
	108    ;login:  VOL. 36, NO. 5

distributed agents running at the hypervisor layer on each
of the servers. The Gatekeeper prototype is implemented in
Open vSwitch on Xen/Linux using the Linux traffic shaping
mechanism (HTB) for rate limiting.

Himanshu Raj of Microsoft asked about the difference
between Gatekeeper and Seawall. The primary difference is
that Gatekeeper divides available bandwidth between differ-
ent tenants (where each tenant has multiple VMs), whereas
Seawall only allocates available bandwidth between different
flows. Wenji Wu of Fermilab asked how one knows to set the
limits to the minimum bandwidth required by each service.
Henrique replied that it is the tenant’s responsibility to
specify the bandwidth requirements of the applications.

Panel/Wild Ideas Session

Panel: Challenges for Virtualized I/O in the Cloud
Participants: Muli Ben-Yehuda, Technion—Israel Institute of Technology

and IBM Research—Haifa; Alan Cox, Rice University; Ada Gavrilovska,

Georgia Institute of Technology; Satyam Vaghani, VMware; Parveen Patel,

Microsoft

No report is available for this session.

3rd USENIX Workshop on Hot Topics in
Parallelism (HotPar ’11)

Berkeley, CA
May 26–27, 2011

Day 1, Session 1
Summarized by Sabrina M. Neuman (sneuman@mit.edu)

Considerations When Evaluating Microprocessor
Platforms
Michael Anderson, Bryan Catanzaro, Jike Chong, Ekaterina Gonina, Kurt

Keutzer, Chao-Yue Lai, Mark Murphy, David Sheffield, Bor-Yiing Su, and

Narayanan Sundaram, University of California, Berkeley

Bryan Catanzaro opened the HotPar ’11 workshop with an
examination of the problems plaguing GPU and CPU micro-
processor platform comparisons. The two key conclusions
of the investigation were that comparison results should be
contextualized within a certain point of view, and that com-
parison results should be reproducible.

To illustrate the first conclusion, Catanzaro invoked the par-
able of the blind men and the elephant, where the men draw
inconsistent conclusions because each collects data from
a different point of view. He likened the men in the story to
modern application researchers and architecture research-
ers, and suggested that comparison results need to be con-
sistent with the point of view of their intended audience. The

Nested QoS: Providing Flexible Performance in Shared
IO Environment
Hui Wang and Peter Varman, Rice University

Hui Wang said this paper is unusual for the workshop, in that
it is fairly theoretical. It presents a quality-of-service model
for virtualized environments (“nested” environments—not
to be confused with nested or recursive virtualization).
The nested QoS model offers a spectrum of response time
guarantees based on the burstiness of the workload. Since a
disproportionate fraction of server capacity is used to handle
a small tail of highly bursty requests, the hope is that by pro-
viding a range of different response times which depend on
the burstiness of the workload, overall server capacity could
be reduced.

The model works by dividing incoming requests into differ-
ent traffic classes, also called traffic envelopes, with each
request’s response time guaranteed as long as traffic remains
inside the corresponding envelope. The model was evaluated
on traces of block level I/Os from different workloads and
appears to work well, leading to a large potential reduction
in server capacity without significant performance loss. The
results were all based on simulation, which led Himanshu
Raj of Microsoft to ask Hui whether she had any idea what
the runtime cost of implementing nested QoS would be. Hui
answered that the cost is mostly in classifying requests into
the different envelopes and is expected to be “very small.”

Gatekeeper: Supporting Bandwidth Guarantees for
Multi-tenant Datacenter Networks
Henrique Rodrigues, Universidade Federal de Minas Gerais (UFMG);

Jose Renato Santos and Yoshio Turner, Hewlett-Packard Laboratories

(HP Labs); Paolo Soares, Universidade Federal de Minas Gerais (UFMG);

Dorgival Guedes, Universidade Federal de Minas Gerais (UFMG) and

International Computer Science Institute (ICSI)

Suppose you have a server that runs virtual machines
belonging to multiple tenants, who do not necessarily trust
or cooperate with each other. All of the tenants share the
server’s network bandwidth. How can you provide network
performance isolation to the different tenants, so that one
tenant will not be able to overload the network at everyone
else’s expense? Henrique Rodrigues explained why neither
TCP or UDP solves this problem, and that using rate-limiting
is not enough, since it limits the senders but not the receivers.
He then presented Gatekeeper, which satisfies the four prac-
tical requirements for a traffic isolation mechanism: scal-
ability, an intuitive service model so that tenants can specify
their requirements and understand what they are receiving,
robustness against untrusted tenants, and the ability to
trade off flexibility vs. predictability and make use of idle
bandwidth. Gatekeeper works by limiting the transmit and
receive bandwidth of each virtual machine (VM) through

	 ;login:  OCTOBER 2011   Conference Reports    109

Concurrency bugs have been difficult to track down and
mine from old code sources, and tricky to recreate on
demand. Inputs and thread scheduling behavior were often
insufficient to conjure the bugs. Environmental factors such
as interrupts, random numbers generated, and communica-
tion socket delays were critical to buggy conditions. Overall,
the concurrency bugs did not fit into neat categorizations
or classical patterns, making them hard to understand and
reproduce. Concurrency bugs break the traditional program-
ming paradigm; they are reactive and wacky.

Deterministic record and replay bug reproduction requires
cumbersome overhead. Lightweight bug reproduction would
be desirable, but remains an open problem. One approach is
to record fewer details and perform analysis offline to reduce
online overhead. However, with this technique there is no
guarantee of bug reproduction.

Sasha Fedorova (Simon Fraser) asked for clarification of the
purpose of RADBench. Jalbert explained that RADBench’s
purpose is to present a collection of full snapshots of concur-
rency bugs “in the wild.” It is not a bug-finder or debugging
tool. Several audience members asked about the scalability
of the work done to create RADBench. Jalbert responded that
the bugs did not follow classical patterns, so they were dif-
ficult to find and hard to categorize. No faster way to identify
the bugs was found. Many audience members suggested
places to find more concurrency bugs: work done at IBM,
code samples from undergraduate class projects, highly com-
mented buggy entries in project code archives. Jalbert agreed
that these were all good potential concurrency bug sources.
Jalbert stressed that the RADBench work is just the tip of the
iceberg, and acknowledged that many problems in addressing
and solving concurrency bugs remain.

