record/replay tech-
niques much more practical. However, there are a number of
challenges that would need to be addressed: for example, if
your entire system image is persistent across reboots, how
would you deal with bugs and rolling back to a known-good
state? How should sensitive data be treated, now that it could
persist for a much longer time? Furthermore, current virtual
memory techniques were originally developed with the dual
role of enabling swapping (which is no longer necessary) and
protection (which is), so the development of a system with

Walfish (U of Texas, Austin), who used Prezi, and one to
Chris Rossbach (MSR), who got the remaining Chromebook,
since Matt thought it would be easier to ship one to Austin
than to Microsoft Research.

Putting the Hard Back in Hardware

Summarized by Derek Murray (Derek.Murray@cl.cam.ac.uk)

Mind the Gap: Reconnecting Architecture and OS
Research
Jeffrey C. Mogul, HP Labs, Palo Alto, CA; Andrew Baumann, Microsoft

Research, Redmond, WA; Timothy Roscoe, ETH Zurich; Livio Soares,

University of Toronto

Jeff Mogul kicked off the workshop with a talk about a paper
that arose from the “Research Vision” session at OSDI ’10.
The problem is that the computer architecture and OS
research communities are drifting apart. New architectures
are developed with little regard for the OS, which is con-
sidered to be so unknowable that it is a source of “noise” in
benchmarks. This is largely due to the gold-standard bench-
marks—such as SPLASH, SpecCPU, and PARSEC—which
run almost completely in user mode for an extended period
of time. By contrast, the state-of-the-art for measuring OS
performance on an architecture is limited to little more
than system call and page fault micro-benchmarks. A few
semi-realistic benchmarks do exist, including SPECWeb and
TPC-W, but they don’t capture the full variety of applications
that run in a realistic system.

The OS researchers in the audience weren’t immune to
Jeff’s criticism. Our unquestioning dedication to developing
systems that run on “commodity hardware” means that we
are missing the opportunity to ask for new features. If we
don’t ask, we will end up with features that work when run-
ning a single HPC application but are incompatible with the
isolation properties that an operating system must provide.
For example, a platform might provide low-latency message-
passing support using shared memory buffers, but sharing
such a facility between multiple processes requires a kernel
entry, which effectively erases the latency benefits. Leading
by example, Jeff then presented his desiderata, which include
cheap inter-core messages, lightweight inter-core notifica-
tions, faster syscalls, software-controlled caches, and better
performance counters. A common theme was that the archi-
tecture shouldn’t bake in policy (such as cache coherency)
without providing the developer with an escape hatch to try
different approaches.

Mike Swift (Wisconsin) opened the Q&A by asking how the
OS community could improve its review process for papers
that suggest architectural changes. Jeff replied that it is

	 ;login:  AUGUST 2011   Conference Reports    71

cial if there is “content locality,” i.e., keys in a similar range
frequently accessed together. Finally, it will be challenging
to build an efficient TCAM simulator that uses DRAM, since
the don’t care bits mean that standard search algorithms do
not apply; one possibility is to use part of the TCAM to store a
mapping from partitions of the key space to DRAM locations.
Suparna ended by echoing the previous talks in this session:
it would be useful to engage the architecture community
in order to develop TCAMs that are better suited to general
programming—for example, by providing better support for
multiple matches. She also speculated that the availability of
NVRAM might open up new possibilities for TCAMs.

Jeff Mogul (HP Labs) asked how Internet routers—which
must store the entire routing table—deal with a limited
amount of TCAM, and whether they use similar tech-
niques. Suparna replied that most routing tables try to do
static compaction using the don’t care bits, but she agreed
that there may be tricks that could be picked up from these
devices. Mike Freedman (Princeton) asked about applica-
tions and whether in this model TCAMs would be part of the
general-purpose memory hierarchy. Suparna replied that the
intention was to expose (virtual) TCAMs to applications as
general-purpose memory, and that there were many search-
based applications—for example, in data mining—that could
benefit. Matt Welsh (Google) brought the session to a close
by remarking that GPUs had become commonplace thanks
to 3D gaming, and TCAMs might have a similar “back-door”
application that pushes them into widespread use.

Soft Fluffy Clouds

Summarized by Derek Murray (Derek.Murray@cl.cam.ac.uk)

The Best of Both Worlds with On-Demand Virtualization
Thawan Kooburat and Michael Swift, University of Wisconsin—Madison

Thawan Kooburat enjoys the advantages of virtualization,
but he’s concerned that its constant overhead is inhibiting
adoption, especially in large datacenters at Google and Face-
book, and on resource-constrained devices like your laptop.
The idea of “on-demand virtualization” is that you only pay
the cost of virtualization—both in terms of performance
overhead and limited functionality—when its features are
going to be used. Therefore, most of the time the operating
system uses native execution, then it slips into virtualized
mode on demand when the user wants to migrate execution,
checkpoint the system state, and so on.

Thawan described how on-demand virtualization is imple-
mented. The basic technique is to use the OS hibernate func-
tion (implemented using the TuxOnIce patch to Linux 2.6.35)
to create an image of the system state, and then transfer that

NVRAM everywhere would provide a good opportunity to
rethink the assumptions about granularity, for example.

Katelin admitted that the talk raised more questions than
it answered, but the audience was on hand to raise even
more. John Ousterhout (Stanford) harked back to the 1970s,
when every computer effectively had NVRAM in the form
of core memory, and he pointed out that nothing changed
when DRAM displaced core. Katelin replied that it’s still
worth exploring our options. Mike Swift (Wisconsin) and
Joe Tucek (HP Labs) raised the smartphone question, asking
what we could learn from those platforms, but Katelin said
that the approaches taken on those devices are relatively con-
ventional. At this point, a waggish audience member pointed
out that cell phones reboot every time daylight savings
time happens, so they’re not there yet. Mothy Roscoe (ETH
Zurich) went Back to the Future, pointing out that many of
these ideas had been tried before in systems like KeyKOS and
Multics, but they hadn’t caught on. Katelin said he hoped that
fast NVRAM should enable us to do things that weren’t pos-
sible in those days.

Virtually Cool Ternary Content Addressable Memory
Suparna Bhattacharya, IBM Linux Technology Center and Indian

Institute of Science; K. Gopinath, Indian Institute of Science

Suparna Bhattacharya rounded off the hardware session by
discussing another exotic form of memory: ternary content-
addressable memories (TCAMs). Their associative address-
ing means that TCAMs have seen a lot of use in caches and
high-performance routers, but more exotic uses have been
discovered, such as encoding deterministic finite automata,
ternary Bloom filters for subset matching, and similarity
search algorithms. With progress at this rate, we can expect
the range of applications to grow to the point where applica-
tion developers may want to harness TCAMs, so this talk
looked at ways that virtual memory techniques could be
used to provide the illusion of vast amounts of associatively
addressed memory.

It isn’t feasible to build a single huge TCAM, because power
consumption and latency increase with the number of keys.
Therefore, Suparna discussed various ways that a virtual
TCAM could be built from a combination of TCAM and
DRAM. The basic idea is to build a cache hierarchy, with the
level-1 store implemented in a TCAM and the level-2 store
simulating associative lookup in DRAM. The first challenge
is choosing a replacement strategy (and an application) that
exploits temporal locality, so that as many lookups as possible
are served from the TCAM. Spatial locality is less important
(since in an associative store, location is not important), but
there are some potential wins to be had by compressing keys
using the don’t care bits. This approach is particularly benefi-

	72    ;login:  VOL. 36, NO. 4

private data scrubbed; there is a large design space to explore
here. In the talk, Michael focused on the idea of using “action
graphs” to represent the changes made by a repairer, and
hence provide integrity guarantees. The hope is that repairs
could be encoded in a canonical representation, which could
then be signed by the repairer for assurance and auditing
purposes. The action graph representation would also help
to maintain availability of the machine while under repair:
the customer could continue to use the machine, and changes
by the customer and the repairer could be merged using a
process that is analogous to git rebasing.

The talk provoked a lot of discussion and was awarded one of
the Best Talk prizes at the end of the workshop. Mike Swift
(Wisconsin) was first up to ask whether on-demand virtu-
alization (from the previous talk) would be ideal for this. He
also had a real question about what fraction of repairs would
be difficult to handle, and how hypervisor device driver
problems might be handled in the cloud. Michael replied
that configuration errors would be in scope, but he hadn’t
considered hypervisor issues, since it was assumed that the
customer wouldn’t (or wouldn’t be able to) mess with the
hypervisor configuration. Jeff Mogul (HP Labs) took a differ-
ent tack, suggesting that, if all the repairs were canonical and
could be signed, the repair service could just apply all known
repairs indiscriminately. Michael countered that there
might still be some human intelligence required to choose
the correct ordering. Then Jeff raised the specter of having
to trust “canonical compositions,” but Michael replied that
this is not necessary if there is an auditable log. Finally, Brad
Chen (Google) characterized this as an “automatic update”
problem, and asked whether this would cease to be a problem
when applications are cloud-based. Michael replied that as
soon as devices become used for content creation, rather than
consumption, configuration issues will start to arise again.

This marked the end of the formal Q&A, but this talk was the
subject of much debate in the discussion/open mike session
that follows below.

Structuring the Unstructured Middle with Chunk
Computing
Justin Mazzola Paluska, Hubert Pham, and Steve Ward, MIT Computer

Science and Artificial Intelligence Laboratory

Justin Mazzola Paluska gave an intriguing talk about a new
construct that promises to unify parallel programming for
GPGPUs, massively multicore systems, clusters, and clouds.
At present, the structures used to represent programs and the
structures of different execution platforms are orthogonal,
and unstructured assembly code does a poor job of åtaking
advantage of different, very specialized machines. “Chunks”
are the solution: a chunk is a fixed-size block in memory

state into a virtual machine (implemented using KVM). One
challenge is that the native and the virtualized hardware
profiles will likely be different, with the VMM typically
providing a feature set that lags behind native functionality.
This is addressed with device hotplug and another level of
indirection: logical devices that retain all necessary state and
hide the hotplug events from the applications that use these
devices. Thawan has a prototype that currently supports
one-way conversion from physical to virtual, which takes
approximately 90 seconds and succeeds without closing an
open SSH connection. Future improvements will include
hibernate-to-RAM, which will improve performance, and
performing the virtual to physical conversion.

Mike Schroeder (Microsoft) asked if this defeated the
purpose of virtualization as a means of providing a defense
against security issues. Thawan replied that this is not the
aim of on-demand virtualization, which is geared more
towards migration and checkpointing. Peter Honeyman
(Michigan) asked where to expect the crossover point when
the cost of re- and devirtualization becomes greater than the
cost of running permanently on a VMM. Thawan answered
that it would be workload dependent. Philip Levis (Stanford)
raised a concern about what would happen when migrating
an OS that used a large amount of local storage on native
disks, and Mothy Roscoe (ETH Zurich) pointed out that a
paper at the last HotOS had solved the apparently harder
problem of migrating between two physical machines with
no virtualization involved.

