
	 ;login:  FEBRUARY 2012     7

Btrfs is a new file system for Linux that has been under development for four years
now and is based on Ohad Rodeh’s copy-on-write B-tree. Its aim is to bring more
efficient storage management and better data integrity features to Linux. It has
been designed to offer advanced features such as built-in RAID support, snapshot-
ting, compression, and encryption. Btrfs also checksums all metadata and will
checksum data with the option to turn off data checksumming. In this article I
explain a bit about how Btrfs is designed and how you can use these new capabili-
ties to your advantage.

Historically, storage management on Linux has been disjointed. You have the
traditional mdadm RAID or the newer dmraid if you wish to set up software RAID.
There is LVM for setting up basic storage management capable of having separate
volumes from a common storage pool as well as the ability to logically group disks
into one storage pool. Then on top of your storage pools you have your file system,
usually an ext variant or XFS. The drawback of this approach is that it can get
complicated when you want to change your setup. For example, if you want to add
another disk to your logical volume in order to add more space to your home file
system, you first must initialize and add that disk to your LVM volume group, then
extend your logical volume, and only then extend your file system. Btrfs aims to fix
this by handling all of this work for you. You simply run the command

btrfs device add <device> <file system>

and you are done.

The same thing can be said about snapshotting. With LVM you must have free
space in your volume group to create an overflow logical volume which will hold
any of the changes to the source logical volume, and if this becomes full the volume
becomes disabled. With Btrfs you are still limited to the free space in the file sys-
tem, but you do not have to plan ahead and leave enough space in your file system
in order to do snapshots. A simple df will tell you whether you have enough space
to handle the changes to the source volume. Btrfs simply creates a new root and
copies the source root information into the new root, allowing snapshot creation on
Btrfs to take essentially the same time no matter how large the source volume.

Btrfs’s B-tree

Btrfs breaks its metadata up into several B-trees. A B-tree is made up of nodes and
leaves and has one or more levels. Information is stored in the tree and organized

FILESYSTEMSBtrfs
The Swiss Army Knife of Storage

J O S E F B A C I K

Josef is the lead developer

on Btrfs for Red Hat. He cut

his teeth on the clustered file

system GFS2, moving on to

help maintain ext3 for Red Hat until Btrfs was

publicly announced in 2007.

josef@redhat.com

	8    ;login:  VOL. 37, NO. 1

by a key. Nodes contain the smallest key and the disk location of the node or leaf in
the next level down. Leaves contain the actual data of the tree (see Figure 1).

Figure 1: An example of a B-tree with four nodes and two levels

The top level, referred to as the root, acts just like a node. The entries in each node
will tell you the first key in the node or leaf below it. In this example each key has
three values, which is specific to Btrfs. We break the key up into objectID, the
most important part of the key; the type, the second most important; and then the
offset, which is the least important. So, as you can see in the above example, we
have [30,0,0], which is smaller than [30,0,1]. This is important because for things
such as files, we set the objectID to the inode number, and then any inode-specific
information can also have the inode number as its objectID, allowing us to specify
a different type and offset. Then any metadata related to the inode will be stored
close to the actual inode information.

Figure 2: A leaf containing keys and data

The leaf’s items contain the key and the size and offset of the data within the leaf
(Figure 2). The items grow from the front of the leaf toward the end, and the data
grows from the end of the leaf toward the front. Items can have an arbitrary data
size, so you could potentially have one item in a leaf and have the rest of the leaf
taken up with data.

This is a great advantage to Btrfs when it comes to dealing with small files. All
Linux file systems address storage in arbitrary block sizes (e.g., 4 kilobytes). That
has traditionally meant that if you create a file that is less than 4 kilobytes you will
be wasting the leftover space. With Btrfs we can stash these smaller files directly
into our B-tree leaves, so you will have the inode information and the data in the
same block, which gives Btrfs a tremendous performance advantage when creating
and reading small files.