Day 1, Session 2
Summarized by Jaswanth Sreeram (jaswanth@gatech.edu)

How to Miscompile Programs with “Benign” Data Races
Hans-J. Boehm, HP Laboratories

Several researchers have investigated the distinction
between “harmful” data races (so-called destructive races)
and “benign” data races, which do not affect the semantics
of a concurrent program and can be safely ignored. In this
talk, Hans-J. Boehm argues that even such benign data races,
while appearing harmless at the program level, can poten-
tially be compiled into code that produces incorrect results.

Data races are considered errors in several language mod-
els, including Ada 83, POSIX and C++/C. However, in Java
and C#, data races are not considered errors (although the
semantics are not clear). One of the problems with benign
data races in languages that consider them errors is that the

goals and values of application and architecture researchers
were surveyed. Different points of view will require differ-
ent sorts of comparisons, asserted Catanzaro. For example,
large applications are useful for application researchers and
micro-benchmarks are useful for architecture researchers.

To realize reproducible comparison results, as suggested by
the second conclusion of the paper, Catanzaro argued that
more detail must be presented with comparisons. Research-
ers should avoid making absolute claims about the superior-
ity of one platform over another unless a full architectural
study is performed. The structures of algorithms and data
sets must be explained. The descriptions of the platforms
being compared must be explicit. Catanzaro made a plea for
researchers to practice good science by providing full details
in their microprocessor platform comparisons, insisting that
bad comparisons are holding back progress in the field.

Most questions centered on benchmarks as a means of com-
parison. Mike McCool (Intel) asked if there were any existing
benchmarks that made for fair comparisons according to this
work. Catanzaro replied that there are some good low-level
benchmarks, but that micro-benchmarks are less useful than
full applications. Dave Patterson (UC Berkeley) wondered
if asking for reproducibility from cloud computing would be
too restrictive, since it might require having to run on some
particular cloud every time. Catanzaro replied that it would
still be a good idea, but allowed that it would be great for the
application researchers and difficult for the architecture
researchers. An audience member asked what would be con-
sidered “cheating” for benchmarks. Catanzaro replied that
the important thing is that the results are reproducible. Sev-
eral audience members asked for Catanzaro’s opinion about
several particular benchmark suites. Catanzaro maintained
that the conclusions of his presentation set the standard for
good comparisons: point of view must be considered and
reproducibility is essential, which means there must be suf-
ficient explicit detail provided.

RADBench: A Concurrency Bug Benchmark Suite
Nicholas Jalbert, University of California, Berkeley; Cristiano Pereira and

Gilles Pokam, Intel; Koushik Sen, University of California, Berkeley

Nicholas Jalbert presented RADBench, a suite of bench-
marks containing 10 concurrency bugs found in large open-
source software applications such as Mozilla SpiderMonkey,
Apache Web Server, and Google Chromium Browser. Concur-
rency bugs are plentiful and painful to fix, asserted Jalbert.
They are growing ever more commonplace, and they take a
long time to diagnose and repair. To facilitate concurrency
bug research, RADBench presents concurrency bugs “in the
wild” by providing full snapshots of large buggy code and
scripts to run the code.

	110    ;login:  VOL. 36, NO. 5

Deterministic OpenMP for Race-Free Parallelism
Amittai Aviram and Bryan Ford, Yale University

Determinism in parallel programs has received a consider-
able amount of attention in recent years. Deterministic con-
currency essentially guarantees that a concurrent program
will always produce the same output for a given input. This
determinism makes concurrency bugs and transient bugs
reproducible, thereby easing debugging. It also enables sev-
eral mechanisms for fault-tolerance that rely on reproducible
replaying of computation on a fault in a particular module
performing that computation. Finally, determinism helps in
the end-to-end verifiability of concurrent programs.

Synchronization primitives are divided into two classes.
Naturally deterministic primitives are those in which pro-
gram logic alone determines which threads are involved and
where the synchronization occurs in each thread’s execution.
The rest can be classified as naturally non-deterministic.

Amittai Aviram presented a form of Deterministic Open MP
(DOMP) that has a pure naturally deterministic program-
ming model and race-free semantics. DOMP features the
subset of the OpenMP parallel constructs that are deter-
ministic, such as “parallel,” “loop,” and “sections.” Amittai
reported that in an analysis of the SPLASH, PARSEC, and
NPB suites, around 92% of the occurrences of naturally
non-deterministic constructs were to express programming
idioms that were purely naturally deterministic at a high
level. One of the reasons for this is that OpenMP’s deter-
ministic constructs are not expressive enough. For example,
the OpenMP “reduction” clause constrains the input type
to a scalar and the operation to simple arithmetic or logical
operators. OpenMP also lacks a high-level “pipeline” con-
struct, necessitating having to build it from spin-loops and
the non-deterministic “flush” construct. The abstractions in
DOMP are designed to be expressive enough that program-
mers do not have to resort to using lower-level naturally
non-deterministic constructs to implement them. DOMP
offers a generalized reduction clause and a pipeline construct
(both of which are naturally deterministic). However, DOMP
excludes the naturally non-deterministic constructs from
OpenMP, such as “atomic,” “critical,” and “flush,” citing the
above observation that these constructs are usually used as
low-level components of higher-level idioms which the pro-
gramming model does not itself provide.

Finally, the DOMP runtime is designed to be race-free, since
determinism at the program level requires race-freedom in
both the program and the runtime. DOMP uses a “working-
copies” programming model which eliminates races. In this
model each thread makes a private copy of the shared state
and operates on it in isolation. When the thread is finished

program may work well when compiled with a specific com-
piler version but, since the language standard prohibits races,
a future version of the compiler may produce incorrect code
for the same program.

An important work in PLDI ’07 on benign data races iden-
tified five types of races at the source-code level. Hans
described how each of these five examples could be miscom-
piled by a reasonable compiler to buggy code. In one case,
code hoisting by the compiler resulted in a write operation
failing to become visible to other threads. Another type of
common benign race is when the reader does not care if it
sees the old value before the write or the new value after the
write. The problem with this benign race is that it is possible
for the reader to see a value that is neither the old value nor
the new value. If, for example, the writer updates the high bits
of the variable and then the low bits in two distinct opera-
tions that are separately atomic, then the reader may see the
intervening state of the variable.