Repair from a Chair: Computer Repair as an Untrusted
Cloud Service
Lon Ingram, Ivaylo Popov, Srinath Setty, and Michael Walfish, The

University of Texas at Austin

Michael Walfish is dissatisfied with the status quo in com-
puter repair. Today, it resembles television repair, whereby
you bring your computer to a retail service that is both
inconvenient and insecure. Solutions based on providing
remote desktop access are not ideal, because you have to
monitor every action by the repairer, or it will be just as inse-
cure as taking your computer to a shop. In this talk, Michael
presented “repair from a chair,” which uses virtualization
technology to make the software components of a computer
available to a repairer in a secure fashion. An in-depth study
of Geek Squads, Genius Bars, and IT services at UT Austin
revealed that the vast majority of repairs are software-only,
and so this would be a feasible solution.

The system includes a module called the “repair helper,”
which lives between the OS and the hypervisor to facilitate
repair. According to the paper, the main function of the repair
helper is to migrate a copy of the VM to the repairer with

	 ;login:  AUGUST 2011   Conference Reports    73

Discussion/Open Mike

Summarized by Derek Murray (Derek.Murray@cl.cam.ac.uk)

By now the audience was fired up, and Matt Welsh (Google)
opened the floor to anyone with something to say. Matt used
chair’s prerogative to make the first point about NVRAM:
he likes the ability to wipe a computer’s memory on reboot,
because it’s the only way to get it to a known-good state. Kate-
lin Bailey (Washington) replied that rebooting wouldn’t go
away in the non-volatile future, but the aim was to separate
the notion of resetting from the power cycle. Jeff Mogul (HP
Labs) pointed out that this is a perfect example of decoupling
mechanisms that don’t belong together, as he had proposed in
the first talk. Dave Andersen (CMU) was worried about the
effect of random bit flips, but Margo Seltzer (Harvard) said
that these are very unlikely in practice.

Geoff Challen (SUNY Buffalo) remarked that it was good to
see many hardware people in the audience, which should help
to address Jeff Mogul’s criticism that the communities don’t
talk anymore. Mark Hempstead (Drexel), a self-confessed
computer architect, announced that it was great to see a
move towards better communication between the communi-
ties, and he asked people to send him C code that he could
run. Mark raised a bone of contention: his aim is to have as
few cycles in the OS as possible. Mothy Roscoe (ETH Zurich)
disagreed, saying that many applications intentionally spend
a long time in the OS, and this illustrates what hardware
designers don’t understand about operating systems. Mothy’s
real desire is hardware that does less stuff in hardware and
just provides fast mechanisms that software can use. Jeff
Mogul agreed with Mothy, telling Mark that, for example,
fast cache coherence in the hardware is all very well, but
sometimes there is a better policy for a given workload, and
it would be desirable if we could implement that in software
without having to trick the hardware into doing our bidding.
Steve Hand (Cambridge) reminisced about the glory days of
software/hardware co-design and mused that Intel should
buy Microsoft or vice versa, to take us back to those days.
Steve also praised FPGAs, which have become relatively
easy to program, thereby allowing more people to try their
hand at hardware design. Joe Tucek (HP Labs) mourned
the loss of software-controlled TLBs. Margo Seltzer sug-
gested that we need to pitch to industry, rather than other
researchers, and asked what the virtualization researchers
did to get hardware support in modern instruction sets. Matt
Welsh—tongue firmly in cheek—suggested that the answer
was to build something that is useful but really slow without
hardware support.

Aleks Budzynowski (UNSW/NICTA) turned the discussion
to repair-from-the-chair, asking whether anything had been

that abstracts program structure, and chunks are mapped
individually onto machine structure. Each chunk has a fixed
number of slots, each of which is fixed size. Each slot is typed,
and it can contain a scalar value or a link to another chunk.
One idea is that making links explicit exposes structure in
the chunk graph, and the developer is forced into this by the
relatively small size of a chunk.

The chunk graph creates many opportunities and challenges
for improving parallel programs. First, a link is allowed to
cross architectural boundaries, and chunks can migrate
between processing elements, which helps in a heteroge-
neous multicore system. However, this creates a distributed
garbage collection problem and requires a policy to decide
which chunks should be migrated. Another feature of the
model is that threads start out being represented by a single
chunk with a link to a (possibly linked-list) stack of chunks,
which in turn may be linked to function chunks or object
chunks. The links can be used to compute a distance and
size metric within a given thread, which helps the system
decide which chunks should be co-located. For example, a
distance-k neighborhood of the thread object would indicate
the important chunks to co-locate, and overlapping neighbor-
hoods would enable synchronization and contention to be
inferred. The main hope, however, is that there will be many
distant threads that can run without interference and can be
scheduled to avoid false sharing and contention.

Dave Ackley (New Mexico)—who would go on to make a name
for himself at the workshop with an outrageous programming
model of his own—was concerned about the chunk graph
turning into a “huge ball of high-dimensional goo.” Justin
countered that unused chunks would not need to be loaded
in, and NVRAM could be useful to help with this. Aleks
Budzynowski (UNSW/NICTA) was more worried about the
amount of policy that seemed to be going on at the OS level,
and would prefer to see more work being done at the language
level or in the compiler. Justin replied that this is another way
to experiment with the same issues, and the chunk model is
an attempt to force the compiler into giving the OS some-
thing to which it can usefully apply policies. Dave Holland
(Harvard) saw this as a graph clustering, which is a known
hard problem, but Justin replied that hopefully he doesn’t
have to solve the general problem, if it is possible to use some
heuristics at runtime, such as sending paths around. Finally,
Mothy Roscoe (ETH Zurich) was unconvinced that there is
a one-size-fits-all solution for the huge number of different
scales, but Justin said he’d had positive experience with cloud
and cluster computing (which is the easiest experimental
platform). The reason for a one-size-fits-all solution is that
Justin had seen schematic pictures resembling chunk graphs
over and over in different venues, and he wanted to extract
some common abstraction that could be useful.

	74    ;login:  VOL. 36, NO. 4

versial Opinion prize by declaring that he never wanted to
read another paper submission that talks about improving
Hadoop performance by 10%. Discussion then began in ear-
nest, with the panel taking questions from the audience.

The conversation covered a broad range of topics, but a recur-
ring theme was multiple pleas from academics for industry
to release large anonymized datasets that would be useful for
understanding what workloads datacenters see at scale. The
industry representatives responded that this was unlikely
to happen and that anonymizing such datasets is far harder
than one would expect. Rebecca proposed a possible solution:
academics should run their own commercial cloud platform
as a way to generate such datasets themselves.

The panel and the audience also discussed the difficulties
academics face evaluating proposed solutions without access
to the kind of scale that industry sees. Mike Freedman of
Princeton asked for examples of algorithms that looked good
in the small but failed at scale. John replied that it typically
isn’t O(n) that is the problem but, rather, the complications
introduced by interactions with other components and opera-
tional concerns—upgrading a system while it’s in operation,
for example. Ion added that academics need to understand
how to evaluate solutions without running them at scale.

Matt Welsh from Google launched the final discussion of
the session by asking how to get industry to open up more
and how industry can help train the next generation. John
suggested that those working in industry should find an
academic and tell them about a problem they have—talking to
them until they understand the problem.

We’re Going to Need More Wine

Summarized by Srinath Setty (Srinath@cs.utexas.edu)

Macho: Programming with Man Pages
Anthony Cozzie, Murph Finnicum, and Samuel T. King, University of

Illinois

Anthony Cozzie started the talk by pointing out a hard truth
about programming: programming is hard and program-
mers make errors when they write code. Then he described
the architecture of Macho, a system that can automatically
generate Java programs. Macho takes the description of the
functionality in a natural language as input and then uses a
database of code snippets to stitch together a piece of code
with the functionality specified in the natural language.
Macho also includes an automated debugger to test the gen-
erated code using a set of examples.

Margo Seltzer from Harvard asked about the progress made
in the project. Cozzie acknowledged that the problem is hard

done to cut down the amount of state that must be sent to the
repairer. Michael Walfish (UT-Austin) replied that tech-
niques based on selectively faulting-in state to the repairer
would work. Mike Swift (Wisconsin) was more attached
to the idea of remote desktop solutions, but Michael replied
that protecting against a malicious repairer was the real
aim of the project, and where that was implemented really
didn’t matter. Mike Freedman (Princeton) suggested that the
Geek Squad could provide a piece of software for the cus-
tomer to install, which could be configured to allow access
to different settings, but Michael was concerned about the
cognitive overhead of configuration on non-technical users.
Dave Andersen reckoned that the problem could be solved by
Microsoft engineering a better access policy control panel.
Mothy saw it more as a problem of liability if somebody were
to make a mistake, and the “right answer” would only be
found by talking to financial and legal people.

Petros Maniatis (Intel) took Mothy’s point about non-tech-
nical issues and brought us back to discussing architecture.
One of the overriding concerns for a processor company is
whether adding a feature will get the company sued or cause
bad PR. Steve Hand also mentioned the issue of backwards
compatibility, which is often necessary and can inhibit
innovation. Brad Chen (Google) suggested that our job is to
discover technical choices, and present them to the business
people; he mentioned Android and ChromeOS as two very
different solutions to similar problems. Dave Holland (Har-
vard) pointed out that lawyers are trained to look for risk and
not make policy, so we shouldn’t worry about that so much,
although Matt Welsh replied that that is easier to say in a
university. Mike Freedman ended the discussion by remark-
ing that he had spoken to a number of law professors who
are in favor of technical solutions, because things are much
slower to change in the legal and policy fields.

Panel: Cloud Computing
Panelists: Mendel Rosenblum, Stanford; Rebecca Isaacs, Microsoft

Research; John Wilkes, Google; Ion Stoica, UC Berkeley.

Summarized by Lon Ingram (lawnsea@cs.utexas.edu)

John introduced the panel session by saying that Matt Welsh
had asked them to fight, but they found that they agreed
too much on the fundamental academic questions in cloud
computing to do so. The panel chose to instead discuss two
subjects that they did disagree on: (1) what should academics
do that is not useless and (2) what should industry do that is
not worthless.

The panelists offered brief introductory remarks, and John
completed the introductions with a bid for the Most Contro-

	 ;login:  AUGUST 2011   Conference Reports    75

a hard problem and one could reduce error by replication and
repetition.

Hear Ye, Hear Ye

Summarized by Suparna Bhattacharya (suparna@csa.iisc.ernet.in)

Benchmarking File System Benchmarking: It *IS* Rocket
Science
Vasily Tarasov, Saumitra Bhanage, and Erez Zadok, Stony Brook

University; Margo Seltzer, Harvard University

Vasily Tarasov began his talk by citing a recent study which
found that research conclusions in medicine often contain
misleading findings with a heavy focus on exciting results to
the exclusion of other aspects, and noted that similar obser-
vations could be made about the state of filesystem bench-
marking. He argued for an improved evaluation approach
which adequately reflects the complex multi-dimensional
character of file-system behavior. As a follow-up to their
previous ACM TOS (Transactions on Storage) paper, “A
Nine-Year Study of File System and Storage Benchmark-
ing,” he told how he and his co-authors surveyed 100 file
system papers from 2009 and 2010 and found a wide range of
benchmarks used, with little standardization, e.g., as many as
74 ad hoc benchmarks and 24 custom traces. Even among the
standard benchmarks used, many were based on compilation
or small file operations, effectively stressing CPU or memory
more than on-disk layout.