The following is a basic list of the B-trees you get with a newly created file system:

u	 Tree root B-tree: This keeps the location of the roots of all of the various B-trees.
u	 Chunk B-tree: This keeps track of which chunks of the devices are allocated and

to what type.
u	 Extent B-tree: This tree keeps track of all of the extents allocated for the system

and their reference counts.
u	 Checksum B-tree: This tree stores the checksums of all of the data extents in the

file system.
u	 File system B-tree: This holds the actual filesystem information, the file, and

directory information.

We have all of these various B-trees to allow us a great deal of flexibility. For
example, instead of having to come up with ways to stash extent reference count

[5,0,0]|[20,12,30]|[30,0,1]

[5,0,0][5,0,1][8,0,10] [20,12,30][25,0,1][30,0,0] [30,0,1]

item0|item1|item2 data2|data1|data0

	 ;login:  FEBRUARY 2012   Btrfs: The Swiss Army Knife of Storage    9

information alongside file information, we simply store the two different sets of
data in different trees. This makes everything easier for the developers and gives
us a nice set of rules for offline error recovery. If we know how each tree should
look generally, it makes it trivial to build tools to put things back together if some
sort of catastrophic failure occurs.

Snapshotting

Btrfs’s snapshotting is simple to use and understand. The snapshots will show up
as normal directories under the snapshotted directory, and you can cd into it and
walk around like in a normal directory. By default, all snapshots are writeable in
Btrfs, but you can create read-only snapshots if you so choose. Read-only snap-
shots are great if you are just going to take a snapshot for a backup and then delete
it once the backup completes. Writeable snapshots are handy because you can do
things such as snapshot your file system before performing a system update; if the
update breaks your system, you can reboot into the snapshot and use it like your
normal file system.

When you create a new Btrfs file system, the root directory is a subvolume. Snap-
shots can only be taken of subvolumes, because a subvolume is the representation
of the root of a completely different filesystem tree, and you can only snapshot a
filesystem tree. The simplest way to think of this would be to create a subvolume
for /home, so you could snapshot / and /home independently of each other. So you
could run the following command to create a subvolume:

btrfs subvolume create /home

And then at some point down the road when you need to snapshot /home for a
backup, you simply run

btrfs subvolume snapshot /home/ /home-snap

Once you are done with your backup, you can delete the snapshot with the com-
mand

btrfs subvolume delete /home-snap/

The hard work of unlinking the snapshot tree is done in the background, so you
may notice I/O happening on a seemingly idle box; this is just Btrfs cleaning up the
old snapshot. If you have a lot of snapshots or don’t remember which directories
you created as subvolumes, you can run the command

btrfs subvolume list /mnt/btrfs-test/

ID 267 top level 5 path home

ID 268 top level 5 path snap-home

ID 270 top level 5 path home/josef

This doesn’t differentiate between a snapshot and a normal subvolume, so you
should probably name your snapshots consistently so that later on you can tell
which is which.

Future Proofing

Btrfs uses 64 bits wherever possible to handle the various identifiers within the
B-trees. This means that Btrfs can handle up to 264 inodes, minus a couple of
hundred for special items. This is a per filesystem tree limit, so you can create
multiple subvolumes within the same file system and get even more inodes. Since

	10    ;login:  VOL. 37, NO. 1

you can have a total of 264 subvolumes, you could potentially have 2128 inodes in
one file system, minus a negligible amount for reserved objects. This is scalability
far above what could previously be achieved with a Linux file system.

The use of 64 bits also applies to how Btrfs addresses its disk space, enabling it to
address up to 8 exabytes of storage. This makes Btrfs very future proof; it will be
useful for many years to come as our storage capacities increase.

Directories

Directories and files look the same on disk in Btrfs, which is in keeping with the
UNIX way of doing things. The ext file system variants have to pre-allocate their
inode space when making the file system, so you are limited to the number of files
you can create once you create the file system. With Btrfs we add a couple of items
to the B-tree when you create a new file, which limits you only by the amount of
metadata space you have in your file system.