Hans gave a seemingly innocuous example of a benign race
between two threads, each writing the same value to the
same variable. Surprisingly, even this race between two
redundant writes can be compiled incorrectly. Briefly, this
problem is caused by the compiler promoting the shared
variable to a register and then both threads nullifying each
other’s updates, with the outcome that neither write is seen.
Hans remarked that spurious self-assignment instructions,
which are another factor contributing to this miscompilation,
are disallowed in both the POSIX and the upcoming language
standards. Burton Smith from Microsoft noted that self-
assignments are a common occurrence in some SIMD codes,
and this phenomenon may be prevalent in those programs.

Phil Howard (Portland State) asked how many of the benign
races described in the PLDI ’07 paper can be miscompiled.
Hans replied, all of them. Todd Mytkowicz (Microsoft) said
there is a paper in the upcoming PLDI that proposes code
motion only on data that is thread local with a slowdown of
about 20%. He asked if benign races are important and if
race-freedom could be enforced strictly. Hans replied that
even if that were possible, a programming model that only
permits sequential consistency would not be very useful.

Bryan Ford (Yale) noted that programmers will continue
to use benign data races even if there are no guarantees of
portability or correctness on a different compiler or platform,
and he wondered whether there was a way to write racy pro-
grams that would not be miscompiled. Hans answered that
in C/C++ there are ways to write racy stores in a manner that
aligned with the language standards and with low overheads.
Bartosz Milewski (Corensic) remarked that weak-atomics in
these languages are like benign races that have been sancti-
fied by the standard and hence are okay to use.

	 ;login:  OCTOBER 2011   Conference Reports    111

shows the amount of work in the execution trace. Simplisti-
cally, CPA can give a parallelism estimate of work/span, but
this is only a theoretical limit and is very poorly correlated
with realizable parallelism. Parkour uses a hierarchical criti-
cal path analysis (HCPA), where a hierarchy is imposed by
programmer-visible structures in the original code. Given a
model of the type of parallelism a programmer would use to
target a particular platform, HCPA then performs local criti-
cal path analysis at each node in the hierarchy. Heuristics are
used to create parallelism estimates for each level, limiting
the parallelism described by the CPA at each level by the real-
izable parallelism presented by the target platform. Results
were presented for two platforms—a multicore x86 platform
and the MIT Raw processor—on a selection of benchmarks,
compared to hand-parallelized implementations. In general,
it was clear that the HCPA approach advocated here gave a
fairly accurate estimate of achievable parallelism. One next
step would be to use this tool to aid in actually parallelizing
an application, since it seems to identify portions of the pro-
gram which can be parallelized.

Sasha Fedorova asked if Donghwan and his co-authors were
applying CPA dynamically as opposed to statically. Dong-
hwan said they were. Mike McCool asked if loop unrolling
stole loop-level parallelism, and Donghwan again answered
yes. Someone asked how Parkour avoids underestimating
speedup. Donghwan replied that they need to use a machine
model. Sasha asked if Parkour could be extended to imple-
ment parallelism, and Bryan Catanzaro followed up by ask-
ing if they inserted OpenMP pragmas. Donghwan said that
Parkour does find important regions to parallelize, and they
covered that in another paper, but it does not insert OpenMP
constructs, as that was too complicated. Craig Mustard
(Simon Fraser) asked if Donghwan could elaborate on the
planner. Donghwan replied that they roughly model the char-
acteristics of two planners.

Enabling Multiple Accelerator Acceleration for Java/
OpenMP
Ronald Veldema, Thorsten Blass, and Michael Philippsen, University of

Erlangen-Nuremberg

Ronald Veldema explained that this project is aimed at
heterogeneous clusters, including both traditional CPUs and
accelerators, in this case GPUs. Since clusters are dynami-
cally loaded, it’s difficult to know statically what mixture of
traditional CPUs and accelerators an application will have
at its disposal during execution on a shared cluster. To make
this easier, this work proposed writing parallel platform-
independent code, using OpenMP directives embedded as
comments in Java source code. When a program is instanti-

the runtime merges this updated shared state with the parent
thread’s pristine copy of the state. If at this point the runtime
detects that two or more threads have concurrently modified
the same state, then it signals a runtime error.

Steve Johnson (Wave Semiconductor) asked if the merg-
ing of copies was data-dependent. Amittai answered that
entire regions of data that are in scope have to be merged.
Gilles Pokam (Intel) asked how the merging was done and
if the order in which states were merged was important.
Amittai replied that the runtime simply checks to see if the
value in a shared location in some thread’s private copy dif-
fers from the parent thread’s pristine copy; if two or more
threads have modified this location, the runtime signals an
error. Bryan Ford asked if the runtime’s model was similar
to snapshot isolation. Amittai replied that it was close to it.
Steve Johnson asked, if the runtime signals two writes to the
same location as an error, then can the program have runtime
errors that are data-dependent and, if so, would that affect
the determinism guarantee? Amittai replied that such errors
are possible and that the usual testing and quality assur-
ance processes were still required. Hans Boehm (HP Labs)
remarked that determinism was in the eye of the beholder
and asked whether the authors considered malloc to be
deterministic. Amittai replied that malloc uses locks so he
wouldn’t consider it deterministic.

Day 1, Session 3
Summarized by Bryan Catanzaro (bcatanzaro@acm.org)

Parkour: Parallel Speedup Estimates for Serial
Programs
Donghwan Jeon, Saturnino Garcia, Chris Louie, and Michael Bedford

Taylor; University of California, San Diego

Before embarking on a project to parallelize an applica-
tion, it’s natural to ask what payoff you should expect from
parallelism. Some applications are naturally more parallel
than others, and you would like to be confident that your
application is parallelizable before actually rewriting it to
take advantage of parallelism. Donghwan Jeon presented a
method for doing that. Parkour instruments a binary dur-
ing compilation, and then examines execution traces of the
instrumented binary for parallelism, given a model of the
target parallel hardware platform.

Parkour uses a variation of critical path analysis (CPA) to
estimate parallelism. CPA constructs a dataflow graph of the
instructions in a program to discover the dependencies in
the program execution. The longest dependency chain in the
execution trace is used to find the span, and the overall graph

	112    ;login:  VOL. 36, NO. 5

Day 1, Session 4
Summarized by Sean Halle (seanhalle@yahoo.com)

CUDA-level Performance with Python-level Productivity
for Gaussian Mixture Model Applications:
H. Cook, E. Gonina, and S. Kamil, University of California, Berkeley; G.

Friedland, International Computer Science Institute; D. Patterson and A.