As a possible way forward, Vasily proposed creating stan-
dardized benchmarks for common filesystem dimensions
such as on-disk layout, prefetching, and in-cache perfor-
mance. In addition he emphasized the need for reporting
results in terms of curves and distributions across a range
of parameters instead of a single number, since filesys-
tem behavior can be sensitive to even small changes in the
environment. To illustrate how widely conclusions from
benchmarking may be impacted by the choice of evaluation
approach, he presented an interesting case study comparing
the graphs of random read throughput (using filebench) of a
410 MB file across three file systems (ext2, ext3, and XFS) as
measured at 10 second intervals. Initially, the performance is
I/O-bound and eventually, when the file is completely in the
page cache, it becomes CPU/memory-bound. At both these
extremes, performance is similar for all three file systems,
but in the transition range, which involves a 10-fold jump in
throughput between the interval from 200 to 800 seconds,
the differences between file systems can vary widely (up to
as much as an order of magnitude) depending on the time
when measurements are made. This can result in radically

and the module involving the database is the hard problem.
Brad Chen from Google suggested that it would be very useful
if Macho generated a specification along with the implemen-
tation. Cozzie agreed. Joe Tucek (HP Labs) asked about the
amount of time taken for generating code. Cozzie replied that
the ls example takes about 20 minutes.

Pursue Robust Indefinite Scalability
David H. Ackley and Daniel C. Cannon, The University of New Mexico

In the second of the two Best Talks, David Ackley pointed out
the conflict between efficiency and robustness in computer
systems. He went on to propose a computational model,
Movable Feast Machine, to achieve indefinite scalability.
However, this approach sacrifices the following three proper-
ties in the current system’s architectures: first, fixed-width
addresses and unique node names; second, logarithmic global
communication cost; and third, clock and phase synchroni-
zation.

In the proposed design, the Movable Feast Machine con-
sists of a 2D grid in which each tile contains a processor
with a fixed amount of volatile and non-volatile memory.
Each processor can communicate with its nearest neighbor
processors via point-to-point links. The computation model
for the proposed machine consists of a set of “event windows”
that involve a group of tiles communicating with each other
to perform the computation. Note that many non-overlapping
event windows can exist concurrently. One of the critiques
for this proposed architecture is that the hardware costs will
be too high for cost-effective computation.

Mike Dahlin (University of Texas at Austin) asked about the
rationale behind choosing small atom sizes. Ackley answered
that the smaller sizes provide fine-gained mobility, which is
essential for indefinite scalability. Dave Anderson (Carnegie
Mellon University) asked about the advantages of Movable
Feast Machine’s local propagation restriction. David replied
that local propagation enables expressiveness in the proposed
architecture. Erez Zadok (Stony Brook) asked whether he
had looked at any newer computing models to see whether
anything matched. David replied that his PhD work was in
neural networks a thousand years ago, and this is his attempt
to start again from scratch. Michael Walfish (UT-Austin)
asked about the types of computations that can be repre-
sented in the proposed computation model. Dave said any
computation under the stochastic flow-sorting category can
be represented on Movable Feast Machines. Toby Murray
(NICTA/UNSW) asked if there is a way to quantify the error
in output generated for the computations run on the proposed
architecture. David acknowledged that quantifying error is

	76    ;login:  VOL. 36, NO. 4

performance isolation between different applications. In
this respect, they fail to expose performance effects of what
is arguably the central purpose of an OS: that of allocating
and sharing resources across applications. To address this
concern, he proposed a systematic benchmarking approach
that employs a mix of application workloads running concur-
rently. The mix is carefully chosen in a way that (1) exercises
multiple system resources without overcommitting any
resource and (2) is performance-sensitive to the availability
of resources.

An application-specific goodness function is used to perform
a sensitivity analysis of the performance of each candidate
application variant (choice of application parameters) with
respect to various machine resources: e.g., CPU, cache,
memory, disk, and network. For example, a Web browser is
partly sensitive to network bandwidth, with the rendering
of Web pages being CPU-sensitive. On the other hand, the
goodness metric of a virus scanner might be the number of
files scanned, which is disk-bound. The design of the optimal
(maximally sensitive) mix is posed as an integer linear
programming optimization problem, based on resource usage
and sensitivity, subject to the constraint of avoiding resource
overcommit. Intuitively, the optimal solution is a mix of
application variants that use resources that they are most
sensitive to. Once the results from running an optimal mix
on an OS have been obtained, several evaluations may be per-
formed. For example, the performance difference in running
an application unmixed and mixed can highlight potential
problems in the system. Different operating systems might
have a different optimal mix; comparing performance at
these points can indicate how well each OS manages its
optimal mix.

Ihor concluded with some comments on the status of the
work. Currently they have tried this with Linux micro-
benchmarks; they need to run it with real applications. The
approach assumes a constant resource usage, hence will need
to be extended to account for bursty applications. Further,
it uses a static mix, while in desktop scenarios, application
mixes are dynamic.

Michael Dahlin asked whether the optimal mix gains in
stressing the OS while sacrificing completeness, making
it difficult to compare results (unlike typical OLTP bench-
marks). What if the optimal mix is not even realistic? Ihor
responded that one can play around with parameters and
constraints of the ILP formulation to restrict solutions to
realistic or sensible combinations rather than irrelevant
mixes. Livio Soares suggested including OS abstractions
of resources in addition to raw resources and Ihor agreed.
Someone raised a concern about the difficulty of stating and
proving that various resources can be scheduled together

different conclusions from point comparisons. Likewise, a
3D plot of latency histograms collected periodically for ext2
random reads reveals a bimodal kind of characteristic, with
a 1000-fold difference between the modes. Average results
make very little sense in such situations.

Someone raised the concern that it might be very tough to
ensure that the dimensions are orthogonal to each other. Vas-
ily responded that indeed isolating dimensions is important
but sometimes hard; however, even without orthogonality, we
can still ensure coverage. Phil Levis (Stanford) felt that the
comparison with medicine might be misleading since, unlike
medicine, file systems do not involve human subjects.

John Ousterhout observed that the real question is not just
one of capturing data but a need to understand and explain
what is actually going on, e.g., the reason for different modali-
ties in the graph. In the ensuing discussion, Jeff Mogul
argued that the purpose of benchmarking is comparison,
not understanding. With this approach it isn’t clear how one
would compare these multi-dimensional result distribu-
tions. Margo Seltzer responded that there is no one uni-
dimensional comparison that works, because the weighting
may not be same for all uses. While this means more work for
the reader, it ensures that results are less biased. Erez Zadok
observed that the networking community uses CDFs more
than the storage community. Jeff Mogul asked whether they
explain why one CDF is better than another. Margo Seltzer
reiterated that there is no single preferred answer; it depends
on what we are trying to achieve. Vasily observed that often
such benchmarking really comes down to benchmarketing.
Someone remarked that having a marketing target can help,
especially in pushing improvements over time, and asked
whether we should redefine benchmarks as a composition of
performance curves and a purpose-specific utility function.

David Holland remarked that as a consumer of benchmarks
we still don’t know what the good choices are. The state of
file-system (FS) benchmarking in the OS community is
abysmal; we need an official set of FS benchmarks. Erez
Zadok responded that among benchmarking tools, they found
filebench to be nice and hence forked and fixed it. Now it
supports two dozen random distributions, can handle mul-
timodal distributions, and uses a data generator instead of
merely writing zeros as some other benchmarks do.

Multicore OS Benchmarks: We Can Do Better
Ihor Kuz, ETH Zurich, NICTA, and the University of New South Wales;

Zachary Anderson, Pravin Shinde, and Timothy Roscoe, ETH Zurich

Ihor Kuz observed that there is a fundamental problem with
existing multicore OS benchmarks—they measure scalability
of applications but do not evaluate how well the OS manages

	 ;login:  AUGUST 2011   Conference Reports    77

The talk generated a lot of questions both during the Q&A
and the discussion session that followed. Matt Welsh
remarked that we’ve been through similar work in the past
which failed, but not due to technical reasons—the NIC was
the bottleneck back then too. Could those ideas (from active
messaging/U-Net) be applied now or is there something
fundamentally different? The response was that today we
have massive datacenter applications that need this, and
low latency is becoming practical in commodity space. Matt
followed up by noting that we knew how to get good perfor-
mance under ideal conditions but the programming model
at that time was awful—the sheer amount of engineering
needed to get stable performance over time was a chal-
lenge. It was mentioned that many SIGCOMM papers had
appeared on the chained RPC and scatter-gather problem,
but no one cared before. Further, while we can make it faster,
maybe XML/SOAP is not the most efficient way to dispatch
requests—we will run up against the propagation wall some-
time. Mike Schroeder noted that commodity support does not
matter all that much, since there is a need within a datacen-
ter. He mentioned that they were seeing problems with packet
switching and might need circuit switching instead. John
Ousterhout remarked that the community was too influ-
enced by the success of MapReduce, which is bandwidth -ori-
ented; there are other applications, such as realtime analysis
of graphs with no locality, that really need low latency.

There was a question about why the DRAM isn’t directly put
on the NIC, since the CPU is not really used; Steve responded
that it is essentially the same, only the CPU is programmable.
Joseph Tucek remarked that infiniband costs only $300/
port which is not that expensive. Michael Swift wondered if
there was a case for saving data persistently at low latency,
especially with NVRAM, but no suggestions came up.
Michael Dahlin observed that the fact that there are about
150 dependent data-access steps for a Facebook request was
intriguing, and asked whether it was the ratio of latency to
overhead that mattered and if benchmarks could be designed
to capture this. Perhaps the cool stuff did not matter because
it got hidden by other overheads. Prabal Dutta asked why
the netFPGA project was not considered a fabric to explore
these questions. Steve responded that he didn’t think that
switches are an issue and that future problems in NICs will
only appear after we solve the other problems to get to 10us
latency. Timothy Roscoe commented that the problem is not
the design of NICs (modern NICs are pretty good), but in
interfacing with the application after it gets the data, espe-
cially as NIC latencies are getting close to DRAM latency.

Discussion/Open Mike
No report is available for this session.

without overcommit in tricky situations. Ihor accepted that
one may run into this issue for real applications but observed
that OSes need to handle such situations, so we should be
able to test for this.