If you have ever created thousands of files in a directory on an ext file system and
then deleted the files, you may have noticed that doing an ls on the directory would
take much longer than you’d expect given that there may only be a few files in the
directory. You may have even had to run this command:

e2fsck -D /dev/sda1

to re-optimize your directories in ext. This is due to a flaw in how the directory
indexes are stored in ext: they cannot be shrunk. So once you add thousands of
files and the internal directory index tree grows to a large size, it will not shrink
back down as you remove files. This is not the case with Btrfs. In Btrfs we store a
file index next to the directory inode within the file system B-tree. The B-tree will
grow and shrink as necessary, so if you create a billion files in a directory and then
remove all of them, an ls will take only as long as if you had just created the direc-
tory.

Btrfs also has an index for each file that is based on the name of the file. This is
handy because instead of having to search through the containing directory’s file
index for a match, we simply hash the name of the file and search the B-tree for
this hash value. This item is stored next to the inode item of the file, so looking up
the name will usually read in the same block that contains all of the important
information you need. Again, this limits the amount of I/O that needs to be done to
accomplish basic tasks.

Space Allocation

Like many other modern file systems, Btrfs uses delayed allocation to allow for
better disk allocation. This means that Btrfs will only allocate space on the disk
when the system decides it needs to get rid of dirty pages, so you end up with much
larger allocations being made and much larger chunks of sequential data, which
makes reading the data back faster.

Btrfs allocates space on its disks by allocating chunks, usually in 1 gigabyte chunks
for data and 256 megabyte chunks for metadata. A chunk will have a specific pro-
file associated with it: for example, it can be allocated for either data or metadata
and then also have a RAID profile component. Once a chunk is allocated for either
data or metadata, that space can only be used for one or the other. This allows Btrfs
to have different allocation profiles for metadata and data.

	 ;login:  FEBRUARY 2012   Btrfs: The Swiss Army Knife of Storage    11

For example, say you have a four-disk setup and you want to mirror your metadata
but stripe your data. You can make your file system and specify RAID1 for meta-
data and RAID0 for data. Then whenever you write your metadata it will be mir-
rored across all of your disks, but when you write your data it will only be striped
across the disks.

This split of metadata and data can be confusing to some users. A user may see that
she has 10 gigabytes of data on her 16 gigabyte file system but only has 2 gigabytes
free. In order to help clear up the confusion, Btrfs has its own df command which
will show exactly how the space on the file system is used. Here is an example
output from a full 7 gigabyte file system:

btrfs filesystem df /mnt/btrfs-test/

Data: total=6.74GB, used=6.74GB

System: total=4.00MB, used=4.00KB

Metadata: total=264.00MB, used=121.34MB

This only shows allocated chunks and their usage amount. So with the above file
system, if I add a disk with

btrfs device add /dev/sdc /mnt/btrfs-test/

and then re-run btrfs filesystem df, I will see basically the same thing:

btrfs filesystem df /mnt/btrfs-test/

Data: total=6.74GB, used=6.74GB

System: total=4.00MB, used=4.00KB

Metadata: total=264.00MB, used=121.35MB

This is because the new disk I added has not been allocated for either data or
metadata. So I can use another command, btrfs filesystem show, and see the
following:

btrfs filesystem show /dev/sdb

Label: none uuid: 5eb80e04-26b9-4bb2-bd0f-a90a94464d6b

	 Total devices 2 FS bytes used 6.86GB

	 devid 1 size 7.00GB used 7.00GB path /dev/sdb

	 devid 2 size 2.73TB used 0.00 path /dev/sdc

The size value is the size of the disk, and the used value is the size of the chunks
allocated on that disk. So the new disk is 2.73 TB but hasn’t had any chunks allo-
cated from the disk, potentially allowing 2.73 TB of free space for allocation. You
will see this reflected in the normal df command:

df -h

Filesystem	 Size	 Used	 Avail	 Use %	 Mounted on

/dev/sdb	 2.8T	 6.9G	 2.8T	 1%	 /mnt/btrfs-test

Once you add a device, it is generally a good idea to run a balance on the file system
with the command:

btrfs filesystem balance /mnt/btrfs-test

This command, which can be run at any time, is used to redistribute space and
reclaim any wasted space. If you add a disk, running balance will make sure every-
thing is spread evenly across the disks.