Fox, University of California, Berkeley

Selective Embedded Just-in-Time Specialization (SEJITS) is
a framework for applying specializing high-productivity lan-
guages to specific hardware at runtime. The programmers
use a convenient productivity language and make calls to the
SEJITS library for functions they need. For example, using
the Python library’s Gaussian Mixture Model, the SEJITS
library picks the version of the code that performs best on
the particular hardware during the run. These versions were
created during library development, coded by hand in an
efficiency language like C or C++.

This talk focused on Speaker Diarization for speech recogni-
tion. This was coded in Python and calls the SEJITS library
to leverage the Gaussian Mixture Model (GMM). This GMM
library uses multiple kernels, each optimized to particular
data characteristics. The SEJITS library picked the best one.
Performance was tested on the GTX285 and 480 GPUs, for
a number of different input data sizes. It showed an average
32% improvement by using multiple kernel variants and pick-
ing the best one dynamically over the course of the run. For
larger input sizes, improvement rose to 75%.

When comparing the hand-coded C++/CUDA version during
the first run, using SEJITS added 71% overhead. But the
library remembered the results, and subsequent runs were
17% faster than the hand-coded C++/CUDA version.

Someone from MIT asked about debugging with all the extra
layers. What happens when there’s a bug down inside the
kernels in the specializer? They’re working on the ability to
trace where a bug happens; such buried bugs are the same in
any multi-level library approach. Is the SEJITS approach the
same as just dynamically linking a library? They can do the
same thing by linking an appropriately tuned library imple-
mentation into Python, so what does SEJITS buy? Armando
Fox answered that SEJITS is designed to be used by produc-
tivity programmers, not specialists. Also, the specializer can
take into account the amount of data at runtime, something
you cannot do at compile time. Where is most of the debug-
ging time spent? Most of the development and debugging is
in writing the C++ and CUDA low-level kernel code, then
embedding that kernel into the SEJITS specializer and link-
ing that to the Python API. Linking to Python is straightfor-

ated across a cluster, a modified Java class loader examines
the compute resources of each node and then dynamically
compiles the computation to fit the resources discovered.
Work is dispatched to traditional CPUs using parallel Java
execution and to GPUs using CUDA. Work is partitioned
automatically by running micro-benchmarks which give an
estimate of the capabilities of each of the processors; more
capable processors are assigned proportionally more work.

An important part of this project was the memory model
used to simplify cluster programming: if the compiler can
prove that all references to a particular array are local with
respect to the loop being parallelized across cluster nodes,
the compiler is able to statically partition the data structure,
allowing the program to work with large data structures that
cannot fit in a single node’s memory. Otherwise, the data
structure is duplicated across the cluster. Duplicated data
structures are made coherent at OpenMP boundaries in the
original program, by keeping a shadow copy of the duplicated
data structure and diffing it against the potentially mutated
copy created during program execution. Diffs are inter-
changed to synchronize data across the cluster, all without
programmer intervention.

Scaling results from this approach seemed good on the
examples they presented, with a clear benefit from using
the GPUs to accelerate large computations on the cluster.
However, this approach does not allow programmers to take
advantage of the widely divergent memory subsystems of
the CPU and GPU and, instead, requires programmers to
write simple OpenMP parallel loops. The goal of this project,
therefore, is not to obtain performance competitive with
hand-tuned parallel programs but to enable programmers to
very productively exploit heterogeneous clusters, including
both CPUs and other accelerators, such as GPUs.

Bryan Catanzaro said that with CUDA 4, you can share GPU
memory. Ronald responded that you cannot do MPI mes-
sage passing between GPUs. Bryan next asked if this can
be made deterministic. Ronald answered that they have no
control over which hardware will be used—for example, if a
GPU uses a different type of float. Bryan countered that Java
uses a strict float model, but Ronald responded that this is
true only if something is marked as strict. John Kubiatowicz
(UC Berkeley) said that this reminds him of work in the ’90s,
where there were interface issues and communication that
didn’t quite work. He suggested looking at the older literature
to see where it would fit into this work. Ronald said that if
he could get MPI to work on a GPU, he would be happy. John
pointed out that diffs work well in hardware already, and
Ronald replied that we don’t need hardware support for find-
ing difference between arrays, as the cost is now negligible.

	 ;login:  OCTOBER 2011   Conference Reports    113

ning time. They will have to perform some kind of statistical
analysis. It will have to try many task sizes before it knows
whether the current one is critical size.

Poster Session
First set of posters summarized by Shane Mottishaw (smottish@sfu.ca)

Support of Collective Effort Towards Performance
Portability
Sean Halle and Albert Cohen, INRIA, France

Sean Halle presented this work prompted by the growing
desire to express parallel programs in a single source lan-
guage and achieve good performance across a range of hard-
ware platforms. The authors recognize that the challenges of
productivity, portability, and adoptability cannot be feasibly
achieved by any one group, nor can they be solved solely
at the language, runtime, or hardware abstraction level.
Because there is a wide array of research projects involved
in performance portability that involve different runtimes,
hardware abstractions, and languages, the authors propose a
comprehensive support system which provides a framework
in which independent groups can plug their solution (e.g.,
runtime, language, hardware abstraction) into a layer of the
framework, making it available for everyone else to utilize
in their own work. There are three main layers: toolchains
(languages and compilers), parallel runtimes, and hardware
abstractions. This support system is based on Virtualized
Master Slave (VMS), the authors’ virtualization mechanism,
which replaces threads and provides pieces for each level of
the support system (e.g., VMS cores for hardware abstraction
and plugins for runtimes). To achieve performance, layers of
the support system share information with each other. For
example, the toolchain can derive information about data and
computation needs of a task, which can then be used by the
runtime to make scheduling decisions.

Challenges in Real-Time Synchronization
Philippe Stellwag and Wolfgang Schröder-Preikschat, Friedrich-

Alexander University Erlangen-Nuremberg

Philippe Stellwag described a parallel NCAS library (rtN-
CAS) that enables the creation of arbitrary, lock-free, or
wait-free data structures. Additionally, the library guaran-
tees that all data structure operations are linearizable. Users
of rtNCAS provide a function that implements a (sequential)
algorithm to perform an update to a data structure (e.g., an
enqueue operation for a FIFO queue). This function returns
a structure with the expected old and new values for some
state of the data structure and is used by the library to
perform an NCAS operation to conditionally swap the old
and new values. The rtNCAS library performs the user-

ward, with lots of tools available. This linking exposes the
CUDA programming model to the framework.