It’s Time for Low Latency
Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum,

and John K. Ousterhout, Stanford University

Steve Rumble made a case for rearchitecting systems for low
latency communication in datacenters, anticipating realiz-
ability of up to two orders-of-magnitude improvement in
RPC round-trip times and the significant impact this can
have on enabling future Web applications. He began by high-
lighting the increasing demand for low latency as foreseen by
constraints faced today by applications like Facebook, which
randomly access many pieces of non-local interdependent
data in fast DRAM-based storage for each small request.
Commodity network bandwidth has increased by a factor of
3000 in the past 30 years, while latency has only decreased
by a factor of 30; high latency limits Facebook to 100–150
dependent data accesses per page request. Working around
such constraints not only adds to application complexity but
also renders certain features non-viable.

Steve then presented a component-wise breakup of the high
300–500us RPC latency in current datacenters. He observed
that because of the small distances between servers within
a datacenter, the limiting factor is not the propagation delay
(< 2us) but the delays across multiple hop switches (10 hops
with 10–30us/hop) and a comparable delay in the NIC
(10–128us) and OS stack (60us). He then argued that recent
hardware improvements have brought us to the cusp of low
latency. The time is right for the OS community to initiate a
rethinking of the stack and architecture to reduce the rest of
the overhead. 100ns latency switches and 1us latency NICs
are already available in the HPC space, with Fulcrum Micro-
systems and Mellanox pushing the boundary to sub-500ns
switches in the commodity Ethernet space. Steve predicted
that this means that 5–10us round-trip times are within
reach in the short term by addressing OS/protocol overheads
while defining a simpler API structure that has a different
distribution of responsibility between the OS, application,
and the NIC than Infiniband/RDMA or U-Net. Since a data-
center is a closed ecosystem, it is even possible to experiment
with new protocols that can scale low latency to 100K+ nodes
instead of living with TCP. Steve projected that even lower
latencies are possible in the long term; below 10us, transfer-
ring data between the NIC and the system would become a
bottleneck, but a round-trip latency of 1us is achievable in
5–10 years by re-architecting systems to transmit/receive
data directly from the CPU cache.

	78    ;login:  VOL. 36, NO. 4

data skew can happen in this case. In addition, computation
skew can occur; even if data is of the same size, computation
time is not the same for all partitions. Moreover, balanced
workload does not always mean optimal performance, and
the authors worked on determining the best partitioning
scheme given the data and application. Data is not structured
in this case, unlike with databases, which makes the problem
more difficult. The authors were looking for a compact data
representation. Code is user-defined as well, with different
languages and execution modes. The authors proposed a
three-stage approach: model the partition scheme, estimate
performance, and find the scheme that provides optimal
performance.

Darren Martin of Cambridge asked whether the authors
plan to do partitioning online or offline. Qifa replied, Both.
Another person asked what happens if the optimal solution
is 50 partitions but one has only 49 nodes. Qifa said that at
the moment they consider only an ideal case. Somebody sug-
gested they use AI techniques for the partitioning problem.

Disks Are Like Snowflakes: No Two Are Alike
Elie Krevat, Carnegie Mellon University; Joseph Tucek, HP Labs; Gregory

R. Ganger, Carnegie Mellon University

A lot of today’s systems and techniques rely on the idea that
two identically labeled pieces of hardware will perform
identically, but this is not true anymore. Elie Krevat pre-
sented a study showing that modern disk drives, even if their
makes and models match, perform differently. In this study,
the authors looked at three generations of disk drives: 2002,
2006, and 2008 vintages. The throughput of disk drives
produced in 2002 was the same. In 2006 the variance in per-
formance reached 10%, and it increased to 20% in 2008.

The reason for this behavior is a new and “almost undocu-
mented” feature of disk drives: adaptive zoning. Zone Bit
Recording (ZBR) has been around for many years. This
technology allows vendors to put more sectors on the outer
tracks of a platter. However, before now, zones’ boundaries
were fixed by the specification of the disk. Now, on the other
hand, disk manufacturers test every individual read-write
head with respect to the data rate that it can sustain. Then
they assign zone boundaries according to this information.
Interestingly, this happens even within the disk: different
platters have different zoning.

Margo Seltzer said that her research group has been aware
of similar problems with other components for a long time.
But nobody cared. Why should they care now? Elie responded
that there are systems that can neglect this, but others should
care. Michael Schroeder of MSR pointed out that pundits say
that the rise of SSD drives will make this a moot point. Elie

Data Still Matters

Summarized by Vasily Tarasov (tarasov@vasily.name)

Disk-Locality in Datacenter Computing Considered
Irrelevant
Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica,

University of California, Berkeley

Ganesh Ananthanarayanan talked about the changes in the
notion of disk locality in data-intensive computing. Disk
locality is exploited at all levels of the storage stack: applica-
tions, file systems, disks. The fundamental reason why corre-
sponding optimization methods work is that disk bandwidth
is significantly larger than network bandwidth. However,
this statement is less true nowadays. Off-rack, rack-local,
and local disks all perform almost the same. Designers still
need to care about RAM locality, however. But datasets are
huge in data-intensive applications (e.g., 200 times larger
than available RAM size in Facebook). Can anything be
done about that? It turns out that for 96% of the jobs, all the
required data can fit in the RAM. It is just that current cach-
ing policies (such us LRU) cannot predict well which data to
put in the RAM. Ganesh concluded that software needs to be
more intelligent in deciding which data to put to the cache
and which to evict.

Gregory Ganger of CMU said that this is a great example of a
collective action problem. If everybody ignored caching, this
would place tremendous demand on the network. Ganesh
replied that in any case the network bandwidth is so high that
disk locality becomes less important. Someone asked what
were the 96% of jobs doing? Maybe they were CPU-bound,
and Facebook just runs applications incorrectly? Ganesh
agreed that it would be great to have this information but
they do not have it. Someone commented that it is very easy
to get a one-rack node with 12 locally attached disks. The
author responded that according to his calculations one
needs at least 50 disks per node.

Optimizing Data Partitioning for Data-Parallel
Computing
Qifa Ke, Vijayan Prabhakaran, Yinglian Xie, and Yuan Yu, Microsoft

Research Silicon Valley; Jingyue Wu and Junfeng Yang, Columbia

University

Qifa Ke discussed intelligent data partitioning for perform-
ing distributed computations. When one needs to run some
computation across several nodes, the job needs to be divided
between these nodes. As part of this process, the data needs
to be partitioned. What is the optimal number of partitions
and the partition function? The simplest (and quite com-
mon) method is to partition data using a hash function, but

	 ;login:  AUGUST 2011   Conference Reports    79

Mobile Apps: It’s Time to Move Up to CondOS
David Chu, Aman Kansal, and Jie Liu, Microsoft Research Redmond; Feng

Zhao, Microsoft Research Asia

David Chu noted two tendencies in mobile devices: (1) they
are highly programmable and (2) more and more sensors are
installed on these devices. As a result, programs that use sen-
sors are becoming very widespread. Currently, they access
sensors through inflexible custom interfaces. The approach
the authors suggest is CondOS, an operating system that
provides a unified interface for all sensors and applications.
The OS will convert data to CDUs (Context Data Units) that
are returned to applications. The benefit is that applications
can perform a wider variety of tasks: for example, preload
calendars when a user comes into the office or auto-unlock
passwords when a user is at home.

Justin Pulaski (MIT) observed that the pervasive computing
community has tried to do this for a long time already, but
they are struggling to come up with a proper programming
model. David replied that at the moment their interface is just
a single syscall to get CDUs. Another person wondered why
not employ user-level solutions such as the Linux D-BUS?
David said that this should not be necessary with a kernel
solution, but there should be some unified interface for all
programs.

Free Lunch: Exploiting Renewable Energy for
Computing
Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore, and

Andy Hopper, Computer Laboratory, University of Cambridge

Sherif Akoush proposed moving computation and data
processes to the places where green energy is generated.
Governments may push industry toward being greener. Some
companies have already installed solar panels near their
datacenters. However, the amount of solar and wind power
changes over time in a specific geographic region. If one can
find two regions so that at least in one of them at any moment
of time there is enough sun or wind to generate the required
amount of energy, then one can migrate data and computa-
tion processes between corresponding datacenters dynami-
cally. Migration can happen in the form of VM migration.
The challenges one will have to address are storage synchro-
nization, predictive VM migration, scheduling, and planning.

The authors did a case study in which they picked two data-
centers, one in Africa and one in Australia. The downtime
was only 0.5 seconds per migration, totaling 415 seconds
per year, which corresponds to a very solid SLA. The cost of
migration is 57.5 kJ/migration, which is also very low.

Aman Kansal (MSR) pointed out that a lot of hardware will
be idling in this case. Sherif replied that energy will very soon

responded that SSDs are still quite expensive and that even
flash drives can have variations in their performance. Philip
Levis questioned if the cache will amortize this problem. Elie
agreed that this can happen as long as you can prefetch data
in time. But in the paper, the authors used different, stream-
ing workloads.

Watts Up, Joules?

Summarized by Vasily Tarasov (tarasov@vasily.name)

The Case for Power-Agile Computing
Geoffrey Challen, MIT, SUNY Buffalo; Mark Hempstead, Drexel

University

This presentation was unlike any other talk at the work-
shop—it was a whole show! I’ll try to describe it, but you
really had to be there to truly appreciate it. First, the title
slide appeared but the presenter seemed to be missing. After
a period of growing uncertainty in the audience, the second
author, Mark Hempstead, stood up and said that he would
have to give the talk, but that he had not seen the slides
before. He pressed the space button on the laptop and what
the audience saw on the screen was a genie lamp. Over the
laughs of the crowd, Mark humbly confessed that he was
not aware of the purpose of this slide. Maybe we need to rub
the lamp in order for a genie to appear, he said. He tried it...
and Geoffrey Challen, first author, ran into the room in a
golden hat and a vest over his naked torso shouting “Shazam!
Shazam! Shazam!” The audience roared.

The rest of the talk was a conversation between the genie
(Geoffrey) and the genius (Mark) during which they designed
extremely power-efficient systems that can scale to anything
from a cell phone to a production server. The idea is based on
the availability of more and more components with differ-
ing computational power and levels of energy consumption.
Additionally, these components have become cheaper. So why
not put several components of varying power on the same
device and switch between them as necessary? This can
provide very smooth scaling.

Mike Schroeder (MSR) asked if this could be applied in data-
centers. Mark said that is definitely possible and there are
some projects that already try to do this. Peter Bailis (Har-
vard) asked about the programming model in such environ-
ments. Geoffrey said that there are ways to design convenient
programming models for such systems. He gave an example
of fat binaries that support several platforms. Prabal Dutta
(U. Michigan) asked about the components that already
include some method of scaling—for example, CPU frequency
scaling. The authors replied that their design can reuse such
features. One can switch to a more powerful CPU only if all
levels in the currently working CPU are used up.

	80    ;login:  VOL. 36, NO. 4

expected to last for 15–20 years, and using optimistically
chosen costs are just going to get you laughed at.

Gernot Heiser mentioned that with DVFS it is very difficult
to get even 10% power savings, as operating voltages have
dropped to close to 1 volt. Gernot also pointed out that the
Thumb instruction set in the ARM chip does not save energy.
It is a subset of the regular ARM ISA, but you need to execute
more instructions to get the same work done. You just get a
smaller memory footprint.