	12    ;login:  VOL. 37, NO. 1

Checksumming

Since Btrfs does checksum all of its data, it uses several worker threads to offload
this work. When writing big chunks of data, the work will be split up among all of
the processors on the system to calculate the checksums of the chunks. The same
happens for reading: on completion of the read, the pages are handed off to worker
threads which calculate and verify the checksums of the data so that the work is
spread out, and this makes checksumming a much smaller performance hit than
normal. For metadata checksumming, the checksum is calculated at write time as
well, but is stored at the front of the metadata block.

Checksumming is great because it keeps the file system from crashing the box by
reading bogus data, and also allows users to know that they need to be looking for a
new hard drive or new memory. If you have a RAID profile that gives you multiple
copies of the same data or metadata, such as RAID1 or RAID10, Btrfs will automat-
ically try one of the other mirrors so that it can find a valid block. If it does find a
valid block, everything will continue on as normal and the application will be none
the wiser. The checksum mismatch will be logged so the user or administrator can
be aware of the problem. If there are no other mirrors or all of the other mirrors
are corrupt as well, Btrfs will return an error and the application will deal with it
accordingly.

Compression

Btrfs currently supports two compression methods, zlib and lzo, with lzo being the
default. You simply mount the file system with

mount -o compress

and any new writes will be compressed. Sometimes small writes will not compress
well and will actually require more space compressed than uncompressed. Btrfs
will notice this sort of behavior and turn off compression on the file in an effort to
give the user the best possible space usage while using compression. Sometimes
this is not what the user wants, however, so it can be changed by using the mount
option:

mount -o compress-force

This option will force Btrfs to always compress the data no matter how it looks
when compressed. Generally speaking, Btrfs does a good job balancing what should
and shouldn’t be compressed. The benefit of this compression infrastructure is
that it is well abstracted, which makes adding support for new compression algo-
rithms relatively easy, and hopefully it will be used to add encryption support in
the future.

Solid State Drives

Solid state drives are changing how we think about storage, and Btrfs is no excep-
tion. Btrfs will automatically detect if it is on an SSD and will appropriately adjust
how it allocates space. On spinning disks it is important to get good data locality,
that is, to store related data as close together as possible to reduce seeking. With
SSDs this is not as much of an issue, since the seek penalty is almost nothing. So
instead of Btrfs wasting CPU cycles trying to get good data locality on an SSD,
it will simply keep track of the last used free space for an allocation and start its

	 ;login:  FEBRUARY 2012   Btrfs: The Swiss Army Knife of Storage    13

search there. Btrfs also supports TRIM, but this is turned off by default until more
vendors can handle it reliably and quickly.

Filesystem Consistency

Traditional Linux file systems have used journals to ensure metadata consis-
tency after crashes or power failures. In the case of ext this means all metadata is
written twice, once to the journal and then to its final destination. In the case of
XFS this usually means that a small record of what has changed is written to the
journal, and eventually the changed block is written to disk. If the machine crashes
or experiences a power failure, these journals have to be read on mount and re-run
onto the file system to make sure nothing was lost. With Btrfs everything is copied
on write. That means whenever we modify a block, we allocate a new location on
disk for it, make our modification, write it to the new location, and then free the old
location. You either get the change or you don’t, so you don’t have to log the change
or replay anything the next time you mount the file system after a failure—the file
system will always be consistent.