Sasha Fedorova wanted to see a code example, and E. Gonina
showed a 40-line example that would be thousands of LOC
in C. Sasha then asked how the programmer interacted with
SEJITS, and Armando said that the productivity program-
mer never see SEJITS. Only the kernel expert needs to see
the C code. Steve Johnson asked how productivity program-
mers can improve performance. Gonina answered that they
can run the specializer over and over again, while Armando
said that they really can’t do anything.

Pervasive Parallelism for Managed Runtimes
Albert Noll and Thomas R. Gross, ETH Zurich

Albert Noll summarized the known phenomenon that task
scheduling overhead can grow to dominate work as the
number of tasks grows large. He showed a graph that marks
the critical point where the number of individual tasks is too
large relative to the work-time of a single one. He termed this
the critical point. Albert emphasized that a JIT is isolated
from parallel-task knowledge and so has no means of allevi-
ating this parallel scheduler overhead problem.

Their contribution is to modify the JVM, by modifying the
intermediate representation, calling it ParIR. This modi-
fication relies on Cilk-style spawn and sync semantics. No
mention was made of more interesting semantics to cover
a larger class of applications. Noll showed two optimiza-
tions that can be done using this IR during the run. The first
is merging parallel tasks into a single composite task. He
showed that this improves performance when the number of
tasks is above a critical point for that task-type. He suggested
that profiling information can be collected, and the code
recompiled when it discovers that the task size is too small
or too large. The JIT modifies the intermediate representa-
tion of the code to inline a chosen number of tasks, then it
recompiles.

The second optimization done with ParIR is moving invari-
ant code out of a parallel section. . He said that recompilation
based on profile information is only possible with a JIT.

Burton Smith commented that the semantics look Cilk-like,
which lets the compiler merge iteratively generated tasks
easily. However, merging for recursively generated tasks is
harder for a compiler inlining approach. Noll agreed. Sean
Halle asked if profiling has been implemented—which
watches and then does the recompilation? How does it know
the critical task size? It’s a work in progress. They expect
to use hardware counters to collect profiling. Hans Boehm
asked how the profiler knows the critical point. It is differ-
ent for each task-type, and many tasks have variable run-

	114    ;login:  VOL. 36, NO. 5

requests, and therefore efficient scheduling of these tasks
is required. The goal is to first schedule tasks that have the
largest impact on the overall execution time. The authors
introduce dynamic prioritization to solve this problem.
Dynamic prioritization takes into account resource limita-
tions and varying task sizes to perform adaptive ranking of
available tasks and executes tasks of higher ranks first in
order to reduce the time of the parallel traversal.

Efficient and Correct Transactional Memory Programs
Combining Snapshot Isolation and Static Analysis
Ricardo J. Dias, João M. Lourenço, and Nuno M. Preguiça, Universidade

Nova de Lisboa, Portugal

Ricardo J. Dias proposed a novel method for reducing
memory tracking overhead of transactional memory systems,
without sacrificing serializability. Using snapshot isolation
(where each transaction executes using a private copy of sys-
tem state), only write-write conflicts need be detected, thus
reducing runtime overhead. However, snapshot isolation may
lead to non-serializable executions. To correct this, static
analysis (specifically, shape analysis) is used to determine
the abstract read and write sets of transactions. These read-
write sets can then be compared to determine dependencies
between transactions, thus detecting potential conflicts.
These conflicts are then corrected automatically prior to
executing the transactions. For example, a dummy write can
be inserted to force a write-write conflict at runtime.

Second set of posters summarized by Craig Mustard (craiig@gmail.com)

Feasibility of Dynamic Binary Parallelization
Jing Yang, Kevin Skadron, Mary Lou Soffa, and Kamin Whitehouse,

University of Virginia

Jing Yang presented a method of parallelizing binary-only
executables by analyzing the execution of the binary and
identifying frequently repeated sections which become
candidates for parallelization. When the sequential pro-
gram reaches a point that has previously been traced and is a
candidate for parallelization, the sequential execution halts
and a parallel version is speculatively executed with a copy of
the program state. If the parallel execution fails due to mis-
prediction, then the results are discarded and the sequential
version is executed. The authors present a prototype imple-
mentation using a simulator that they evaluate with the
SPEC2000 and MediaBench benchmark suites. The authors
also applied dynamic binary optimization techniques (DBO)
to their experiments. The authors find that DBP and DBO
enable a 2x speedup for 7 out of 10 floating point benchmarks,
and a speedup of 1.27x for integer benchmarks.

defined operation as follows: it first tries to speculatively call
the user-defined function and attempts to update the data
structure with an NCAS operation. On failure, this operation
is delayed by pushing it onto a wait-free FIFO queue (called
the operation queue). All threads (regardless of the success of
speculative execution) cooperatively execute stalled NCAS
operations on the queue. This cooperative behavior combined
with speculative execution provides wait-free, disjoint-
access parallel access to data structures. The wait-free
property also provides upper-bound execution times, which
is crucial for real-time applications.

Coding Stencil Computations Using the Pochoir Stencil-
Specification Language
Yuan Tang, Rezaul Chowdhury, Chi-Keung Luk, and Charles E. Leiserson,

MIT Computer Science and Artificial Intelligence Laboratory

Yuan Tang described a new domain-specific language/com-
piler framework that allows for efficient stencil computa-
tions to be embedded in C++. The user describes their stencil
computation (including boundary conditions, shape, dimen-
sionality, data types, and computation kernel) using the
Pochoir language. The Pochoir compiler and template library
then perform automatic parallelization and cache optimiza-
tion. Pochoir improves upon a “trapezoidal decomposition”
algorithm produced by Matteo Frigo and Volker Strumpen by
performing hyperspace cuts to partition n-dimensional grids,
yielding more parallelism without sacrificing the cache effi-
ciency of the original trapezoidal decomposition algorithm.
The Pochoir runtime system also employs a number of other
stencil-specific optimizations. The Pochoir runtime system
utilizes Intel Cilk Plus to parallelize code written in the
Pochoir language.