Nobody Likes Surprises

Summarized by Suparna Bhattacharya (suparna@csa.iisc.ernet.in)

Debug Determinism: The Sweet Spot for Replay-Based
Debugging
Cristian Zamfir, EPFL, Switzerland; Gautam Altekar, University of

California, Berkeley; George Candea, EPFL, Switzerland; Ion Stoica,

University of California, Berkeley

Replay-based debugging is a useful technique for tracking
down hard to reproduce non-deterministic bugs which may
otherwise take days or months to diagnose. The high runtime
overhead involved in ensuring deterministic record-replay,
however, is a major barrier to making these tools practical for
production use.

Cristian Zamfir argued for a new model of determinism,
called “debug determinism,” which specifies that a system
should at a minimum reproduce the failure and the root cause
of the failure in order to be useful for debugging. Thus, debug
determinism maximizes debugging utility, yet it is a relaxed-
determinism model that has the potential to be achieved
with low in-production overhead. He observed that exist-
ing relaxed deterministic replay approaches such as output
determinism and failure determinism may end up sacrificing
debugging utility in the process of reducing runtime over-
head. For example, an output-deterministic system may only
record the output but not the input context or data race that is
the root cause of the failure. Debug determinism, on the other
hand, relaxes determinism while ensuring that both the
original failure and the root cause can be reproduced.

How might this be achieved? One could apply high-fidelity
recording during portions of execution where root causes
and failures are suspected—the key difficulty, of course, is
that these are not known a priori. Hence, static analysis or
domain knowledge is required to guess the location of pos-
sible root causes. In the case study presented for Hypertable,
the authors relied on previous reports that control plane code
tends to be responsible for most program failures, but only
a small portion of the execution time. Thus, one approach is
to record with high fidelity just the control plane. Cristian

be more expensive than hardware. A lot of people in the audi-
ence did not believe that, saying that power should become
really expensive in order for this technique to start to make
sense. A related question was whether the authors neglected
the cost evaluation. Sherif said that at the moment they
do not have a good cost model. Another concern was high
latencies. The author agreed that for some applications this
approach will not work. Mike Freedman asked why they were
using VM migrations. Sherif answered that for some applica-
tion types, where the working set is small, VMs make sense.

Discussion/Open Mike

Summarized by Rik Farrow (rik@usenix.org)

The half hour of open discussion at first stayed focused on
energy saving, the topic of the previous session. Dan Wallach
wondered where else we could apply the genie. Geoff said
that they had focused on improving the energy footprint of a
single machine, but you could consider clusters and clouds.
Mark Hempstead pointed out that the cost of transition-
ing processes or VMs between systems or DCs needed to be
taken into account. Jeff Mogul mentioned that energy and
computing is where computer security was ten years ago.
Security is hard to get right, and accounting is the Achilles’
heel of these things. The energy cost to produce a laptop is
the same as the cost of using it two years. Mark responded
that he hoped we would read his paper carefully, as they were
careful. Geoff actually agreed with Jeff, in that we have been
using voltage scaling for ten years, and Windows still does
this so poorly it is better just to turn off the laptop. Mark
mentioned that if we are really going to consider scalable
computing, we need to consider the entire lifecycle. Mike
Schecter said that people building datacenters are watching
out for their own interests, but even they do not have control
of all costs, including lifecycle costs.

John Ousterhout displayed a slide from RAMCloud (a
Stanford project that replaces large disk storage with DRAM
in server clusters). John pointed out that while disks have
16,667 times more capacity, latency has improved much less
(twice as fast), while transfer rate is 50 times better than it
was in the mid-’80s. But because capacity has far outstripped
latency and bandwidth, reading an entire disk, using small
blocks at random addresses, has become 8333 times worse.
Just reading an entire disk sequentially can take 30 hours.
Peter Honeyman said that the same thing is happening with
memory, but John replied that memory is still much faster.
Mike Swift noted that it is faster to read from a remote cache,
outside the network, than to read from the local disk. The
speed of doing computation over distance is the fundamen-
tal issue. Someone from Google pointed out that DCs are

	 ;login:  AUGUST 2011   Conference Reports    81

tributed computing engines, and that this could be achieved
without forcing additional complexity on computations that
do not involve non-determinism. He presented examples like
branch-and-bound and applications with irregular-sized
parallel sub-trees; these can be speeded up significantly by
reducing wasted work, using primitives like asynchronous
signals for work shedding and non-deterministic select to
continue execution without synchronization delays.

Since the main challenge with implementing non-determin-
ism lies in dealing with faults, Derek discussed a possible
range of policies, from a conservative but expensive record
and replay to explicit error/exception handling by applica-
tions, to the other extreme of a fail-everything all-or-nothing
approach. One of the more interesting alternatives proposed
was that of bounded non-deterministic annotations for com-
putations that have deterministic outputs, but which may be
implemented internally using non-deterministic steps for
efficiency. The paper also describes how tainting could be
used to differentiate non-deterministically generated out-
puts from deterministic references to restrict the impact.

Mike Schroeder asked about the extent to which the authors
have managed to act on these observations. Derek responded
that they need to understand the distribution of failures
before concluding what the appropriate solution should look
like. Cristian Zamfir wondered how one would deal with
undesirable non-determinism such as a bug in the JVM or
the kernel. Derek clarified that they were not trying to deal
with those kinds of problems, but were focused on explicit
user-level non-determinism. The main message here is that
currently the problem of handling non-determinism has been
pushed to lower layers of the system; instead, we should pull
back some of it to higher layers where it may be cheaper to
handle and enable more flexibility.

Finding Concurrency Errors in Sequential Code—
OS-level, In-vivo Model Checking of Process Races
Oren Laadan, Chia-Che Tsai, Nicolas Viennot, Chris Blinn, Peter Senyao

Du, Junfeng Yang, and Jason Nieh, Columbia University

This intriguing title marked the last talk of the session on
non-determinism. Oren Laadan highlighted an important
problem that has received very little attention in the sys-
tems community compared to the active research on thread
races. This is the existence of process races, or races which
occur when multiple processes access shared OS resources
without proper synchronization, e.g., non-determinism in the
results of ps aux | grep XYZ or a shutdown script unmounting
a file system before another process writes its data. Using
results from their survey of sampled race reports for com-
mon Linux distributions, he pointed out that process races
are numerous and growing over the years. They can also be

proposed a metric called debugging fidelity (DF) to assess
different approaches with respect to their debugging utility.
For example, DF is 1 when both the failure and the original
root cause can be reproduced (e.g., when both are in the con-
trol plane in the Hypertable example) and it is 1/3 when there
are 3 possible root causes for a reproducible failure and the
system may reproduce one of the root causes that is different
from the original cause.

Jeff Mogul asked whether it would be useful to implement
a two-phase approach involving a run in high performance
(relaxed determinism) mode followed by other runs with high
fidelity with respect to the possible root cause of the failure.
Cristian pointed out that replay debugging systems are typi-
cally targeted at failures that occur infrequently and are hard
to reproduce; therefore a two-phase approach may not work
well in these cases. Mike Schroeder wondered whether low
fidelity might be better, since it is good to know all the root
causes, in order to fix them all. Cristian responded that find-
ing all root causes for a failure may take a long time and may
be more difficult to scale. However, such a system would have
higher “debugging effectiveness,” which is a different metric
from debugging fidelity.

One participant asked for a clarification on how one can
know up-front where the root causes are. Cristian replied
that one could over-approximate where root causes are likely
to be based on a heuristics or static analysis, then record
those parts of the execution with high fidelity. For instance,
one might be able to statically over-approximate where all
the data races are. Some of these data races may be benign;
due to the over-approximation, they would be recorded as
well, yet the system would achieve debug determinism for
failures caused by data race bugs.

Non-deterministic Parallelism Considered Useful
Derek G. Murray and Steven Hand, University of Cambridge Computer

Laboratory

In contrast with much recent work that treats non-determin-
ism as a source of undesirable problems in parallel program-
ming, Derek Murray made a case for extending distributed
execution engines to enable explicit support for non-deter-
ministic execution in applications that can benefit from it. He
began his presentation by explaining how distributed execu-
tion engines (e.g., MapReduce) take care of a lot of parallel
programming drudgery, including parallelization, synchroni-
zation, scheduling, load balancing, communication, and fault
tolerance. It is the last of these that requires deterministic
execution. Thus non-determinism comes at the cost of trad-
ing off transparent fault tolerance. However, he argued that
more efficient and versatile programs can be built if non-
determinism is supported as a first-class abstraction in dis-

	82    ;login:  VOL. 36, NO. 4

The Tin Foil Hat Session

Summarized by Srinath Setty (Srinath@cs.utexas.edu)

Privacy Revelations for Web and Mobile Apps
D. Wetherall and D. Choffnes, University of Washington; B. Greenstein,

Intel Labs; S. Han and P. Hornyack, University of Washington; J. Jung,

Intel Labs; S. Schechter, Microsoft Research; X. Wang, University of

Washington

Right now, the research community’s work can be divided
into the following two categories: first, creating clever
attacks to expose privacy risks, and second, devising narrow
mechanisms to prevent a class of privacy risks. David Weth-
erall argued that the research community needs to go beyond
these two classes of work and devise operating system
mechanisms for privacy revelations. Privacy revelations will
track how a user’s information spreads in applications and
will present that information to its users. The authors argue
that this information will enable users to improve privacy if
it can be presented as application-level concepts.

Yinglian Xie (MSR) pointed out that the problem is more
than transparency: users need to know how their data gets
used outside. Wetherall agreed. Matt Welsh from Google
asked about the incentives for OS developers and application
developers to support privacy revelations. Wetherall said
that the work is not to disallow apps from tracking/collecting
users’ information but to expose that fact to the users. John
Wilkes (Google) suggested that privacy revelations should
go beyond what the authors defined: the operating systems
should point out information about the ways in which the
tracked information gets used. Wetherall agreed.

Do You Know Where Your Data Are? Secure Data
Capsules for Deployable Data Protection
Petros Maniatis, Intel Labs Berkeley; Devdatta Akhawe, University

of California, Berkeley; Kevin Fall, Intel Labs Berkeley; Elaine Shi,

University of California, Berkeley and PARC; Dawn Song, University of

California, Berkeley

Petros Maniatis began with a story about health data. His
foot was injured in Palo Alto, and then he was hit by an
ambulance, re-injuring the same foot, while in the UK. It
would have been useful to have data from the medical work
done in California while in the UK. But it is important to
maintain control over our own health data.

Maniatis presented the secure data capsules vision: the
owner of data sets a policy; policy is enforced during its
lifetime, and data provenance is maintained throughout.

dangerous, resulting in data loss and security vulnerabilities.
Diagnosing process races is challenging, however, because
of: (1) the diversity in scope (involving multiple programs
written in different languages with complex interactions
involving a variety of heterogeneous resources); (2) the need
for a race detection algorithm that can handle these complex
and often underspecified interactions between system calls
and resources; (3) the difficulty of ensuring coverage due to
dependencies on elusive conditions such as timing, envi-
ronment configuration, and usage scenarios; and (4) a high
likelihood of false positives or benign races.