Journaled file systems can only ensure metadata consistency by writing to the
journal. If your application uses fsync() to ensure data integrity, any other meta-
data changes that have happened recently must also be written to the journal. If
you have other threads on the system modifying lots of metadata, you will have
inconsistent fsync() times on a journaled file system. On Btrfs there’s a special
B-tree called a tree log that we use for fsync(). Any time you call fsync() on a file,
Btrfs will go through and find all of the metadata that is required for that given
file, copy it to the tree log, and write out the tree log. Because other threads that are
modifying the metadata on the system will not affect the application doing fsync(),
the application should see consistent fsync() performance. The only exception is if
there are multiple applications doing fsync() on the same file system. They will all
be logged to the same tree log, but this is the same as on a journaled file system.

Performance

Btrfs strives to have great performance in all workloads, but some workloads work
better than others. One area where Btrfs has problems is with random overwrite
workloads (i.e., writing to a file and then writing over a part of that file, and doing
this often and randomly). Because of the copy-on-write design, this will lead to bad
fragmentation and could result in slow cold cache reading. There is work to fix this
shortcoming, and you can mount with the option autodefrag and Btrfs will notice
this behavior and attempt to defragment the file in the background.

Btrfs also has quite a bit of latency associated with doing direct I/O to files. This,
coupled with the copy-on-write nature of the file system, means that any enter-
prise database workload is likely to be slower on Btrfs than on XFS or ext4.

Btrfs tries to provide the most consistent performance possible as the file system
fills up. For example, Figure 3 (next page) shows a workload where 16 threads are
creating 512-kilobyte files across 512 subdirectories on a 7 gigabyte disk with ext4,
Btrfs, and XFS.

	14    ;login:  VOL. 37, NO. 1

Figure 3: Btrfs, ext4, and XFS performance comparison

With small files Btrfs can really shine, since it will inline the data into the
metadata. So you get a graph that looks like Figure 4.

Figure 4: Btrfs, ext4, and XFS performance comparison using small files

Streaming writes onto Btrfs should be close to disk speeds. For example, writing
20 gigabytes directly to my local disk gives me a speed of 148 MB/s, and then writ-
ing to the same disk with Btrfs on top gives me 145 MB/s. Btrfs does very well at
saturating the link to the disk.

Since Btrfs is still under heavy development, much of the effort is focused on fin-
ishing features and fixing stability issues. Performance is very much an important
part of development, but, unlike XFS and ext4, Btrfs has not had years of wide-
spread use to hammer out the kinks and optimize performance. In most common

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5

Fi
le

s
pe

r S
ec

on
d

Run iteration

16 threads creating 512k files across 512 directories

Btrfs
Ext4
XFS

6000

8000

10000

12000

14000

16000

18000

20000

22000

24000

26000

1 2 3 4 5

Fi
le

s
pe

r S
ec

on
d

Run iteration

16 threads creating 3k files across 512 directories

Btrfs
Ext4
XFS

	 ;login:  FEBRUARY 2012   Btrfs: The Swiss Army Knife of Storage    15

workloads, Btrfs should perform much like its counterparts, but there is still a lot
of work that needs to be done before it is a fair comparison.

Acknowledgments

Thanks to Chris Mason and Rik Farrow for checking the accuracy of this article
and reading all of my drafts.

Thanks to USENIX and LISA Corporate Supporters

USENIX Patrons
EMC

Facebook

Google

Microsoft Research

USENIX
Benefactors
Admin Magazine: Net-

work & Security

Hewlett-Packard

Infosys

Linux Journal

Linux Pro Magazine

NetApp

VMware

USENIX & LISA
Partners
Can Stock Photos

DigiCert® SSL
Certification

FOTO SEARCH Stock
Footage and Stock
Photography

Xssist Group Pte. Ltd

USENIX Partners
Cambridge Computer

Xirrus

LISA Partner
MSB Associates