Dynamic Prioritization for Parallel Traversal of
Irregularly Structured Spatio-Temporal Graphs
Bo Zhang, Duke University; Jingfang Huang, University of North Carolina

at Chapel Hill; Nikos P. Pitsianis, Aristotle University; Xiaobai Sun, Duke

University

Bo Zhang presented work concerned with the execution of
fast/sparse algorithms for all-to-all transformations (e.g.,
fast Fourier transform, FFT, and fast multipole method,
FFM) on multicore architectures. The authors represent
FFT or FFM computations as a spatio-temporal directed
acyclic graph (ST-DAG) where nodes define computations on
spatial entities (e.g., cells in a grid) and edges define spatial
and temporal (iteration) dependencies. A parallel traversal of
this graph is executed to perform the transformation. At any
point in the graph, however, there are often far more tasks
available for execution than there are resources to satisfy the

	 ;login:  OCTOBER 2011   Conference Reports    115

detected while a thread is searching the list, instead of abort-
ing, the search can be repaired by reading in a new value.

Day 2, Session 1
Summarized by Bryan Catanzaro (bcatanzaro@acm.org)

Balance Principles for Algorithm-Architecture Co-Design
Kent Czechowski, Casey Battaglino, Chris McClanahan, Aparna

Chandramowlishwaran, and Richard Vuduc, Georgia Institute of

Technology

This paper advocates the use of theoretical modeling to
guide architecture development. How much of the archi-
tecture should be devoted to cores, for example, and how
much to cache? Given a particular parallel architecture,
what classes of computation would perform efficiently? This
work responds to the observation that simulators are hard to
build and require a lot of investment. Once the simulator is
built, there are many fundamental assumptions which have
been baked into the simulator and are expensive to change.
Instead, this paper advocates that processor performance
should be theoretically modeled based on high-level charac-
teristics, such as communication and scalability.

The presentation defined a balanced architecture as one
where the memory wait time T_mem <= the computation
time T_comp. In order to evaluate T_mem and T_comp for a
particular algorithm and architecture, one needs to derive
a model for both expressions. For T_mem, they used an
external memory model (I/O model). For T_comp, they used
a Parallel DAG model to discover the work and span of a com-
putation, and then found parallelism using Brent’s theorem.
The I/O model depends on the parallel cache complexity,
which needs to be derived separately from the sequential
cache complexity, and depends on scheduling choices. As a
punchline, the paper presented results showing that even
dense matrix multiplication, the canonically compute-bound
kernel, will be bandwidth-bound on GPUs by 2021 if the cur-
rent scaling trends continue in computation and bandwidth
resources. This approach does not consider power dissipa-
tion, which might suggeest use of a more general-cost metric.

Crunching Large Graphs with Commodity Processors
Jacob Nelson, Brandon Myers, A.H. Hunter, Preston Briggs, Luis Ceze,

Carl Ebeling, and Dan Grossman, University of Washington; Simon Kahan,

University of Washington and Pacific Northwest National Laboratory;

Mark Oskin, University of Washington

Important graphs found in many real-world applications
are both very large and have a low diameter, meaning that
they are very hard to partition. This poses complications for
graph algorithms which operate on these graphs. The Cray
XMT architecture has been very successful at operating on

Automated Fingerprinting of Performance Pathologies
Using Performance Monitoring Units (PMUs)
Wucherl Yoo and Kevin Larson, University of Illinois at Urbana-

Champaign; Lee Baugh, Intel Corp.; Sangkyum Kim, Wonsun Ahn, and Roy

H. Campbell, University of Illinois at Urbana-Champaign

Wucherl Yoo described a way to automatically fingerprint
the performance behavior of applications. The authors first
wrote a variety of micro-benchmarks which exhibited dif-
ferent pathological performance characteristics. Then they
trained a decision-tree learning algorithm to identify these
micro-benchmarks by their exhibited performance charac-
teristics. They then analyzed timesliced profiles of bench-
mark applications from SPEC and PARSEC and classified
particular program phases as exhibiting pathological perfor-
mance behavior. They achieved an accuracy rate of over 97%
for all benchmarks. This work is designed to be added to a
profiling suite so that performance characteristics of appli-
cations can be classified and instructions can be provided to
the user about ways to fix such problems.

PACORA: Performance Aware Convex Optimization for
Resource Allocation
Sarah L. Bird, University of California—Berkeley; Burton J. Smith,

Microsoft

Sarah Bird and Burton Smith presented PACORA, which
endeavors to optimally allocate resources by mathematically
modeling the resources to the quality-of-service tradeoff for
each program. The authors combine the resource-perfor-
mance curve of each program and apply convex optimization
techniques to find an optimal configuration of resources
such that the resources-performance tradeoff for the entire
system performance is maximized. In their model, the
authors include a special idle process that represents free
resources, which contributes to energy savings. Since this
optimization can be done iteratively using a gradient descent
approach, the authors believe PACORA will be a useful and
high performance technique for resource management.

Are Database-style Transactions Right for Modern
Parallel Programs?
Jaswanth Sreeram and Santosh Pande, Georgia Institute of Technology

The authors argue that database-style transactions are too
rigid to effectively express certain parallel programming pat-
terns. They describe the applications that can benefit from
relaxed models as “soft computing applications.” Kmeans, for
example, benefits from relaxing the guarantees of transac-
tional memory in order to speed up the clustering algorithm
by allowing threads to use old and slightly inaccurate values.
When the accuracy is allowed to vary by 0.1, the performance
increase is significant, while there is no significant increase
in error. List search is another example: if a conflict is

	116    ;login:  VOL. 36, NO. 5

other status information from the main core. The partner
core could then handle the meta-program management‚ for
instance, by running a helper thread to prefetch data from
main memory into the cache. Experiments on a simulator
showed that partner core memory prefetching could raise
performance close to 3x, while more than doubling energy
efficiency. Other scenarios that could benefit from partner
cores are (1) keeping track of “tainted” pointers in informa-
tion flow control, (2) running a redundant trailing thread to
check output against the main thread periodically for error
detection, and (3) prioritizing messages on an event queue.

Phil Howard (Portland State) asked who would program for
partner core architectures. Eric answered that it would be
system programmers, hopefully, at a level that application
programmers would not have to see. Stephen Johnson (Wave
Semiconductor) asked whether partner cores could be used
to execute assertions so as to provide runtime correctness
checks in deployment while staying out of the way of the
main program execution. Eric found this very plausible.