Oren described their solution to the problem: RacePro, a
system which combines lightweight online in-kernel record/
replay (to transparently track access to shared resource
accesses at the OS level) with an offline exploration engine
that analyzes the record (using model checking) to detect
potential process races. While the first piece addresses
the scope challenge, the second addresses coverage. The
algorithm challenge for race detection is solved by mapping
this to an equivalent memory race detection problem which
treats resources like memory locations and system calls like
memory read/write. The last step of the solution is an offline
validation using a live replay of a modified version of the
recording that forces candidate race conditions to help rule
out false positives. With their preliminary implementation
they have detected 14 races, including 4 that result in a data
loss, 5 that result in a crash, and 5 security vulnerabilities. Of
all the races detected by the exploration engine, only 3–10%
proved harmful, showing that the validation step is crucial.

There were several questions about what the underlying
recording scheme actually captures and the assumptions
made. Oren explained that they record all system calls and
the partial order of their access to resources. Responding to a
question from Marcos about whether they rely on a model of
the OS for knowledge of what the shared resources are, Oren
mentioned that their record replay mechanism is based on
Scribe, their earlier work on a transparent lightweight appli-
cation execution replay, published at SIGMETRICS ’10. The
basic resources are decided up front—e.g., IPC, files, inodes
(not every single lock in the kernel), and partial ordering for
a resource are recorded/effected by tracing internal kernel
function accesses. Since Scribe can replay any application,
including one that is multi-process and multi-threaded,
RacePro can detect process races that involve threads as
well. David Holland asked how robust the mechanism is to
the kernel that’s not working properly. The answer was that
the approach assumes a correctly working kernel.

	 ;login:  AUGUST 2011   Conference Reports    83

user. John Ousterhout from Stanford asked if this would
increase risk by recording information. Altekar answered
that users have to trust the recording system to not leak
information. Timothy Roscoe from ETH Zurich asked if this
is going to be used, since users may not like to record all their
actions. The answer was to reduce the costs to make it favor-
able for the users to use it.

Discussion/Open Mike
No report is available for this session.

MacGyver Would Be Proud

Summarized by Sherif Akoush (sa497@cam.ac.uk)

Exploiting MISD Performance Opportunities in
Multi-core Systems
Patrick G. Bridges, Donour Sizemore, and Scott Levy, University of New

Mexico

Patrick Bridges presented opportunities to increase the
speed of fixed-size workloads proportional to the processor
count. He argued for strong scaling in systems software, and
he gave the example of a single TCP connection as why we
need it. For small MTUs, TCP synchronization across mul-
tiple cores is a bottleneck and it kills performance. Multiple-
instruction/multiple-data (MIMD) approaches do not solve
this problem, as they require coordinating activities between
cores.

The alternative approach is to use a multiple-instruction/
single-data (MISD) execution model based on the replication
of sequential code across cores. In other words, synchroni-
zation is being replaced by replicating sequential work to
guarantee consistency. They have implemented the sys-
tem, and the initial result is that their model scales well for
TCP receive processing. Patrick concluded by giving other
examples, such as high-throughput file systems, in which the
MISD approach would be beneficial.

Timothy Roscoe from ETH Zurich asked whether TCP is the
interesting case in this approach and if it has any sequential
component that can be replicated across cores to achieve
scaling. Patrick answered that TCP state information such as
window size, congestion control, and flow control is basically
the sequential code that needs to be consistent across cores.
He believes that TCP would be the killer application, to speed
up a single connection flow proportional to the number of
cores. Mike Swift asked about other applications that would
fit this model. Patrick said that moving a large chunk of data
in the DB world would be interesting as well.

Then Maniatis presented the challenges involved in realizing
this vision. First, the vision requires tracking information,
which is known to be expensive in practice; devising efficient
mechanisms to track the flow of information is a challenge.
Second, the vision requires us to devise composable and
meaningful policy definitions. Third, covert channels are a
serious threat and need to be addressed.

Toby Murray (NICTA/UNSW) pointed out that microkernels
are good for secure data capsules. Then Toby asked if naming
is going to be the hard problem. Maniatis agreed but pointed
out that it needs to be solved in order to realize the proposed
vision. An audience member pointed out that Palladium at
MSR, with a similar vision, had problems with displaying
output on commodity hardware, and asked if this is going to
be a problem in this work. Maniatis said there are solutions to
the secure display problem if there is hardware manufacturer
support. Michael Swift (University of Wisconsin) asked if it
is going to be a problem to create policies to handle medi-
cal data before the data gets used. Maniatis pointed out that
there are a couple of ways to handle this: the system could
have policy violation budgeted to address the unknown data
usage information, or a quorum of entities could decide the
policy dynamically at runtime.

Making Programs Forget: Enforcing Lifetime for
Sensitive Data
Jayanthkumar Kannan, Google Inc.; Gautam Altekar, University of

California, Berkeley; Petros Maniatis and Byung-Gon Chun, Intel Labs

Berkeley

Gautam Altekar explained that their idea is to create OS
mechanisms to ensure that sensitive data is not retrievable
after a defined data lifetime date has expired. This mecha-
nism should not require support from applications. Altekar
presented their initial work, state reincarnation, in which an
operating system rolls back the application’s state, replaces
sensitive information with equivalent non-sensitive infor-
mation, and rolls forward the application. State reincarna-
tion eliminates any sensitive data from the system after
its lifetime, but the challenge in achieving this is to derive
equivalent non-sensitive data during the process. Altekar
pointed out that output deterministic replay (SOSP ’09) can
be used to solve this problem in many cases, but overheads
are going to be high. The talk also presented overheads by
recording information at user-level: for bash, the slowdown
was 1.2 times.

An audience member asked whether the goal could be
achieved by simply going back in time. Altekar pointed out
that that proposed fix would disrupt the application and the

	84    ;login:  VOL. 36, NO. 4

checker) which can eliminate the redundant work of count-
ing words in a file. However, there are challenges in making
this adaptive optimization efficient and between multiple
processes.

Phil Levis (Stanford) asked how this adaptive optimization
would work for specialized paths in the current user’s home
directory. Christopher answered that this can be mitigated
by either pushing this challenge to the user or writing a
wrapper script that can check whether there is a specializa-
tion version available. Petros Maniatis (Intel Labs Berkeley)
asked how this approach compares to speculative execu-
tion. Christopher answered that what he is proposing is
complementary, as it can eliminate some decisions that are
not needed ahead of the speculative execution. An audience
member commented that the proposed approach can be aug-
mented to model deferential execution of multiple program
invocations over time to identify common state which is use-
ful. Dave Holland (Harvard) wondered about what happens
if the content of the file changes during execution. The reply
was that, for the time being, it will be left to the developer to
take the correct action.

Poster Session

Summarized by Lon Ingram (lawnsea@cs.utexas.edu)

The Best of Both Worlds with On-Demand Virtualization
Thawan Kooburat and Michael Swift, University of Wisconsin—Madison

Kooburat and Swift propose on-demand virtualization,
where users run natively most of the time to reap the full
performance of their hardware, but can switch to running in
a virtual machine when needed. They save the state of the OS
and running processes through hibernation, use hotplugging
to transition devices from physical to virtual hardware, and
employ logical devices to preserve device bindings, which
allows network connections to be maintained.

Mobile Apps: It’s Time to Move Up to CondOS
David Chu, Aman Kansal, and Jie Liu, Microsoft Research Redmond; Feng

Zhao, Microsoft Research Asia

Chu presented his team’s vision for a new kind of mobile OS
service. The OS would provide applications with context
signals—whether the user is standing or sitting, for example,
or in a loud or quiet environment—in addition to raw sensor
data. They claim that such an OS would better protect the
user’s privacy and use resources more efficiently, among
other advantages.

More Intervention Now!
Moises Goldszmidt and Rebecca Isaacs, Microsoft Research

Moises Goldszmidt argues for what-if scenarios for data-
parallel systems (e.g., MapReduce and Dryad). Unfortunately,
this cannot be done by passive observations only; active
interventions are required to learn the causality of different
parts of the system. The proposed approach makes use of
well-developed mathematical models, theories, and engi-
neering.

The approach relies on passive observations to build the con-
founding factors that require further active interventions.
Then, a Bayesian network is developed and executed which
determines the experimentations needed. Statistics and
machine-learning techniques provide a set of new rules that
can be used for active interventions.

Matt Welsh said that he was the reviewer that said you are
reinventing control theory, something that was done for 50
years. Can you apply stuff that was done 30 years ago? Moises
answered that they actually combined different models to
come up with a new formulation that can be used to decide
on the active interventions. Rodrigo Fonseca (Brown) asked
how the blueprint (i.e., causality) is captured, and if it is cap-
tured wrong, how this might affect the conclusions. Moises
answered that the blueprint is constructed from passive
observations (e.g., data sizes from nodes in the cluster that
are running the tasks), while active interventions are what
actually correct any wrong assumptions in the blueprint.

make world
Christopher Smowton and Steven Hand, University of Cambridge

Computer Laboratory

Christopher Smowton argued that programs such as Firefox,
OpenOffice, and Eclipse are rubbish since they repeat work
that is done in either the current or the previous session.
Developers of these programs never consider specialization
of the software, because it is a challenging task. A spell-
checker, for example, converts a local/global dictionary into a
machine-readable form every time before checking. An easy
optimization is to do this conversion only once per session.
Alternatively, the program can be manually rewritten to save
its intermediate results.

The paper proposes a more efficient technique based on
global optimization: automated specialization of programs
by partial evaluation. In the specific example of the spell-
checker, this technique treats the dictionary as a constant
propagated through the rest of the program. A prototype has
been implemented as a proof of concept (not for the spell-

	 ;login:  AUGUST 2011   Conference Reports    85

Pervasive Detection of Process Races in Deployed
Systems
Oren Laadan, Chia-Che Tsai, Nicolas Viennot, Chris Blinn, Peter Senyao

Du, and Junfeng Yang, Columbia University

This project uses a recording of process interactions through
the system call interface to detect process races. Once a
race is detected, the system re-executes the processes until
immediately before the racing syscalls. It then resumes
execution, but with the loser of the race executing before the
winner. This technique allows them to reduce false positives
by ignoring benign races.

Sirikata: Design and Implementation of a Next
Generation Metaverse
Philip Levis, Stanford University; Michael J. Freedman, Princeton

University; Ewen Cheslack-Postava, Daniel Reiter Horn, Behram F.T.

Mistree, and Tahir Azim, Stanford University; Jeff Terrace, Princeton

University; Bhupesh Chandra, Stanford University; Xiaozhou Li,

Princeton University

Sirikata is a project to actually build a usable virtual world.
The challenges presented by such an undertaking are unique
and daunting. The project is well into its implementation,
with 12 undergraduate students building a virtual city called
Merustadt over the summer of 2011.