Parallel Pattern Detection for Architectural
Improvements
Jason A. Poovey, Brian P. Railing, and Thomas M. Conte, Georgia Institute

of Technology

Although parallel programming promises performance
improvements, optimizing to get the most out of a parallel
program poses design challenges. Jason Poovey presented
this work on how designing according to parallel patterns
can help meet these challenges. Researchers have identi-
fied patterns at the level of concept, algorithm, and low-level
implementation. The algorithmic level offers both quantifi-
ability and breadth sufficient to help automate optimization
and to guide improvements in hardware architecture. For
example, thread schedules for pipeline and divide-and-con-
quer algorithms are quite distinct. While algorithms involv-
ing intensive data sharing require the usual MESI (Modified,
Exclusive, Shared, or Invalid) cache coherency, algorithms
in which data migrate from thread to thread, as in pipelines,
could get by with the weaker, and more efficient, MI protocol.
Algorithms with little inter-thread communication need
far less network bandwidth than those that communicate
frequently. Pipeline and divide-and-conquer are two of the
six classes that typify parallel algorithms. Those organized
by task are task parallel and divide-and-conquer algorithms;
those by data, geometric decomposition and recursive algo-
rithms; and those by the flow of data, pipelines and event-
based coordination.

In prior work, Jason and colleagues had shown that sig-
nificant performance improvements are possible when the
pattern was known and was used to determine the thread-

these problems, but it is expensive, and its performance is not
competitive on dense problems. This work attempts to utilize
insights from the Cray XMT design to enable commodity
CPU clusters to perform well on graph algorithms as well
as on the denser problems for which they have already been
shown to perform well. The main advantages of the Cray
XMT over a commodity x86 cluster are the number of con-
texts the Cray XMT can keep on chip and the high number of
outstanding memory transactions it can support. This work
describes SoftXMT, a library for x86 processors which aims
to provide these advantages to x86 software through the use
of lightweight multithreading in software.

SoftXMT uses co-routines to break memory transactions
into separate stages. For example, a load becomes a prefetch,
a yield, and then a blocking load. The full implementation
of SoftXMT will use a compiler which transforms memory
transactions into multiple stages. A lightweight library
round-robin switches between suspended threads which are
waiting on memory requests. The authors presented data
which shows that on a single node, the co-routine library
used in SoftXMT is efficient, allowing the node to saturate
its available memory bandwidth almost as well as the hard-
ware can, as is demonstrated with a simple pointer-chasing
benchmark. Future work involves making a complete cluster-
based implementation and showing good performance on
complete graph algorithm problems.

Day 2, Session 2
Summarized by Amittai Aviram (amittai.aviram@yale.edu)

Multicore Performance Optimization Using Partner
Cores
Eric Lau and Jason E Miller, MIT Computer Science and Artificial

Intelligence Laboratory; Inseok Choi and Donald Yeung, University of

Maryland; Saman Amarasinghe and Anant Agarwal, MIT Computer

Science and Artificial Intelligence Laboratory

Increasingly, parallel architecture is exposing more hard-
ware resources to the programmer, who must cope with the
contradictory requirements of high performance and energy
efficiency in a programming environment whose growing
complexity is getting unmanageable. Self-aware programs
can manage their resources dynamically, but they burden the
CPU with a new meta-program management layer of work,
introducing more interrupts and context switches. Eric Lau
presented this work which, assuming a tiled general archi-
tecture for the future, introduces the idea of partner cores
as one possible solution: a smaller core, one-tenth the main
core’s size and optimized for efficiency, alongside each main
core, with its own, lower-powered network router and with
dedicated “probes” feeding it performance counters and

	 ;login:  OCTOBER 2011   Conference Reports    117

which later tasks depend on earlier ones, sometimes in com-
plex ways, following a directed acyclic graph (DAG) rather
than a mere sequence; some tasks are necessarily sequen-
tial (such as I/O), while others may be run in parallel but
depend on the completion of predecessor tasks. Yet current
thread-based programming languages and frameworks, even
higher-level ones such as Cilk++ and TBB, are not designed to
make pipeline construction easy or intuitive. The awkward-
ness is evident when the programmer wants to have variables
renamed to optimize pipelines. This happens when one task
must wait to write to a variable until another task has read
the old value (write-after-read, WAR, or anti-dependency),
and when one task must overwrite a variable only after
another has written a previous value (write-after-write,
WAW, or output dependency). Variable renaming enables
the second task to proceed without locking or blocking, but
Cilk++ and TBB, both thread-based, make the programmer
have to program versioning manually with complicated,
unintuitive syntax.

A task-based dataflow language could manage the versioning
automatically when it infers the need for it, using new exten-
sions to Cilk++ to annotate variable arguments to tasks with
their dependency types (indep, outdep, or inoutdep), as well
as the standard Cilk++ versioned hyperobject keyword. The
result is simpler, more readable code. Such a language could
be further extended to accommodate speculative execution,
where a thread could execute in parallel while presuming a
condition, and then check the state of a variable on which it
depends before either committing results or aborting. One
could also use dependency-annotated types to prove the
deterministic execution of a parallel program.

In implementing task-based dataflow parallelism, the key
challenge is to design an efficient scheduler, which could
automatically manage dependencies and blocking with a
minimum of locks. Hans’s team’s solution is a ticket queue
system, requiring only one lock per task and one on the global
queue. Experiments on the SPEC2 benchmarks bzip2 and
hmmer show that the task-based dataflow extensions to
Cilk++ impose essentially no additional runtime cost relative
to standard Cilk++ implementations.

Michael McCool (Intel) picked up on Hans’s comment in
passing that his team had to accept compromises in design-
ing the scheduler. Hans clarified that the resulting task graph
could have extra leaves corresponding to tasks that were
waiting to execute. Leo Meyerovich (UC Berkeley) asked
whether they had tried comparing their system to task-
parallel systems on established benchmarks. Hans said they
had compared it with SMPSS, and found that their system
performed about the same as SMPSS on Choleski and better

balancing mechanism. To identify the pattern to which a
program belongs, we have two major sources: static detec-
tion, including the programmer’s own annotations, perhaps
through a new API for this purpose; and dynamic detection,
which measures data-sharing behavior, thread balance over
time, and the uniqueness of instructions to each thread in
order to identify signature combinations suggesting particu-
lar parallel algorithm patterns. In the case of data sharing,
a modest modification to the cache could provide accurate
information at a reasonable cost. The team created five
benchmarks, one for each pattern except event-based coor-
dination, to serve as reference points (“golden copies”). Once
they had compiled measurements for dynamic detection from
the reference benchmarks, they ran several standard bench-
marks on a simulator and used the same measurements to
predict their respective patterns. In each case, they knew
from the outset the appropriate pattern, and they found that
their data-based predictions had mixed success. They plan
further improvements in data gathering methods and model-
ing in order to improve prediction accuracy.