SPECTRE: Speculation to Hide Communication Latency
J.P. Martin, C. Rossbach, and M. Isard, Microsoft Research SVC

Programs that share mutable state and sequential algo-
rithms are harder to run efficiently on multiple machines.
SPECTRE uses prefetching and speculative execution to run
sequential algorithms in parallel, rolling back if a conflict is
encountered. It is currently running as a prototype on a small
cluster.

T2M: Converting I/O Traces to Workload Models
Vasily Tarasov, Santhosh Kumar Koundinya, and Erez Zadok, Stony Brook

University; Geoff Kuenning, Harvey Mudd College

T2M is an effort to create benchmarks from I/O traces.
Traces are broken into chunks based on what model will
be used to analyze the chunks. The chunks are then mod-
eled and a workload model is output, which can be used as a
benchmark in the future.

Seeking Efficient Data-Intensive Computing
Elie Krevat and Tomer Shiran, Carnegie Mellon University; Eric A.

Anderson, Joseph Tucek, and Jay J. Wylie, HP Labs; Gregory R. Ganger,

Carnegie Mellon University

Krevat and his team investigated what inefficiencies affect
data-intensive scientific computing (DISC), which they
define as large-scale computations over big datasets. They
used a simple model of DISC and a library called Parallel
DataSeries to look for performance problems.

Detern: Robustly and Efficiently Determinizing Threads
Heming Cui, Jingyue Wu, John Gallagher, Chia-che Tsai, and Junfeng

Yang, Columbia University

Yang and his team built on recent work in the field of deter-
ministic multithreading, making it more robust and efficient.
Their system caches thread schedules and reuses them; it
also uses a hybrid schedule that takes advantage of the fact
that there are typically relatively few races during the execu-
tion of the program.

Execution Synthesis: A Technique for Automated
Software Debugging
Cristian Zamfir and George Candea, Ecole Fédérale de Lausanne

Zamfir and Candea created a method for automatically
finding a path through a program that reproduces a reported
bug. Their technique uses a focused path search based on a
combination of heuristics and symbolic execution to reach
a target failure state. It incurs no runtime overhead and can
find deadlocks and race conditions.

Memento: In-Memory Caching for Datacenters
Ganesh Ananthanarayanan, Ali Ghodsi, and Andrew Wang, University

of California, Berkeley; Dhruba Borthakur, Facebook; Srikanth Kandula,

Microsoft Research; Scott Shenker and Ion Stoica, University of

California, Berkeley

The Memento team are working on a memory cache for
data-intensive workloads in datacenters. They observed
that most jobs are small and require all of their data to be
cached to reap performance benefits. Large jobs, on the other
hand, experience linear improvement as their working set is
cached. Traditional caching disciplines ignore the all-or-
nothing constraint on small jobs. Memento categorizes jobs
by size and tries to ensure that this constraint is met so that
large jobs don’t starve small ones.

	86    ;login:  VOL. 36, NO. 4

Mike Walfish (University of Texas at Austin) showed a You-
Tube video where a penguin is taught to go shopping. He sug-
gested that robots should be used to perform mundane tasks
like this. He presented his work in building robots which are
easy to program and able to perform simple tasks such as
getting a cup of coffee. He proposed a model where people can
download pre-programmed tasks to their robots from places
like AppStore.

David Anderson (CMU) suggested that systems research
is about dealing with constraints imposed by hardware.
Previously, we have been able to use many abstractions to
hide some hardware details such as uniform memory and
sequential computation. However, as we are hitting the
physical limit of physical devices, we will start to throw away
these abstractions. He believed that we will ultimately reach
the end of scaling of physical devices and we should accept
this fact. Because of this, we should think carefully about
which abstractions to throw away and in which order, so that
programmers will continue to survive despite these changes.

Joseph Tucek (HP) explained that the next-generation com-
puter system is just a machine with a different ratio of hard-
ware resources. He proposed that cutting-edge research can
be carried out by putting together machines that simulate
this ratio. For example, we can pair a 386 processor with a 10
Gbps network to mimic the future Terabit network.

Prove It!

Summarized by Sherif Akoush (sa497@cam.ac.uk)

What If You Could Actually Trust Your Kernel?
Gernot Heiser, Leonid Ryzhyk, Michael von Tessin, and Aleksander

Budzynowski, NICTA and University of New South Wales

Gernot Heiser presented an seL4 microkernel that is for-
mally proven to be functionally correct. The kernel is free
from crashes, bugs, and similar safety issues. Interesting
applications are for the purposes of better virtual machine
monitors and isolating Web browsers. Trusted platform mod-
ules (TPM) can also be made practical by the use of a trusted
kernel with a trusted verified loader.

Taking home banking as an example, TPM is practically use-
less, as it forces the users to boot into a special banking con-
figuration that will kill any other concurrent access to other
machine features. Late launch/DRTM is also practically
useless, as it does not allow for interrupts, DMA, or multipro-
cessing. The proposed solution is to load the banking applica-
tion in a mini OS that is also loaded with a verified loader on
top of a verified seL4 kernel. The user’s standard OS is still
working in parallel and is not affected. Additionally, DBMS
would not need synchronous log writes, as it is guaranteed

Why a Vector OS Is a Bad Idea
Vijay Vasudevan and David Andersen, Carnegie Mellon University;

Michael Kaminsky, Intel Labs

Awarded Best Poster!

Vasudevan presented the winning poster, which discussed
the downsides to the Vector OS project that he discussed
in the final session of the workshop. Two problems identi-
fied on the poster were the difficulty of programming to an
explicit vector interface, illustrated with code showing the
extra work required, and latency penalties paid when code
diverges. The poster also included a space for audience mem-
bers to fill in their own objections to the scheme.

Wild and Crazy Ideas Session

Summarized by Thawan Kooburat (kooburat@cs.wisc.edu)

Matt Welsh (Google) presented MEME OS, which is designed
to appeal to the Internet generation. This generation does
not understand the messages displayed via the text-based
terminal. He proposed the use of funny images from the Web
as a way to report output or error messages to users.

Margo Seltzer (Harvard) conducted a poll on how people
carry their mobile phones. She found that those who carry
their phones in their pockets are mostly men. This means
that women may not carry the phone with them when leaving
their desk to do small errands. Research on mobile phones
should also take women’s behaviors into account, since they
represent the other half of the demographic.

Jeffrey Mogul (HP Labs) proposed a journal for reproduced
results in OS research. He also came up with several ideas
to provide incentive for people to work on this journal.
For example, submitting a paper to this journal should be
required to get tenure. The authors of any system paper need
to put down $1000 on paper submission, which will go to
the reviewers if the result is refuted within two years. Many
people responded that other research communities—the
database community, for example—already have mecha-
nisms such as reproducibility committees to verify published
works.

Dan Wallach (Rice University) complained about the cur-
rent submission process, in which papers get into the loop of
submit-reject-revise. He proposed that all papers should get
accepted immediately as tech reports. This sparked a debate
where people discussed the submission process of other con-
ferences such as SIGMOD and VLDB. Others also raised the
idea of removing anonymous review or using crowdsourcing
instead of peer review.

	 ;login:  AUGUST 2011   Conference Reports    87

important and they are actually working on modeling the
hardware.

Toward Practical and Unconditional Verification of
Remote Computations
Srinath Setty, Andrew J. Blumberg, and Michael Walfish, The University

of Texas at Austin

Srinath Setty presented a practical and unconditional
verification of remote computations which is useful in cloud
and volunteer computing. Basically, the client needs to verify
that the server has executed the code correctly without
redoing the computation. One solution is to use probabilisti-
cally checkable proofs (PCPs), but PCPs are currently just
applied in theory. The purpose of this paper is to make them
practically possible (i.e., position the challenge as a systems
problem). They refined PCP via arithmetic circuits instead of
Boolean circuits, to make the system efficient, and imple-
mented the design to demonstrate its practicality.

The prototype achieves savings of 10 orders of magnitude by
using the refinements presented. It is based on a divide and
conquer strategy: dividing the problem into smaller parallel
parts that the server checks simultaneously and then veri-
fies. However, more refinements are still required to reduce
the storage cost and support floating-point operations, for
example.

Steven Hand (University of Cambridge) asked why we should
use PCPs instead of replication, as replication is simpler to
verify computations. Srinath replied that replication assumes
a threshold on the number of faulty servers, but PCPs provide
stronger guarantees. Mike Freedman (Princeton) asked
whether the optimizations that have been made can be gen-
eralized to the implementation of other computations. The
answer was that these optimizations can be applied to any
computation expressed as a circuit. In principle, a compiler
can be used to translate a circuit representation from a high-
level specification.

MOMMIE Knows Best: Systematic Optimizations for
Verifiable Distributed Algorithms
Petros Maniatis, Intel Labs Berkeley; Michael Dietz, Rice University;

Charalampos Papamanthou, Brown University

Petros Maniatis argued for an approach that guarantees the
development of both algorithmic logic (for verification) and
optimizations (for efficient implementation). Abstractions
are great, but developers usually end up modifying the actual
implementation code when systems are built. The actual
code is therefore too difficult to be verified for correctness.
Moreover, we should not worry about this level of implemen-
tation detail.

with a verified kernel that the OS will not crash. In this case,
there is no tradeoff between performance and reliability.

John Ousterhout (Stanford) asked if they had found any
issues in seL4 since the SOSP ’09 paper. Gernot replied
that they had found a few proof bugs, around specification,
configuration, and initialization. The only way around that
is to complete the proof chain for the security parts. Brad
Chen (Google) asked whether there is more than isolation
that can be gained by a verified kernel and how application
correctness can be guaranteed. Gernot answered that the
guaranteed kernel functionality can be leveraged to ensure
user-level component interfaces and this is something they
are currently working on. Mike Swift asked what happens if
the memory fails, and Gernot replied that people trust their
RAID systems today. He also said that the military would
like to have triply redundant memory for some applications.

Provable Security: How Feasible Is It?
Gerwin Klein, Toby Murray, Peter Gammie, Thomas Sewell, and Simon

Winwood, NICTA and University of New South Wales

Toby Murray argued that provable security for a real system
is feasible but certainly not easy. Real proofs are done by
machines and can provide you with unexpected insights into
high-level security issues such as integrity and confidential-
ity. Real systems are big and often written in C or assembler,
not in a language that is designed to be proofed.

Toby provided seL4 as an example of a proofed kernel that
enforces integrity. It is a machine-checked proof with 10,000
lines of proof-script code. However, timing channels are still
too hard to be proofed and require a very detailed model of
the underlying hardware. Additionally, systems like Linux
cannot be proofed easily, as they have large trusted compo-
nents.

Steven Hand (University of Cambridge) asked what is
required if changes are made to the kernel. Toby answered
that it depends on the level of modification done to the kernel;
the correctness proofs rely on a number of invariants that
have been proved about the kernel, and most of the work in
proving correctness involves proving these invariants. So
changes that do not break the invariants or introduce new
ones require little work; however, ones that do require more
work.