Michael McCool (Intel) suggested a connection with the pre-
vious presentation: could we use partner cores to help detect
parallel algorithm patterns? Jason agreed. Another ques-
tion was how much hardware we need for pattern detection.
“Right now, a lot,” Jason answered. He then detailed some of
the larger sources of data. Hopefully, people may find meth-
ods for detecting patterns that will eventually require fewer
resources. Could we use software instead of hardware for
these measurements? In principle, yes, but it would be even
less efficient. Does Jason foresee the need for custom hard-
ware? For thread scheduling, no; but for switching between
cache coherency protocols, yes. Is the benefit worth the cost
of custom hardware? Switching cache coherency protocols
when possible could offer significant performance benefits.
Why did the team have to use a simulator? This was the only
way that they could collect large data sets for pattern detec-
tion. However, their eventual usage model would be dynamic
pattern detection and optimizing adjustments during run-
time. They also hope to identify more distinct patterns.

Day 2, Session 3
Summarized by Amittai Aviram (amittai.aviram@yale.edu)

Parallel Programming of General-Purpose Programs
Using Task-Based Programming Models
Hans Vandierendonck, Ghent University; Polyvios Pratikakis and

Dimitrios S. Nikolopoulos, Foundation for Research and Technology—

Hellas (FORTH)

Hans Vandierendonck presented this work. Pipelines are a
common and essential pattern of parallel programming, in

	118    ;login:  VOL. 36, NO. 5

maximal independent set (MIS) problem. They began with
a sketch that would suggest an exponential algorithm, but
refined and auto-tuned to have an efficient dynamic pro-
gramming algorithm, based on the parallel scan operation.

Another refinement, reflecting “parallel algorithm expert”
knowledge, led to an efficient SIMD algorithm to implement
the parallel scan network. Finally, refinement according to
“GPU tuning expert” knowledge optimized for execution on
GPUs by avoiding bank conflicts, having the synthesizer
produce an array index translation function so as to map
logical arrays to physical arrays. The result was an efficient
algorithm, whose further refinement is still in progress.

The ensuing discussion showed lively interest and the need
for clarification. SKETCH does not provide a proof of cor-
rectness; in the matrix transposition case, the specification
might use a matrix of size n where n is small, and then use a
small range of larger n to check functional equivalence. At
times, the programmer might have to prove correctness by
hand. SKETCH looks like constraint programming, but the
constraints are in the metalanguage, restricting the search
space to a manageable size. In the specification and template,
you can also place constraints to force optimizations or to
filter out inefficient programs. In principle, one could also
use SKETCH to build up a whole library of alternative solu-
tions to the same general problem, but SKETCH cannot yet
generate variations automatically in a way that makes sense,
which would require that it distinguish meaningful from
trivial variations.

Day 2, Session 4
No report is available for this session.

A Relativistic Enhancement to Software Transactional
Memory
Philip W. Howard and Jonathan Walpole, Portland State University

Quarantine: Fault Tolerance for Concurrent Servers
with Data-Driven Selective Isolation
Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau, University of Wisconsin, Madison

than SMPSS on Jacobi, because of the scheduler’s reduced
overhead.

Parallel Programming with Inductive Synthesis
Shaon Barman, Rastislav Bodik, Sagar Jain, Yewen Pu, Saurabh

Srivastava, and Nicholas Tung, University of California, Berkeley

Ras Bodik presented this work. In scientific computing,
high-level code synthesizers and libraries ease high-perfor-
mance code implementation, but only apply to the restricted
domains the knowledge of which they reflect. Absent such
domain theory, the programmer must use more general,
lower-level compilers, with lesser performance, and may
need to optimize by hand, which takes time and invites
errors, especially when optimization involves parallelizing.

This team’s project aims to resolve this dilemma with a tool
that enables programmers to specify enough information so
that a code synthesizer can do the rest, without the program-
mer having to know all about the domain. Their solution is
based on the SKETCH inductive program synthesis frame-
work, which has the programmer provide (1) a specifica-
tion of what the equivalent result should be (using a naive
algorithm) and (2) a high-level “sketch” or template of what
a more efficient algorithm should “look like,” in which the
programmer uses placeholders (“??”) for key constants or
variables. The SKETCH synthesizer fills in the placehold-
ers to complete the source code, which can then be compiled
down to a high-performance executable. For example, a
programmer could provide a specification and template of
matrix transposition, and SKETCH would fill in the right
index variables in the algorithm to produce a correct and
efficient program.

One limitation of SKETCH is that it does not prove correct-
ness, only functional equivalence of its code to the speci-
fication for each element in a finite subset of the domain.
SKETCH also has scalability limitations, which the current
project aims to overcome by experimenting with an inter-
active refinement and auto-tuning cycle. SKETCH would
first produce a naive algorithm based on a simple template
(but more efficient than the algorithm in the specification).
Next, the programmer would adjust the template based on
the resulting algorithm (source code) and resubmit it to
SKETCH for automatic tuning. The programmer could con-
tinue repeating this cycle. In particular, each phase of refine-
ment could reflect the knowledge of an expert in a distinct
domain, each one working at a high level, so that the resulting
code would reflect several levels of domain knowledge with-
out requiring any hand optimization. The team applied this
technique to the particularly difficult and error-prone task
of parallel programming for GPUs, in particular, to solve the

BLOGS ARTICLES COLUMNS CASE STUDIES MULTIMEDIA RSSINTERVIEWS

Written by software engineers for

software engineers, acmqueue

provides a critical perspective on

current and emerging information

technologies.

acmqueue features:

� Free access to the entire acmqueue archive

� Dozens of blogs from the field’s top innovators

� Interviews with leading practitioners

� Audio, video, and online programming contests

� Unlocked articles from ACM’s digital library

acmqueue is guided and written by widely known industry experts. Its

distinguished editorial board ensures that acmqueue’s content dives

deep into the technical challenges and critical questions that software

engineers should be thinking about.

acmqueue: ACM’s website for practicing software engineers

Visit today!
http://queue.acm.org/

acmqueue_ad.qxp:acmqueue 3/1/10 10:55 AM Page 1