John Ousterhout (Stanford) asked about the number of lines
of code seL4 has and how the effort required for the proof
scales with the number of lines. Toby replied that seL4 has
8,600 LOC and noted that according to his experience, the
proof should scale more than linearly (about square) with the
size. Brad Chen (Google) asked how important the missing
specification for hardware is. Toby answered that it is really

	88    ;login:  VOL. 36, NO. 4

mprotect system call. First, vectorization batches up several
system calls into one, similar to FlexSC. Then it eliminates
redundant TLB flushes and algorithmically exploits vec-
tor abstractions by sorting requests based on page address,
which reduces memory allocation overhead. These optimiza-
tions provided a factor-of-three improvement in the mprotect
rate: 30% of the improvement was attributed to avoiding sys-
tem call overhead, while the other 70% came from the vector
opportunities deeper in the stack, emphasizing the need for
vectorization at all levels. Next, Vijay described the challenge
of dealing with divergent execution paths. He proposed a
solution based on either forking extra threads and rejoining
them when execution paths converge, or using lightweight
message passing between function calls. However, deciding
when to fork and join execution is application-specific and
remains a challenge. Finally, he described one way of build-
ing a vector OS by restructuring the OS as a staged event
system. This allows the programmer to write sequential code
and let the system handle vectorization.

Erez Zadok (Stony Brook) asked about the difficulty of deal-
ing with errors when using vector system calls. Vijay replied
that this task can be simplified by using an event-based
model, as it allows programmers to handle errors individu-
ally. Andrew Baumann (Microsoft) pointed out that other
OS designs explicitly avoided synchronization overhead by
executing work redundantly in parallel. Vijay responded that
eliminating redundancy at the cost of serialization improves
efficiency, especially for I/O-bound operations in a highly
parallel Web server. Mike Schroeder (Microsoft) brought up
concerns about latency, since the system may have to wait
to batch up requests. Vijay said that existing techniques
such as interrupt coalescing already batch up requests at the
network layer before they arrive at the application, providing
an opportunity for vector execution to improve efficiency
without adding significantly more latency.

Operating Systems Must Support GPU Abstractions
Christopher J. Rossbach and Jon Currey, Microsoft Research; Emmett

Witchel, The University of Texas at Austin

Christopher raised the fact that the GPU, as a general-
purpose computing device, is underutilized because it is
treated as an I/O device. He strengthened his argument by
showing that the CPU has a much richer set of abstractions,
such as process and pipe, than the GPU, which has only ioctl
as the main interface. He described several issues caused by
the lack of a proper abstraction. First, there is no fairness or
isolation guarantee from the kernel. Second, the absence of
a kernel-facing interface means the kernel cannot use GPU
directly. Third, he presented two experiments to highlight
CPU/GPU performance isolation and scheduling problems.

The proposed middleware, MOMMIE, is a high-level lan-
guage that can be used to compose the system. This abstrac-
tion can then be translated to a specification (TLA+) for
formal verification or to an optimized program (C++) for
execution. In this way, proofs carry over into implementa-
tion without having to rebuild everything from scratch if the
system changes.

A MOMMIE statement is the fundamental building block
and is composed of an issuer, a verifier, an auditor, and
C-structs. The program looks like event-condition-action,
where actions have assignment, loops, and variables (i.e.,
imperative code). A prototype is available but it is still in its
early stages.

Mike Freedman (Princeton) asked whether the designer
tells MOMMIE which parts of the algorithm should go to the
formal proof and which parts are for actual optimizations.
Petros answered that they focused on abstraction so that
anything that is composable can be proved in isolation and
some aspects are mapped manually to implementation detail.
Toby Murray asked whether there are any restrictions on
the algorithm formulated in MOMMIE. Petros replied that
there are some restrictions: for example, it cannot allow for
arbitrary loops, because the goal is to reduce the amount of
work a designer has to do. Others wondered how this work
differs from other systems and protocols. Petros replied that
MOMMIE provides a granularity (middleware) that is not
found in any other system.

OS Design Isn’t Dead; It’s Just the Last Session
of the Workshop

Summarized by Thawan Kooburat (kooburat@cs.wisc.edu)

The Case for VOS: The Vector Operating System
Vijay Vasudevan and David G. Andersen, Carnegie Mellon University;

Michael Kaminsky, Intel Labs

Vijay raised the fact that in a Web server each request often
executes a similar sequence of operations, such as accept-
ing a network connection, opening a file, etc. Thus, a lot of
redundant and identical work is performed when servicing
requests in parallel using multiple cores. He proposed a vec-
tor system call as a mechanism to increase system efficiency.
Vectorization allows batching of system calls, which reduces
kernel crossing overhead, but, more importantly, it allows
redundant work to be eliminated. Examples include reducing
pathname resolutions, using SSE instructions in hash calcu-
lations, and looking up data structures more efficiently.

Vijay demonstrated the benefits of a vector system call while
performing memory protection at the speed of millions of
operations per second. This was achieved by vectorizing the

	 ;login:  AUGUST 2011   Conference Reports    89

packet, sending a lightweight message is comparable to a
procedure call.

David talked about how to restructure the kernel to use
messages. He presented a diagram which shows the kernel
running on a separate core instead of underneath the appli-
cation. In shared-nothing architecture this is possible, since
there is no need to protect processes from overwriting each
other. He also discussed several challenges in building such
a system. For example, relying on a hardware-based channel
can lead to a similar issue that people relying on Infiniband
encountered. Virtual memory may also look entirely differ-
ent, since there is no kernel running underneath. In addition,
this model may encourage programmers to write too many
threads. Finally, fault-tolerance and scheduling may become
issues as well.

Timothy Roscoe (ETH Zurich) argued that some form of
kernel is still required to run together with the application in
order to perform privileged tasks on its behalf. Hence, only
OS services are needed to be restructured around message
passing and run on a different core. David responded that
hardware-based channels can remove the need for running
the kernel in the same core. Joseph Tucek (HP) raised the
point that a NUMA machine with 1000 cores is already avail-
able today from SGI and is used by NASA. David Andersen
(CMU) commented that this system tries to achieve Mach-
like message passing with Go-like language support. He also
mentioned that people usually wrap an RPC-like interface
around message passing. David confirmed the point about
language support and argued that a lightweight message can
have as low overhead as a function call. On the other hand,
RPC is too heavyweight to replace every function call in a
program.

Fourth, Christopher talked about his gestural interface
program. He tried to decompose the program into a collection
of programs connecting via pipes. However, this design has
poor performance as a result of the unnecessary data move-
ment. With existing GPU abstractions, this overhead cannot
be removed.

Christopher emphasized that general-purpose GPUs need
more abstraction, similar to what the CPU has. It needs
many APIs to support functions such as scheduling and
inter-process communication. The right abstraction should
enable program composition and eliminate unnecessary data
movement between CPU and GPU. The proposed abstraction
is based on a dataflow programming model. First, PTasks
represent a computation executing on a GPU. They have
priority to allow the kernel to enforce fairness. They are
also connected via ports and channels. These specialized
channels allow programmers to eliminate unnecessary data
movement when an opportunity arises. Finally, he revisited
his gestural interface program to show how these abstrac-
tions solve the problem.

Erez Zadok (Stony Brook) suggested that if the GPU is
incorporated into the CPU like the floating-point coproces-
sor was, this problem may go away. Christopher responded
that having better hardware is also one of the solutions, but
he would like to have a solution that works with existing
hardware. Philip Levis (Stanford) argued that this problem is
irrelevant, as the CPU is moving to multicore and becoming
more heterogeneous. Christopher explained that dataflow is
still important since it may be the right model for any type of
accelerator. Brad Chen (Google) brought up concerns regard-
ing GPU security issues and believed that it should not be
tightly integrated with the OS. Christopher replied that bet-
ter support from hardware, such as allowing context switch-
ing and better specification, can mitigate the problem.

Multicore OSes: Looking Forward from 1991, er, 2011
David A. Holland and Margo I. Seltzer, Harvard University

David complained about multicore systems. Hardware is not
getting faster and we are forced to adopt parallel program-
ming, which makes good scalability very difficult to achieve.
However, these are the same challenges that people who
worked with supercomputers faced around 1991. The experi-
ence gained from this shows that machines with thousands
of cores will need to adopt the shared-nothing architecture.
We also learned that message passing is the right model for
programming these machines. However, instead of using
MPI, a lightweight message channel is already available
in languages such as Go and Erlang. Since it is based on a
shared-nothing architecture, it has the potential to achieve
good scalability. Unlike sending a MPI and network RPC

BLOGS ARTICLES COLUMNS CASE STUDIES MULTIMEDIA RSSINTERVIEWS

Written by software engineers for

software engineers, acmqueue

provides a critical perspective on

current and emerging information

technologies.

acmqueue features:

� Free access to the entire acmqueue archive

� Dozens of blogs from the field’s top innovators

� Interviews with leading practitioners

� Audio, video, and online programming contests

� Unlocked articles from ACM’s digital library

acmqueue is guided and written by widely known industry experts. Its

distinguished editorial board ensures that acmqueue’s content dives

deep into the technical challenges and critical questions that software

engineers should be thinking about.

acmqueue: ACM’s website for practicing software engineers

Visit today!
http://queue.acm.org/

acmqueue_ad.qxp:acmqueue 3/1/10 10:55 AM Page 1

If You Use Linux, You Should Be
Reading LINUX JOURNAL

�� In-depth information
providing a full 360-
degree look at featured
topics relating to Linux

�� Tools, tips and tricks you
will use today as well as
relevant information for
the future

�� Advice and inspiration for
getting the most out of
your Linux system

�� Instructional how-tos will
save you time and money

Get Linux Journal delivered
to your door monthly for
1 year for only $29.50!
Plus, you will receive a free
gift with your subscription.

SUBSCRIBE NOW AT:
WWW.LINUXJOURNAL.COM/SUBSCRIBE
Offer valid in US only. Newsstand price per issue is $5.99 USD; Canada/Mexico
annual price is $39.50 USD; International annual price is $69.50. Free gift valued
at $5.99. Prepaid in US funds. First issue will arrive in 4-6 weeks. Sign up for,
renew, or manage your subscription on-line, www.linuxjournal.com/subscribe.

SAVE
62%

™

IfYouUseLinux_FP:Layout 1 2/18/10 9:39 AM Page 1

Each issue delivers technical solutions to the
real-world problems you face every day.

Learn the latest techniques for better:

on Windows, Linux, Solaris, and popular varieties
of Unix.

ADMIN: REAL SOLUTIONS
FOR REAL NETWORKS

• network security

• system management

• troubleshooting

• performance tuning

• virtualization

• cloud computing

of Unix.

FIND ADMIN MAGAZINE ON A NEWSSTAND NEAR YOU!

SUBSCRIBE NOW AT admin-magazine.com/subs

GOING TO THE CLOUD?
How will you get there?

cloudage.admin-magazine.com

The cloud portal for IT specialists – up close,
all technical, all cloud.

Powered by:

MediaExchange_Admin_Cloudage_B&W_4clr_convert.indd 1 7/6/11 4:06:57 PM

